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Quark Model of Diffractive Processes*
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Numerical results from a previously described model of dif'fraction scattering with nonshrinking forward
peaks are presented, and the model is reformulated in terms of quarks with a view to making it more realistic.

I. INTRODUCTION

' 'N an earlier paper' we described a model of high-
~ ~ energy diGraction scattering based on the assump-

tion that the asymptotic form of the scattering ampli-

tude is isf(t) We als.o obtained from the model an

integral equation for f(t), the shape of the diffraction

peak.
We should like, here, to report on approximate solu-

tions to this integral equation obtained numerically on

a computer. The' results obtained have a number of
features in common with experimentally observed dif-

fraction peaks, and they seem suSciently encouraging
to warrant pursuing the model further.

There were some oversimpli6cations in the original

version of the model, the most serious of which was

that the model was phrased in terms of only a single

kind of particle (a "parton"?). We calculated cross

sections, multiplicities, and so forth, only for this
"particle" and made no attempt to predict from the

behavior of these what the corresponding quantities
for the spectrum of physically observable particles
should be. There are really only two things with which

this particle could be identified. It could be just any
one of the existing spectrum of strongly interacting

particles, or it could be a quark. In the first case, it
must be assumed that at very high energies, all strongly

interacting particles behave in the same way. In
particular, all elastic scattering amplitudes should

become equal; and indeed this is not too far from what

is observed even at present energies. There is a dif-

ficulty with this interpretation, however, and it is that
the average multiplicity predicted by the model for

the basic particle is, asymptotically, constant. If our

particle is itself any hadron, this prediction seems to be

at variance with experiment. ' Thus the model might be,
at best, only approximately true in some limited energy

range.

*Work supported in part by the U. S. Atomic Energy Com-
mission.

' J. S. Ball and F. Zachariasen, Phys. Letters 30B, 558 (1969).
2 Experiment seems to show at least a, logarithmic increase of

n vrith s. See L. Jones, in Proceedings of International Conference
on Expectations for Particle Reactions, University of Wisconsin

(unpublished).
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If, however, the second interpretation of our parton
obtains and it is in fact a quark, then there is no dif-
ficulty with the multiplicity. It is only the quark
multiplicity that is predicted to be a constant, not the
multiplicity of observed hadrons. If the quark multi-
plicity is constant, then qg states will be produced with
a mass which increases as the total energy of the
reaction increases. States of qg with high mass also have
high spin, so they will decay into hadrons. How many
hadrons they decay into depends on quark dynamics
and cannot therefore be predicted cleanly; nevertheless,
one may expect that the higher the qq spin, the larger
the number of stable hadrons which will finally be pro-
duced. Thus the multiplicity of observed hadrons will

grow, albeit in a way we cannot easily predict, if our
particle is identified with a quark.

One further remark is worth making at this point'.
Whatever the interpretation of our particle, the model
we have is not a model of the multiperipheral or multi-
Regge' type, although it has certain similarities to
these. Our model is mathematically equivalent to what
one would obtain from a multi-Regge model with
multiple exchange of a Bat Pomeranchon having a
trajectory of o&=1, and for which the internal coupling
constant vanishes like (logs) "'. However, in a true
multi-Regge theory the internal vertices cannot depend
on the total energy, but only on the two adjacent mo-
mentum transfers and a Toiler angle cv. ' If one feels
compelled to identify our model with some sort of
diagram structure, the simplest diagram which might
have the behavior we propose is that shown in Fig. 1.

II SOLUTION TO INTEGRAL EQUATION

I.et us first consider the possibility that our particle
is any hadron. Then, as in the original version of the
model, ' the integral equation obtained from the require-

' K. ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. 44, 341 (1963)
LSoviet Phys. JETP ly, 233 i1963l]; T. W. B. Kibble, Phys.
Rev. 131, 2282 (1963); Chan Hong-Mo, K. Kajantie, and G.
Ranft, Nuovo Cimento 49, 157 (1967); F. Zachariasen and G.
Zweig, Phys. Rev. 160, 1326 (1967).

