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Numerical results from a previously described model of diffraction scattering with nonshrinking forward
peaks are presented, and the model is reformulated in terms of quarks with a view to making it more realistic.

I. INTRODUCTION

N an earlier paper! we described a model of high-

energy diffraction scattering based on the assump-
tion that the asymptotic form of the scattering ampli-
tude is isf(#). We also obtained from the model an
integral equation for f(f), the shape of the diffraction
peak.

We should like, here, to report on approximate solu-
tions to this integral equation obtained numerically on
a computer. The results obtained have a number of
features in common with experimentally observed dif-
fraction peaks, and they seem sufficiently encouraging
to warrant pursuing the model further.

There were some oversimplifications in the original
version of the model, the most serious of which was
that the model was phrased in terms of only a single
kind of particle (a “parton”?). We calculated cross
sections, multiplicities, and so forth, only for this
“particle” and made no attempt to predict from the
behavior of these what the corresponding quantities
for the spectrum of physically observable particles
should be. There are really only two things with which
this particle could be identified. It could be just any
one of the existing spectrum of strongly interacting
particles, or it could be a quark. In the first case, it
must be assumed that at very high energies, all strongly
interacting particles behave in the same way. In
particular, all elastic scattering amplitudes should
become equal; and indeed this is not too far from what
is observed even at present energies. There is a dif-
ficulty with this interpretation, however, and it is that
the average multiplicity predicted by the model for
the basic particle is, asymptotically, constant. If our
particle is itself any hadron, this prediction seems to be
at variance with experiment.? Thus the model might be,
at best, only approximately true in some limited energy
range.

* Work supported in part by the U. S. Atomic Energy Com-
mission.

17.S. Ball and F. Zachariasen, Phys. Letters 30B, 558 (1969).

2 Experiment seems to show at least a logarithmic increase of
#n with s. See L. Jones, in Proceedings of International Conference
on Expectations for Particle Reactions, University of Wisconsin
(unpublished).
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If, however, the second interpretation of our parton
obtains and it is in fact a quark, then there is no dif-
ficulty with the multiplicity. It is only the quark
multiplicity that is predicted to be a constant, not the
multiplicity of observed hadrons. If the quark multi-
plicity is constant, then ¢g states will be produced with
a mass which increases as the total energy of the
reaction increases. States of ¢ with high mass also have
high spin, so they will decay into hadrons. How many
hadrons they decay into depends on quark dynamics
and cannot therefore be predicted cleanly; nevertheless,
one may expect that the higher the ¢g spin, the larger
the number of stable hadrons which will finally be pro-
duced. Thus the multiplicity of observed hadrons will
grow, albeit in a way we cannot easily predict, if our
particle is identified with a quark.

One further remark is worth making at this point.
Whatever the interpretation of our particle, the model
we have is nof a model of the multiperipheral or multi-
Regge® type, although it has certain similarities to
these. Our model is mathematically equivalent to what
one would obtain from a multi-Regge model with
multiple exchange of a flat Pomeranchon having a
trajectory of ap=1, and for which the internal coupling
constant vanishes like (logs)~'/2. However, in a true
multi-Regge theory the internal vertices cannot depend
on the total energy, but only on the two adjacent mo-
mentum transfers and a Toller angle w.* If one feels
compelled to identify our model with some sort of
diagram structure, the simplest diagram which might
have the behavior we propose is that shown in Fig. 1.

II. SOLUTION TO INTEGRAL EQUATION

Let us first consider the possibility that our particle
is any hadron. Then, as in the original version of the
model,! the integral equation obtained from the require-

3 K. ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. 44, 341 (1963)
[Soviet Phys. JETP 17, 233 (1963)]; T. W. B. Kibble, Phys.
Rev. 131, 2282 (1963); Chan Hong-Mo, K. Kajantie, and G.
Ranft, Nuovo Cimento 49, 157 (1967); F. Zachariasen and G.
Zweig, Phys. Rev. 160, 1326 (1967).

