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Several specific assumptions on the isospin structure of the dominant exchange mechanisms are examined
in the framework of the multiperipheral model. The consequent predictions for the charged and neutral
particle distributions are compared with the present data.

I. INTRODUCTION
' 'HZ multiperipheral model (MPM) provides a

valuable scheme for the classification and the un-
derstanding of the multiparticle production processes
(MPPP). The main ideas of multiperipheralism have
survived ten years of research, and the general features
of the MPPP are surprisingly well reproduced by simple
multiperipheral parametrizations. ' However, the de-
tailed study of particular production processes has not
yet provided compelling evidence for (or against) the
dominance of the multiperipheral dynamics; the
statistics are not rich enough, and the number of free
parameters is usually large.

It looks more promising, for the time being, to con-
centrate our attention on the general features of the
MPPP, i.e., on quantities that are hopefully independ-
ent of the details of the dynamics and, therefore, of the
particular reactions involved.

An obvious quantity of this kind is the average
number of particles produced in high-energy inelastic
collisions, (n(s)). A recent experiment' has confirmed
the logarithmic behavior predicted by the MPM. More
information is contained in the charge distribution
function P(n+, rts, s) that gives the probability of having
2n+ charged tracks and ns neutral particles (in a reaction
with total charge 0) as a function of the energy. The
knowledge of P(n+, ns, s) obviously provides more de-
tailed information than is contained in (n(s)). Still,
this quantity is an extremely averaged one in the sense
that all the final-state kinematical variables have been
integrated over. There is actually good evidence that
the charge distributions are, to a good approximation,
universal —i.e., the same function P(n+, ne, s) describes
all reactions, provided an obvious shift is made to relate
reactions with initial charges 2, 1, 0, and —1.'
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The general feature of the charged particle distribu-
tion is in good agreement with a Poisson-like distribu-
tions, 4 providing a further hint for the validity of the
MPM. In fact, this kind of distribution is predicted for
the production of n identical bosons in all simpler
MPM. For instance, Chew and Pignotti' obtained

P(n, s) = (g' 1ns) "s-r'/n!,

where g is the coupling of the boson to the multi-
peripheral chain. In the physically relevant situation
in which most of the produced particles are pions, (1)
cannot possibly hold because of charge and isospin
conservation.

Several modifications have been proposed to take
into account this constraint, like producing pairs of
charged particles with a Poisson distribution, ' or as-
suming a Poisson distribution for the probability of
positive and negative particle production and multiply-
ing the two to obtain the joint probability for produc-
tion of a pair. ' In the framework of the multiperipheral
model, the function P(rt+, n&,s) is uniquely determined

by the isospin structure of the exchanges. It is the
purpose of the present paper to examine the predictions
that follow from the assumption of the dominance of
several well-de6ned and physically reasonable mech-
anisms. In Sec. II we introduce the models that we are
going to consider, and we give physical justihcations
for their relevance. In Sec. III we study the models
analytically, and in Sec. IV we examine their phe-
nomenological consequences. Section V is devoted to
some concluding remarks.

II. MODELS—GENERAL FEATURES

In this section we want to outline briefly the general

(very simple) dynamical features common to the
models that we want to consider, and to introduce the
specific isospin structure of the various models, giving
some justification for their selection and some hints
as to the particular problems for which they can be
relevant.

4 J. W. Elbert et al. , Nucl. Phys. 319, 85 (1970).
5 G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 (1968).' D. Horn and R. Silver, Phys. Rev. D 2, 2092 (1970); Ann.

Phys. (N. Y.) (to be published).
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As stressed in the Introduction, we feel that the
charge distributions in which we are interested should
not depend critically on the dynamics, and therefore
we will keep all dynamical features to a maximum level
of simplicity. Namely, we will assume the following.

(a) The integrated cross section for the multiperipheral
production of n particles in a definite order is given by a
simple Chew-Pignotti form,

0.(n, s) =(g'1ns) "f(s)/n!,

where g' is an appropriately defined coupling constant
and f(s) behaves like s ' in most multiperipheral
models. However, this function is irrelevant to the
problem of charge distributions.

(b) The matrix element for the production of n particles
in a given order is sizable only in the phase-space region
in which the longitudinal momenta of the particles
produced multiperipherally are ordered in increasing
magnitude (in the laboratory frame). This allows us to
add the various permutations of the final particles in-
coherently, neglecting interference terms.

(c) We will for simplicity assume that all the produced
particles are pions (i.e., isospin 1).