4H. M. Chan, K. Kajantie, and G. Ranft, Nuovo Cimento
49, 157 (1967); N. F. Bali, G. F. Chew, and A. Pignotti, Phys.
Rev. 103, 1572 (1967).

i596



QUARK MODEL OF DIFFRACTIVE PROCESSES i597

ment of s-channel unitarity for f(t) is

f(t) =g(t) ~"'",
where

FIG. 1. Class of Feynman
diagrams for production which

(2.1) the model may be describing. /

g(t) = f(tt) f(t,)dttdt,
(2.2)

(2tt t+2tts+2t t4 —t —t t —t )

The range of integration in Eq. (2.2) is over all tt and ts
such that the argument of the square root is positive.

The constant C is a parameter. The normalization
is such that f(0) =or, the total cross section, and
g(0) =0

„

the elastic cross section. Thus

Note that

i
B.T.(G&) = — dtt dtsg(hatt)h(gt, )2'

X(2ttl+2ttts+2tts —tt' —ts' —t') "'. (2.8')

Therefore, the Bessel transform of Eq. (2.5a) is simply

Cg(0) =ln(o r/&r, ) .
The differential cross section is given by

(2.3)
(2.9)

If we then write the Bessel transforms of Eq. (2.7), the
first one becomes

do i
If(&) I'.

dt 16m
(2.4)

g(t) = — «t«sf(t t)f(ts)
2'

X (2.5a)
(2ttt+2t tts+2t4 —t' —t t' —4') ' '

To study possible analytic solutions to Eqs. (2.1)
and (2.2), let us first redefine g and f by dividing by 8&r.

The resulting equations are

Pp Fp ) (2.10)

and hence any function that is either zero or one for
positive b is a solution. In particular, if Fp is a step
function 8(R—b), then

Jt((—t)'tsR)
f,(t) =-

( t)1/2
(2.11)

which is a typical form used to fit diffraction phenomena.
For any particular Iip we can now, by quadrature,
generate the higher-power terms as follows. From
Eq. (2.5a),

n—1

f(t) =g(t)e' " (2.5b) G„=2FpF„+QF;F„;, (2.12)

where C' is 8&rC. We now expand both g and f in a powe~ and from Eq. (2.7),
series in C' and identify coeScients:

F„=B.T.(F„)+G„,
g= E g'(C')',

j=p (2.6)
n—1

F.=LB T.(F.)+Z F;F. ;](1-2F.),
i=1

(2.13)

j=Z f'(C')'.
i=p

The 6rst few equations are as follows:

0 gp)

fr =gp +gt &

f2 sgp +2gpgl+gs &

and, in general,

fn =Fn(gp»~ gn 1)+gn &—

(2.7)

where I'„is a known polynomial function of its argu-
ments. The Bessel transform of a function is

where we have used the fact that (1—2Fp) is ~1.Thus
for sufficiently small C', we obtain a solution for each
possible Fp, and there are therefore infinitely many
solutions to our system of equations.

In practice the di%culties in performing repeated
Bessel transforms numerically make the above method
of solution impractical and, furthermore, the series may
not converge at all for the rather large value of C'
(C'=2) that seems to be indicated by experiment. To
attempt to find a solution numerically, we will simply
guess a function f(t), and if it nearly reproduces itself
through Eqs. (2.1) and (2.2), we shall then accept it
as an approximate solution.

We chose to try a four-parameter form of g(t):
G(b) = (—t)' 'd( —t)' 'Jp(( —t)' 'b)g( —t)' ', (2.8)

and will be denoted

g(0)
— at

g(t) = 1+
(1—t/t, )" (1—t/t, ) '

(2.14)

G(b) =B.T.Lgj. A value of f(0) was imposed (and taken to be 112
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TABLE I. Approximate solution for PP. The columns labeled f solution and experiment ~ thus we are encouraged toare the f of Eq. (2.1) divided by the experimental value at t=0.
The subscripts 0, 1, 2, refer to the in ut, first, and second iteration,
respectively, of Eqs. (2.2) and (2.1 .