4H. M. Chan, K. Kajantie, and G. Ranft, Nuovo Cimento
49, 157 (1967); N. F. Bali, G. F. Chew, and A. Pignotti, Phys.
Rev. 163, 1572 (1967).
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3 QUARK MODEL OF DIFFRACTIVE PROCESSES

ment of s-channel unitarity for f(¢) is

fO) =g(t)e"®, (2.1
where
1 t1) f(to)dt dts
o= // f(t) f(t2)dty @2
1672 (2tt1+2t52+2t1tz—tz—tlz—lz)1/2

The range of integration in Eq. (2.2) is over all #; and /,
such that the argument of the square root is positive.

The constant C is a parameter. The normalization
is such that f(0)=ocr, the total cross section, and
£(0)=o., the elastic cross section. Thus

Cg(0)=In(or/00).

The differential cross section is given by

(2.3)

“ Lo
@ 1e O

(2.4)

To study possible analytic solutions to Egs. (2.1)
and (2.2), let us first redefine g and f by dividing by 8.
The resulting equations are

_! /dzdt (ts) f(t2)
g(t)—zr 1dta f(ta) f(2

1
Qb+ 20tat 2ty — 12— 12— 152) V2
f(t) =g(t)e°"0(” ,

where C’ is 87C. We now expand both g and fin a power
series in C’ and identify coefficients:

(2.5a)

(2.5b)

g= i g(C)%,
i=0 (2.6)

F=% J(C)

=0
The first few equations are as follows:
Jo=8go,
J1=go*+81,
=38 +2g051+ g,
and, in general,
fa=Pn(goy- - - gn-1)Fgn,

where P, is a known polynomial function of its argu-
ments. The Bessel transform of a function is

2.7

G(b)= / ) (=0d(=)"T (=)' "B)g (=02, (2.8)

and will be denoted
G(b)=B.T.[¢].
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Note that

1
B.T.(GH) = 5— /dh/dt2g(\/tl)h(\/tz)

X(2l11+211l2+2112—'l12—t22—12)~1/2. (28’)
Therefore, the Bessel transform of Eq. (2.5a) is simply
G=F2, (2.9)

If we then write the Bessel transforms of Eq. (2.7), the
first one becomes

F0=F02, (210)

and hence any function that is either zero or one for
positive b is a solution. In particular, if F, is a step
function (R—b), then

J(=1)'"R)

W)= ————R,
ho=—=—

which is a typical form used to fit diffraction phenomena.
For any particular F, we can now, by quadrature,
generate the higher-power terms as follows. From
Eq. (2.5a),

(2.11)

n—1
Gn=2F0Fn+Z F:'Fn—i;

=1

(2.12)
and from Eq. (2.7),

Fo=B.T.(P.)+G.,
(2.13)

Pu=[BI.(P)+3 FiFu(1=2Fy),

=1

where we have used the fact that (1—2F) is 1. Thus
for sufficiently small C’, we obtain a solution for each
possible Fo, and there are therefore infinitely many
solutions to our system of equations.

In practice the difficulties in performing repeated
Bessel transforms numerically make the above method
of solution impractical and, furthermore, the series may
not converge at all for the rather large value of C’
(C'~2) that seems to be indicated by experiment. To
attempt to find a solution numerically, we will simply
guess a function f(¢), and if it nearly reproduces itself
through Egs. (2.1) and (2.2), we shall then accept it
as an approximate solution.

We chose to try a four-parameter form of g(z):

0
ey = 29 [1+ «

(A=t/t)"L (1—t/t)?

A value of f(0) was imposed (and taken to be 112

]‘ (2.14)
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Tasre I. Approximate solution for pp. The columns labeled f
are the f of Eq. (2.1) divided by the experimental value at ¢=0.
The subscripts 0, 1, 2, refer to the input, first, and second iteration,
respectively, of Egs. (2.2) and (2.1§J.