IIL EXTENSION TO QUARK MODEL—t in
GeV2

0.00
0.14
0.23
0.36
0.55
0.82
1.22
1.83
2.78
4,31
6.95

11.9
22.2

1.00
0.34
0.207
0.114
0,058
0.028
1.28X10 ~

5.5 X10 3

2.2 X10 3

7.6 X10 4

2.1 X10 4

4.0 X10-»
X10 '

1.05
0.34
0.205
0.115
0.059
0.029
1.39X10 2

6.1 X10»
2.5 X10»
8,6 X10 4

2.5 X10 4

5.3 X10»
7.4 X10-»

16.5
10,9
8.6
6.22
4,08
2,38
1.24
0.58
0.239
0.84
2.3X10 2

4.4X10 3

5.1X10 4

16.8
10.8
8.6.
6.27
4.13
2.48
1.33
0.63
0,267
0.096
2.8X10 2

5.9X10 3

8.3X10 4

17.1
10.9
8.7
6.16
4.26
2.39
1.34
0.63
0.265
0.098
3.0X10 2

6.5X10»
1.1X10 3

GeV 4 in conformity with the experimental value of
the proton-proton total cross section; this number sets
the dimensional scale) determining C for each value of
g(0) used. Then a computer search among the four
numbers g(0), e, tp, and u was made to find the optimal
values for which the input and once-iterated solutions
best agreed. ' The best-fit input-output values of f(t),
together with the results of a second iteration, are shown
in Table I; we see that the input and output differ by
less than 30/q over 14 decades in size. The agreement
between the first and second iterations is remarkably
good. However, numerical inaccuracy makes additional
iterations unreliable. The best values of the four
parameters are m=4. 1, tp ——2.0, g(0) = 16.55, and a =1.0,
so that or/o. ,=6.77. For proton-proton scattering, the
experimental value of o z/o, is 4.1 at 19.6 GeV.

For large t, that is, if
I tI))tp, then the solution looks

like a power:

I.et us rephrase the model in terms of quarks. There
are three kinds of quarks with two spin states each;
let us label these by indices n, P, , etc., ranging from
1 to 6. I,et us assume that the elastic scattering ampli-
tude for a quark n or a quark P is of the isf(t) form, and
let us assume that it factors. Thus we write, at large s
and fixed t)

2'- --p(»t) &&If.(t)f (t))"' (3 1)

A representation of this process is shown in Fig. 3(a).
We may think of I f (t))tts as the coupling of a flat
Pomeranchon to the quark o..

It should be noted that a factorized form of this sort
could lead to difficulties in the description of scattering
from large composite systems. This is the same dif-
ficulty remarked on originally with regard to the
factorization of Regge residues and the applicability of
Regge theory to heavy nuclei. ' The difhculty is that if
the scattering of a quark from an individual quark is as

1.0

0.1

(tp
f(t) =g(t) =gol (2.15)

0,01

It is interesting to note that our optimum value of n
was 4.1. A popular theory of large-t proton-proton
scattering states that f(t) should be proportional to the
square of the electromagnetic form factor of the
proton6:

f(t)/f(o) = IF(t) I'. (2.16) o.ool

This, since F(t)~t ', would say f(t) goes like t ' for
large t.

Our solution for f(t)/f(0), together with experi-
mental valuesr and

I F(t) I
', is shown in Fig. 2.

Altogether, with only one input parameter I the
value of f(0)), remarkable similarity exists between our

1

4.
(- t) in GeV

6 7

' The equation is unstable with respect to perturbations of the
over-all scale of g, unfortunately, so repeated iterations of the
approximate solution lead rapidly to chaos.

'T. T, Chou and C. ¹ Yang, Phys. Rev. 17'0, 1591 (1968);
H. D. I. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.
Letters 20, 280 (1968).

7 J. V. Allaby et u/, , Phys. Letters 388, 67 (1968).

FIG. 2. Calculated value of f(t)/f(0) for PP is the solid curve.
The dashed curve is ~F(t) ' and the data points are for pp scatter-
ing at 19.6 GeV, from Ref. 7.

M. Gell-Mann and B. M. Udgaonkar, Phys. Rev. Letters 8,
346 (1962).
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We continue to proceed as before; the next step is to
impose s-channel multiparticle unitarity. This yields
in complete analogy to Ref. 1 the equation

ImT s s(s, t)=s P
(s) '

where

XC. (t)p (t)g»(t)p (t) p (t)g s(t)

(1/n) lns '~X, (3.3)
2E I

-yz yz 16+s (2tt1+2tts+2t tts —ts —trs —tss)'I'

&&Lf (t')1"'Lf (t')3"'l f (t')3"'Lf (t )j"' (3 4)

FIG. 3. (a) Diagram for quark-quark elastic scattering.
(h) Diagram for the process qq -+ qq+E(qq).

p.(t) =-
I6m'

Pv(t t)Pv(4) dt tdts

(2tt 1+2tts+2t tts —ts —trs tss) r~s—
(3.5)

given in Eq. (3.1), and if a large composite system is
made up of X quarks, then one might say that the
amplitude to scatter from the composite system is

Thus g and p stand for the alternating boxes in Fig. 5.
~e may note that for large quark mass pv(t) becomes
a constant,

%e shall now assume, as before, that the internal
quark-Pomeranchon vertices vanish. Ke then choose

Lf-(t)3"' 2 Lfs(t)j'"
P=l

This leads to the result that the total cross section for a
quark on the large system is Ã times the quark. -quark
cross section for a quark on the large system is E times
the quark-quark cross section. Yet experimentally total
cross sections or nuclei grow like A '~ ' rather than A.

The resolution of the difficulty lies in the fact that
multiple-scattering phenomena are important, so that
for large composite objects the form assumed above for
the amplitude is invalid. This point is returned to with
an estimate of the importance of multiple scattering
in Sec. IV.

Next, as in the simplified version of the model, let us
represent the amplitude to produce E qg pairs of type

pgg'gN 111 the Qp co11181011by

~s vrvr vNvnr=sPvr" »"(s)l:f~(tr)j (fvr(tr) j
&&P„(t')l-f„(t.)j"'Lf,.(t.)l'"

&&P(t.')" l-fs(t= )3"'. (3.2)

The corresponding diagram and labeling is shown in
Fig. 4(b). The quarks must be produced diGractively
in pairs, so that pi stands for the antiquark of the quark
yr. Pv(t) is a quark propagator between the two
Pomeranchon couplings attached to the jjr quark-
antiquark pair. P» vz(s) with E=O is just s, in
conformity with Eq. (3.1).

P». ..»(s) =s(AC/ins)~, (3 6)

where C is some constant. This amounts to assuming
that the partial cross sections a.~ to produce E qq pairs

|.0

0.1

0.01

(-f) in 68V~

FIG. 4. Calculated value off(/)/f (0) for haft scattering.
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given in Eq. (2.14). The results for the best values of the
parameters are given in Table II. Again we are able to
obtain a function that reproduces itself rather well and
is quite stable under an additional iteration. The values
of the parameters in this case were g(0) =1.15, n =4.5,
$0=5.0, and u= —'0.5. As before, no appreciable im-
provement was obtained by trying a more complicated
trial function.

In Fig. 4, f(t)/f(0) is plotted. Note that the 3 de-
pendence is much Ratter than that shown in Fig. 2 in
the small-t region while behaving in a manner similar
to the 6rst case for large t. This behavior is consistent
with our earlier result in that one would expect wave-
function e6ects to be more important at small k and to
cause a more rapid falloff in that region. %e will
consider this point in more detail in Sec. IV.