—t in
GeV? So® f10) &(t)o [{OR &)
0.00 1,00 1.05 16.5 16.8 17.1
0.14 0.34 0.34 10.9 10.8 10.9
0.23  0.207 0.205 8.6 8.6 8.7
0.36 0.114 0.115 6.22 6.27 6.16
0.55  0.058 0.059 4.08 4.13 4.26
0.82  0.028 0.029 2.38 2.48 2.39
122 1.28 X102 1.39X1072 1.24 1.33 1.34
1.83 55 X103 6.1 X103 0.58 0.63 0.63
2,78 2.2 X107% 2,5 X1073  0.239 0.267 0.265
431 7.6 X104 8.6 X10™% 0.84 0.096 0.098
6.95 2.1 X10™¢ 2.5 X107t 2.3X1072 2.8X1072 3.0X1072
11.9 4.0 X1075 53 X1076  4.4X1073 59X107%  6.5X1073
22.2 4.5 X1076 7.4 X107¢ 5.1X10™¢ 83X10~¢ 1.1X1073

GeV~ in conformity with the experimental value of
the proton-proton total cross section; this number sets
the dimensional scale) determining C for each value of
2(0) used. Then a computer search among the four
numbers g(0), 7, t,, and @ was made to find the optimal
values for which the input and once-iterated solutions
best agreed.® The best-fit input-output values of f(Z),
together with the results of a second iteration, are shown
in Table I; we see that the input and output differ by
less than 309, over 14 decades in size. The agreement
between the first and second iterations is remarkably
good. However, numerical inaccuracy makes additional
iterations unreliable. The best values of the four
parameters are n=4.1, £,=2.0, g(0) =16.55, and a=1.0,
so that ¢7/0,=6.77. For proton-proton scattering, the
experimental value of o7/0. is 4.1 at 19.6 GeV.
For large ¢, that is, if |¢|>>f,, then the solution looks
like a power:
to \"
foms0=s(77)

It is interesting to note that our optimum value of #
was 4.1. A popular theory of large-f{ proton-proton
scattering states that f(f) should be proportional to the
square of the electromagnetic form factor of the

proton®:
J@O/f0)=F@)|*. (2.16)

This, since F({)~t2, would say f(f) goes like = for
large ¢.
Our solution for f(#)/f(0), together with experi-
mental values” and | F(Z) |2, is shown in Fig. 2.
Altogether, with only one input parameter [the
value of f(0)], remarkable similarity exists between our

(2.15)

5 The equation is unstable with respect to perturbations of the
over-all scale of g, unfortunately, so repeated iterations of the
approximate solution lead rapidly to chaos.

8T, T. Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968);
H. D. I. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.
Letters 20, 280 (1968).

7J. V. Allaby et al., Phys. Letters 38B, 67 (1968).
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solution and experiment; thus we are encouraged to
pursue the model further.

III. EXTENSION TO QUARK MODEL

Let us rephrase the model in terms of quarks. There
are three kinds of quarks with two spin states each;
let us label these by indices @, 8, - - -, etc., ranging from
1 to 6. Let us assume that the elastic scattering ampli-
tude for a quark « or a quark g is of the 4s f(¢) form, and

let us assume that it factors. Thus we write, at large s
and fixed ¢,

T ap>ap(s,t) — is[ falt) fo(t) ]*2. 3.1)

A representation of this process is shown in Fig. 3(a).
We may think of [f.(#)]'/2 as the coupling of a flat
Pomeranchon to the quark a.

It should be noted that a factorized form of this sort
could lead to difficulties in the description of scattering
from large composite systems. This is the same dif-
ficulty remarked on originally with regard to the
factorization of Regge residues and the applicability of
Regge theory to heavy nuclei.® The difficulty is that if
the scattering of a quark from an individual quark is as

1.0

0.1

0.01

0.001

(-t) in Gev?®

F16. 2. Calculated value of f(£)//(0) for pp is the solid curve.
The dashed curve is |F (f) |2 and the data points are for pp scatter-
ing at 19.6 GeV, from Ref. 7.