I Ig. 5. Qalue of V(g) obtained from the calculated values
of f(I) for pp and f(I) for gq.

are Poisson distributed in E and constant in s for large
s. Equation (3.3), when combined with Eq. (3.1), then
becomes

Ef«(&)3'"Efs(&)j"'

=g.I(&)+ -(«sh(ECP(&)g(&)j'") —1), (37)
g-(&)gt (&)

g(&)

(3.8)

OIlcc wc llavc t11c quark-quRlk clRstlc Rmphtudc f(/),
we must ask how to translate our results into predictions
about observable particles. To do this, we 6rst have to
note that the impulse approximation may be adequate
to deal with the scattering of two composite objects
made up of quarks.

The mean free path for a quark in quark matter,
assuming 0.«=~0-» 4.5 mb, isabout 5&10 "cm if the
density of quarks in quark matter is 2&1038 cm '
(corresponding to a meson radius of 1.4&10 " cm).
This matches the radius of the blob of quark matter,
I.4Ã'~3XIO "cm, when X is around 3. Thus multiple
scattering of quarks is irrelevant in mesons or baryons,
though it may become important in nuclei.

If multiple scattering from the quark constituents
in mesons and baryons can be neglected, then we may
write for the elastic scattering amplitude of two hadrons
just the impulse approximation result:

g(&) = Z g.(&) (3.9) T'=" d'& *(x) & &""Ef.(&)j"'|t,( )

At this point we shaH simplify the model by assuming
SU(6)lr symmetry (thereby neglecting the indices) and

by RssllI111Ilg p(/) to bc a coIlstRIlt. . We tllc11 find

f(~) =g(~) - h(Ecg(~)j'"). (3.1o)

This ls very much the same as the corresponding equa-
tion of the original version of the model, namely, Eq.
(2.1). The quark-quark or quark-antiquark total cross
section is simply f(0); the quark-quark (or quark-
antiquark) differential cross section is (1/16m. )~ f(t) ~'.
The function g(t) is related to f(t) by Eq. (2.2).

To obtain an approximate solution to Eq. (3.10), we

employ the same method as for the original version of
the model. However, f(0) is now normalized to 12
GeV 4 in accordance with the expected 9:j. ratio of
total cross sections. The trial function used was that

T= '
f(/)XE'V;(/) V .;.(t),

~here we define the form factor Vz;(t) by

(42)

(43)

»« that V"(0)=»n virtue of the normalization of
the wave functions.

where t= —6', and E, E' are the number of quarks in
the two composite particles.

If as before we assume SU(6)s for the vertices and
drop the indices a, P, . . . on the quarks, this reduces to
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Ter.z II. Approximate solution for qq. The subscripts 0, j., 2,
refer to the input, first, and second iteration, respectively, of Eqs.
(3.10) and (2.2). The eolu1nns labeled f are the fr~(t) divided by
the input value of f~r (0)

—t in
Gev2 f(~) Input f(&}output g(&}0

0.00
0.14
0.23
0.36
0.55
0.82
1.22
1.83
2.78
4.31
6.95

11.9
22.2

1.0
0.85
O.V7

0.66
0.52
0.3V

0.22
0.110
0.043
0.0135
3.5X10 &

5.9X10 4

5.9X10 &

1.11
0.88
0.77
0.64
0.49
0.34
0.21
0.109
0.045
0.0144
3,5 X10-3
6.3X10 4

6.1X10 &

1.15
1.08
1.03
0.97
0.88
0.75
0.59
0.41
0.24
0.110
0.035
6.9X10 &

7.1X10 4

1.20
1.09
1.03
0.96
0,86
0.73
0.58
0.41
0.25
0.115
0.036
7.1X10 3

7.3X10 4

1.20
1.11
1.05
0.98
0.87
0.73
0.57
0.39
0.23
0.106
0.033
5.6 X10-3
5.4X10 4

At t =0, consequently, and for elastic scattering, the
additive quark model applies. ' Away from t=0, some
t dependence is introduced through the wave function
as well as that arising from the basic quark. -quark
scattering described by f(t). We do not know much
theoretically about the quark wave functions; therefore
it follows that we know little about the form factors
V(t) Howeve. r, we can reverse our thinking and use ex-
periment plus a theoretical calculation of f(t) from the
lllteglal equatloll (3.10) to evaltlate V(t), and tlllls Iea111
something about the quark wave functions. From this
point of view, V(t) for the nucleon is just the following:

V(t) =ll f..(t)/f„(t)l"'.
The resulting V(t) is shown in Fig. 5.