8 M. Gell-Mann and B. M. Udgaonkar, Phys. Rev. Letters 8,
346 (1962).
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F16. 3. (a) Diagram for quark-quark elastic scattering.
(b) Diagram for the process gg — gg+N (¢9).

given in Eq. (3.1), and if a large composite system is
made up of N quarks, then one might say that the
amplitude to scatter from the composite system is

Lnanvzéétﬁan”%

This leads to the result that the total cross section for a
quark on the large system is V times the quark-quark
cross section for a quark on the large system is NV times
the quark-quark cross section. Yet experimentally total
cross sections or nuclei grow like 42/8 rather than 4.

The resolution of the difficulty lies in the fact that
multiple-scattering phenomena are important, so that
for large composite objects the form assumed above for
the amplitude is invalid. This point is returned to with
an estimate of the importance of multiple scattering
in Sec. IV.

Next, as in the simplified version of the model, let us
represent the amplitude to produce NV ¢g pairs of type
YY1 YNYN in the G!B collision by

Topoap 7171~--7N"7N=7:F71---'m(-‘)[fa(tl):llm[fn(tl)]”2
X‘P‘n(tll)Ef‘n(tz):jllz[fn(t?):]l/z
XP(ts)- - -[fo(ta1) "2,

The corresponding diagram and labeling is shown in
Fig. 4(b). The quarks must be produced diffractively
in pairs, so that ¥, stands for the antiquark of the quark
v1. P,(f) is a quark propagator between the two
Pomeranchon couplings attached to the v quark-
antiquark pair. F.,. .,n(s) with N=0 is just s, in
conformity with Eq. (3.1).

3.2)
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We continue to proceed as before; the next step is to
impose s-channel multiparticle unitarity. This yields
in complete analogy to Ref. 1 the equation

F'yl...‘yN(s)

S

2

© 6
ImT ag>ap(s,t) =s 20 >

N=0 'Yl""YN=1

ng/l(t)P;n (t)g7172(t)1>72(’5) <+ pyn(t)gyne(?)

where
1 dhydls
seoll)= oms / f b2ty 2t — 12— 1) 12
XLfa() L fa() L falt) T fa(t) ]2 (3.4)

and

P (1) P(to)dlrdts

1
ro-— [ -
! 1672 (2f11+2tlf2+2t1l2—t2—t12"t22)1/2
3.3)

Thus g and p stand for the alternating boxes in Fig. 5.

We may note that for large quark mass $,(f) becomes
a constant.

We shall now assume, as before, that the internal
quark-Pomeranchon vertices vanish. We then choose

Foyecqn(s) =s(xC/Ins) ", (3.6)

where C is some constant. This amounts to assuming
that the partial cross sections ox to produce N ¢g pairs

1.0

Ol |~

0.01f—

1 ! ! ! ! 1
1 2 3 4 5 6 7

(-t) in GeVv?

F16. 4. Calculated value of () /f(0) for gg scattering.
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V(t) ——

2 4 6 .8 1.0 12 1.4 16 1.8
(-t) in Gev?

F16. 5. Value of V (§) obtained from the calculated values
of f(#) for pp and f(¢) for ¢q.

are Poisson distributed in NV and constant in s for large
s. Equation (3.3), when combined with Eq. (3.1), then
becomes

WEORRENION

= us(0)+ 5"‘(—%"—@{ coshCCHDETH~1}, (1)
4

where we define

gall) = E ) (338)

and

6= g)- (3.9)

a=1

At this point we shall simplify the model by assuming
SU(6)w symmetry (thereby neglecting the indices) and
by assuming p(#) to be a constant. We then find

J())=g(t) cosh([Cg()]?).

This is very much the same as the corresponding equa-
tion of the original version of the model, namely, Eq.
(2.1). The quark-quark or quark-antiquark total cross
section is simply f(0); the quark-quark (or quark-
antiquark) differential cross section is (1/16m)]| f(2)|2
The function g(?) is related to f(£) by Eq. (2.2).

To obtain an approximate solution to Eq. (3.10), we
employ the same method as for the original version of
the model. However, f(0) is now normalized to 12
GeV~* in accordance with the expected 9:1 ratio of
total cross sections. The trial function used was that

(3.10)
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given in Eq. (2.14). The results for the best values of the
parameters are given in Table II. Again we are able to
obtain a function that reproduces itself rather well and
Is quite stable under an additional iteration. The values
of the parameters in this case were 2(0)=1.15, n=4.5,
%=3.0, and a=—0.5. As before, no appreciable im-
provement was obtained by trying a more complicated
trial function.

In Fig. 4, f(1)/f(0) is plotted. Note that the ¢ de-
pendence is much flatter than that shown in Fig. 2 in
the small-# region while behaving in a manner similar
to the first case for large ¢. This behavior is consistent
with our earlier result in that one would expect wave-
function effects to be more important at small # and to
cause a more rapid falloff in that region. We will
consider this point in more detail in Sec. IV.

IV. PHYSICAL IMPLICATIONS

Once we have the quark-quark elastic amplitude f(z),
we must ask how to translate our results into predictions
about observable particles. To do this, we first have to
note that the impulse approximation may be adequate
to deal with the scattering of two composite objects
made up of quarks.

The mean free path for a quark in quark matter,
assuming o, =§0,,~4.5 mb, is about 5X10~13 cm if the
density of quarks in quark matter is 2)X10% cm=3
(corresponding to a meson radius of 1.4X10~3 cm).
This matches the radius of the blob of quark matter,
1.4N'#X 107" cm, when NV is around 3. Thus multiple
scattering of quarks is irrelevant in mesons or baryons,
though it may become important in nuclei.

If multiple scattering from the quark constituents
in mesons and baryons can be neglected, then we may
write for the elastic scattering amplitude of two hadrons
just the impulse approximation result:

N
T=is/dx ¥4 (x) 21 eAxal (D) ]V %(x)

N
X/ WA (W) B LT e(x), @D

where /=—A2, and N, N are the number of quarks in
the two composite particles.

If as before we assume SU(6)w for the vertices and
drop the indices @, B, ... on the quarks, this reduces to

T=isfONN'V()Var(t), (4.2)
where we define the form factor V(f) by
Vi) = [Exurwe . @)

Note that V;(0)=1 in virtue of the normalization of
the wave functions.



Tasre II. Approximate solution for gg. The subscripts 0, 1, 2,
refer to the input, first, and second iteration, respectively, of Egs.
(3.10) and (2.2). The columns labeled f are the foq($) divided by
the input value of fg,(0).

—tin
GeV2 f (@) input f(®output I{On [{OR [{OF

0.00 1.0 1.11 1.15 1.20 1.20

0.14 0.85 0.88 1.08 1.09 111

0.23 0.77 0.77 1.03 1.03 1.05

0.36 0.66 0.64 0.97 0.96 0.98

0.55 0.52 0.49 0.88 0.86 0.87

0.82 0.37 0.34 0.75 0.73 0.73

1.22 0.22 0.21 0.59 0.58 0.57

1.83 0.110 0.109 0.41 0.41 0.39

2,78 0.043 0.045 0.24 0.25 0.23

4.31 0.0135 0.0144 0.110 0.115 0.106

6.95 3.5X1073  3.5X107% 0.035 0.036 0.033
119 59X10™%  6.3X10™% 6.9X1073 7.1X1073 5.6X1073
22.2 59X1075  6.1X1078  7,1X10™¢ 7.3X107% 54X1074

At 1=0, consequently, and for elastic scattering, the
additive quark model applies.® Away from /=0, some
¢ dependence is introduced through the wave function
as well as that arising from the basic quark-quark
scattering described by f(). We do not know much
theoretically about the quark wave functions; therefore
it follows that we know little about the form factors
V(1). However, we can reverse our thinking and use ex-
periment plus a theoretical calculation of f(¢) from the
integral equation (3.10) to evaluate V (), and thus learn
something about the quark wave functions. From this
point of view, V(¢) for the nucleon is just the following:

V() =31‘[fpp(t)/qu(l)]”2 . (4.4)
The resulting V(?) is shown in Fig. 5.