V. CONSEQUENCES

First note that diifraction scattering (for example,
meson-meson) proceeds through the diagrams shown in
Fig. 6. These quark diagrams clearly show the repeated
vacuum exchange in the t channel which intuitively may
be expected to correspond to diffraction. The fact that
we have assumed SU(6)u symmetry and have not per-
mitted the "coupling" to change the SU(6)1v quark
index means that we automatically obtain SV(6)s
selection rules for diffraction dissociation. These are
consistent with observed data. M

Next, note that at t=0 the simple additive quark
model holds, as we saw in Eq. (4.2). Thus the total
cross sections are in the usual ratio 9:6:4:1 for
&aa &JVIa &~m &qq

The fact that V(t), shown in Fig. 5, becomes constant
at large t indicates the presence of a hard core, albeit
with a rather smaH coefhcient, in the spatial wave
function. The spatial extent of the wave function can be
deduced from the slope of V(t) at I =0, and this slope

H. J, Lipkin et a/. , Phys. Rev. 152, 1375 (1967), and refer-
ences therein.

0 R. Carlitz, S. Frautschi, and G. Zweig, Phys. Rev. Letters 23,
S&34 (&969~.

I'IG. 6. Contribution of
qq pair intermediate states
to the meson-meson total cross
section.

corresponds to an rms radius of about 0.8 F, which is a
quite reasonable value.

Let us next turn to production processes. Qualita-
tively, meson production in Ineson-meson collisions, for
example, will be described by associating qg pairs in the
quark production amplitudes, keeping in mind the
rule" of quark dia, grams that a quark and an antiquark
in thc same IIlcson CRnnot RllnlllllRtc onc Rnothci. Onc
cannot, therefore, associate the quark and antiquark in a,

given produced. qg pair. A typical acceptable diagram is
shown in Fig. 7. Analogous diagrams hold for other
production processes.

At the present level of complica, tion, ratios of kinds
of particles produced a,re simply those inherent in
SV(6)u. Space-time structure is not included, since
with the additive quark model we do not use Itq wave
functions in constructing the final meson states.

%ithout knowledge of the wave functions, we cannot
say anything definitive regarding the observed Inulti-
plicity. The average multiplicity of qg pairs is easily
calculated from the model to be

(E)=-,'cosh '(or/o, ) (5.1)

and, of course, constant. Numerically, we ma, y expect
(o r/a. ) for quarks to 9(o r/o, ) for proton-pmton
scattering and thus about 50. This gives ($)~2.25,
so that the average number of quarks produced is
around 4.5.

Now as the energy s increases we do not produce
more qg pairs but we do increase the mass of each pro-
duced meson (qg bound state). The spin of these mesons
therefore also increases. Thus as s grows, we are pro-
ducing qq bound states of higher and higher spin, and
these decay into larger and larger numbers of low-spin
qg resonances which are the final observed particles.
The observed multiplic;ity must, then, grow, but how it
grows depends on quark dynamics; it depends on the

FIG. 7. Example of a quark
diagram for describing the pro-
duction process

Jj/I+M —+ M+3II+M+M.