V. CONSEQUENCES

First note that diffraction scattering (for example,
meson-meson) proceeds through the diagrams shown in
Fig. 6. These quark diagrams clearly show the repeated
vacuum exchange in the £ channel which intuitively may
be expected to correspond to diffraction. The fact that
we have assumed SU(6)w symmetry and have not per-
mitted the “coupling” to change the SU(6)w quark
index means that we automatically obtain SU(6)w
selection rules for diffraction dissociation. These are
consistent with observed data.!®

Next, note that at {=0 the simple additive quark
model holds, as we saw in Eq. (4.2). Thus the total
cross sections are in the usual ratio 9:6:4:1 for
OBB.OMB:OMM:0qq-

The fact that V(¢), shown in Fig. 5, becomes constant
at large ¢ indicates the presence of a hard core, albeit
with a rather small coefficient, in the spatial wave
function. The spatial extent of the wave function can be
deduced from the slope of V(#) at {=0, and this slope

°H. J. Lipkin ef al., Phys. Rev. 152, 1375 (1967), and refer-
ences therein.

10 R. Carlitz, S. Frautschi, and G. Zweig, Phys. Rev. Letters 23,
1134 (1969).
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F1c. 6. Contribution of
g7 pair intermediate states
to the meson-meson total cross
section.

(

corresponds to an rms radius of about 0.8 F, which is a
quite reasonable value.

Let us next turn to production processes. Qualita-
tively, meson production in meson-meson collisions, for
example, will be described by associating ¢g pairs in the
quark production amplitudes, keeping in mind the
rule' of quark diagrams that a quark and an antiquark
in the same meson cannot annihilate one another. One
cannot, therefore, associate the quark and antiquark in a
given produced ¢g pair. A typical acceptable diagram is
shown in Fig. 7. Analogous diagrams hold for other
production processes.

At the present level of complication, ratios of kinds
of particles produced are simply those inherent in
SU(6)w. Space-time structure is not included, since
with the additive quark model we do not use ¢ wave
functions in constructing the final meson states.

Without knowledge of the wave functions, we cannot
say anything definitive regarding the observed multi-
plicity. The average multiplicity of ¢7 pairs is easily
calculated from the model to be

(N)=% cosh™(or/0,) (5.1)

and, of course, constant. Numerically, we may expect
(or/c.) for quarks to 9(¢r/s.) for proton-proton
scattering and thus about 50. This gives (N)~2.25,
so that the average number of quarks produced is
around 4.5.

Now as the energy s increases we do not produce
more g7 pairs but we do increase the mass of each pro-
duced meson (¢7 bound state). The spin of these mesons
therefore also increases. Thus as s grows, we are pro-
ducing ¢7 bound states of higher and higher spin, and
these decay into larger and larger numbers of low-spin
¢q resonances which are the final observed particles.
The observed multiplicity must, then, grow, but how it
grows depends on quark dynamics; it depends on the

F1c. 7. Example of a quark
diagram for describing the pro-
duction process

MAM— M4+-MAM+M.

! J. Rosner, Phys. Rev. Letters 22, 689 (1969) ; H. Harari, ibid.
22, 562 §19§9).; G. Zweig, in Symmetries in Particle Physics, edited
by A. Zichichi (Academic, New York, 1965).
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product of the amplitude to produce ¢g states of spin J
and the amplitude for a state of spin J to decay into a
given number of (relatively stable) particles.

ACKNOWLEDGMENTS

One of us (J.S.B.) would like to thank Professor
G. F. Chew for his hospitality at the Lawrence Radia-

BALL AND F. ZACHARIASEN 3

tion Laboratory, Berkeley, where most of the numerical
calculations were performed and, further, to express
his gratitude to the Associated Western Universities,
Inc., and the Atomic Energy Commission, whose
financial support made possible this faculty orientation
and training program at the Lawrence Radiation
Laboratory.

PHYSICAL REVIEW D

VOLUME 3,

NUMBER 7 1 APRIL 1971

Implications of Local Duality in a Set of Coupled Reactions*
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(Received 25 September 1970)

This is an extension of the study in an earlier paper on meson-decuplet scattering to two sets of coupled
reactions: (1) PByy— PBi, PByg— PBs, PBs— PBgand (2) PV — PV,PV— PP,PP— PP.Pand V
refer to the pseudoscalar-meson octet and vector-meson nonet, respectively, while Bs and By, correspond to
the octet of JP=3" baryons and decuplet J?=3* baryons, respectively. Some consequences of local duality
are examined and compared with experiment in limited energy regions for the above reactions. The assump-
tion that the imaginary parts of the direct-channel helicity amplitudes vanish in the forward (backward)
scattering if the crossed # channel (% channel) is exotic leads to systems of equations relating resonance con-
tributions in the direct channel. The solutions predict certain patterns of particles degenerate in mass but
with different SU (3), spin, and parity assignments. In particular, the inclusion of spin considerations yields
the result that the particles on leading trajectories must be accompanied by daughters with prescribed
ratios of coupling constants between the parent and daughter states. We discuss the link between our results
and those which follow from a complementary description in terms of Regge residues.

I. INTRODUCTION

OMBINING crossing, SU(3) symmetry, and
duality, several authors have predicted certain
exchange-degeneracy patterns for hadronic trajec-
tories.1'? These considerations have presented a new
approach to the classification of hadrons. In this
approach it is assumed that the imaginary part of the
resonant scattering amplitude is expressible, at high
energies, in terms of Regge trajectories in the crossed
channels. Hence if a particular scattering amplitude is
characterized by internal quantum numbers for which
no resonances exist, the Regge trajectories in the crossed
channels must exhibit exchange degeneracy so that the
corresponding imaginary parts cancel.

A complementary description of the resonant part of
the scattering amplitude exists in terms of direct-
channel resonances. One can assume, therefore, that
there is a region of s and small ¢ on the one hand, and
a region of s and small % on the other, within which the
imaginary part can be calculated in two alternative
ways: in terms of direct-channel resonances or in terms
of Regge trajectories of the crossed channels.® If we
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select the s-channel reactions so that their £ or # channels
are characterized by exotic quantum numbers, the
imaginary parts due to s-channel resonances must add
up to zero. We have investigated the consequences of
this assumption in a local energy region (local duality)
in the case of the following set of coupled reactions:

(1) PBlo—ﬁPBm, PBlo‘%PBg, PBg’—)PBg,
2  PV—PV, PV—PP, PP—PP,

where P represents the pseudoscalar meson octet, By
represents the decuplet of J¥=4%+* baryons, Bs repre-
sents the octet of J2=37 baryons, and V represents the
nonet of vector mesons.

In each of these reactions, we consider a set of direct-
channel resonances degenerate in mass but with
different spins and parities, and examine the constraints
on their coupling constants. The choice of such a system
of resonances degenerate in mass is, in part, motivated
by the experimental evidence in certain energy regions
for a number of 7V (and ) resonances approximately
equal in mass although differing in spin, isospin, and
parity. Further, there is evidence that they are coupled
to #A (and mp) systems. SU(3) symmetry would then
require the consideration of reactions (1) and (2). The
assumption, in part, is also motivated by the properties
of Veneziano-type models* which attempt to incor-

4 G. Veneziano, Nuovo Cimento 57A, 190 (1968).