"J. Rosner, Phys. Rev. Letters 22, 689 (1969);H. Harari, ibidt.
22, 562 (1969);G. Zweig, in Symmetries in I'artie Ehysk s, edited.
by A. Zichichi (Academic, New York, 1965).
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product of the amplitude to produce qg states of spin J
and the amplitude for a state of spin J to decay into a
given number of (relatively stable) particles.
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Implications of Local Duality in a Set of Coupled Reactions*

M. J. KING AND KAMESHWAR C. WALI

Physics Department, Syracuse Univ ersity, Syracuse, New York 13Z10

(Received 25 September 1970)

This is an extension of the study in an earlier paper on meson-decuplet scattering to two sets of coupled
reactions: (1) PBM~PBIO, PB~o~PBg, PB8~PB8 and (2) PV ~PV, PV —+ PP, PP~ PP. P and V
refer to the pseudoscalar-meson octet and vector-meson nonet, respectively, while B8 and B&0 correspond to
the octet of J+=—',+ baryons and decuplet J = —,'+ baryons, respectively. Some consequences of local duality
are examined and compared with experiment in limited energy regions for the above reactions. The assump-
tion that the imaginary parts of the direct-channel helicity amplitudes vanish in the forward {backward)
scattering if the crossed t channel (u channel) is exotic leads to systems of equations relating resonance con-
tributions in the direct channel. The solutions predict certain patterns of particles degenerate in mass but
with different SU(3l, spin, and parity assignments. In particular, the inclusion of spin considerations yields
the result that the particles on leading trajectories must be accompanied by daughters with prescribed
ratios of coupling constants between the parent and daughter states. We discuss the link between our results
and those which follow from a complementary description in terms of Regge residues.

I. INTRODUCTION

~OMIlINING crossing, SU(3) symmetry, and~ duality, several authors have predicted certain
exchange-degeneracy patterns for hadronic trajec-
tories. '' These considerations have presented a new

approach to the classification of hadrons. In this

approach it is assumed that the imaginary part of the
resonant scattering amplitude is expressible, at high

energies, in terms of Regge trajectories in the crossed

channels. Hence if a particular scattering amplitude is
characterized by internal quantum numbers for which

no resonances exist, the Regge trajectories in the crossed

channels must exhibit exchange degeneracy so that the
corresponding imaginary parts cancel.

A complementary description of the resonant part of
the scattering amplitude exists in terms of direct-
channel resonances. One can assume, therefore, that
there is a region of s and small t on the one hand, and

a region of s and small I on the other, within which the
imaginary part can be calculated in two alternative

ways: in terms of direct-channel resonances or in terms

of Regge trajectories of the crossed channels. ' If we

*Work supported by the U. S. Atomic Energy Commission.
' R. H. Capps, Phys. Rev. Letters 22, 215 (1969);J. Mandula

et al. , ibid. 22, 1147 (1969);V. Barger and C. Michael, Phys. Rev.
186, 1592 (1969).

~ L. K. Chavda and R. H. Capps, Phys. Rev. D 1, 1845 (1970).
HI. Mandula, J. Weyers, and G. Zweig, Phys. Rev. Letters 23,

$27 (1969).

select the s-channel reactions so that their 7 or 0 channels
are characterized by exotic quantum numbers, the
imaginary parts due to s-channel resonances must add
up to zero. We have investigated the consequences of
this assumption in a local energy region (local duality)
in the case of the following set of coupled reactions:

(I) P&ro ~P&io, P&io~ P&s, P&s~ PBs,

(2) PV~PV, PV~PP, PP~pP,
where P represents the pseudoscalar meson octet, 81p
represents the decuplet of J =-,'+ baryons, 88 repre-
sents the octet of J~=-,'+ baryons, and V represents the
nonet of vector mesons.

In each of these reactions, we consider a set of direct-
channel resonances degenerate in mass but with
different spins and parities, and examine the constraints
on their coupling constants. The choice of such a system
of resonances degenerate in mass is, in part, motivated
by the experimental evidence in certain energy regions
for a number of orlV (and n-s-) resonances approximately
equal in mass although differing in spin, isospin, and
parity. Further, there is evidence that they are coupled
to s-6 (and orp) systems. SU(3) symmetry would then
require the consideration of reactions (I) and (2). The
assumption, in part, is also motivated by the properties
of Veneziano-type models4 which attempt to incor-

4 G. Veneziano, Nuovo Cimento 5'7A, 190 (1968).