The simplest model that we are going to consider
(H model) assumes the multiple exchange of an I=
object to be the dominant mechanism. Under this as-
sumption it is straightforward to compute

(g2 ln&)2m++no (2)2n+(1)np
P"(e+,mo, s) =

(2n+)!(no)! S"(s) (2)

where we define the shadow functions S~(s) as

(1g2 in~) 2n++np4ny

s"(~)= Z — (3)
n+, no (2n~)!(eo)!

The factors P3)"' and (-,')'"+ are the squares of the
Clebsch-Gordan coeKcients for the (1,0))& (-,' i2) -+ (-,',—',)
and the (1,1)X(~, —2) ~ (—,', 2) couplings, and a factor

is obtained on observing that the permutation of two
oppositely charged particles leads to a configuration
not allowed by I= ~ exchange. The main interest of this
model consists in the fact that the neutral particle
production factorizes and therefore the model simulates
an independent emission of the various charges. The
charged particle distribution has the same structure'
as one of those produced by Wang. '

7 The shadow function S(s) owes it name to the fact that it
determines the asymptotic behavior of the imaginary part of the
elastic amplitude through unitarity.

'We note, however, that in this model the average charge
multiplicity 2(n+) can differ sizably from —,g'lns at intermediate
energies and, therefore, the distribution 8' of Ref. 3 and our (2)
are not identical.

(g' ins)'~++~0 pm++a
P~(e+,mo, s) = s ( ) (~)

m(2n++no)!

with no equal to 2m or 2m+1, m integer.
The function S"(s) is defined in analogy with (3) by

(g' lns)'"'+"' (n~+m)sa(z)
~+, 0 (2e++n0)! 4 m

Two physical justifications for this model can be pro-
posed. In the framework of the AFS model, ' this
mechanism is relevant in the phase-space region which
corresponds to large energies for the x-z cross sections,
but we know that this phase-space region is actually
quite small. On the other hand, the I=O particle ex-
changed could be an cv or a I", and the I=1 could be a
p or A2 (or an elementary m). In the framework of the
multi-Regge model the exchange of mesons (defined
as Regge trajectories with intercept close to 0.5) is
dominant, but it remains to be explained why I=0 and
I=1 should be exactly alternate. "We can hopefully
assume however that the predictions of models in which
I=1 or 1=0 exchanges can alternate in any (allowed)
fashion, will be somehow intermediate between the A
model and a third. model (I model) in which /=1 ex-
changes dominate through the chain.

OL. Montanet, in Proceedings of the Lund International Con-
ference on Elementary Particles, 1969, edited by G. von Dardel
(Berlinska, Lund, Sweden, 1969), p. 201.

"In the general framework of the multiperipheral bootstrap
it takes a large pp coupling (and a correspondently low xm. sub-
energy) to boost the low nucleon intercept to an effective n,„&=0.5.
See P. Ting, Phys. Rev. 181, 1942 (1969)."D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26,
896 (1962). L. Bertocchi, S. Fubini, and M. Tonin, ibid. 25, 626
(1962).

"This would be the case if the dominant exchanges were co and
p, or P' and A2, but there is little evidence to justify either
hypothesis.

Even if this model has essentially only a formal
interest, we can propose a physically relevant applica-
tion in pp annihilation processes. From the data on the
charge asymmetry' in pp -+ m.+m. , we know that nucleon
exchange dominates over 6 exchange at low energy,
and the average subenergy of a pair of pions in pp
annihilation should be generally very low, '0 as the total
annihilation cross section behaves experimentally like
s '. Also in ~p and pp inelastic processes nucleon ex-
change has been successfully advocated' to parametrize
theso-called central interactions. The pions emitted
at the nucleon line in the model of Ref. 1 should follow
the distribution (2).

The second model that we are going to consider (A
model) was actually proposed by Chew and Pignotti. '
The assumption that characterizes the A model is that
the dominant multiperipheral mechanism is alternate
exchange of I=0 and I=1 objects. Assuming for
simplicity that the initial and final links have I=0 when
the number of produced particles is even, the probability
distribution is
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In the I model, assuming for simplicity that the ini-
tial and 6nal links have I,=0, we obtain the distribution

Pr(to+, no, s)

(g' lns) '"++"' (n++too —1)
-(-')"'+"'I

~

S'( ) (6)
(2to++No)! E No

and Sl is the shadow function for this model, defined in
analogy with S~ and 5".

In the last model (E model) the final pions are not
directly produced by a multiperipheral mechanism but
come from the decay of resonances for which a rnulti-

peripheral production mechanism is assumed. In this
model there is a strong correlation between the neutral
and charged particle production, and this seems in
agreement with the present data. ' To define this model
more precisely, we assume that the dominant mech-
anism is the multiperipheral production of I=O (o.,fo)
and I=1 (p) or-or resonances through multiple I=1 ex-
change. Therefore the E model corresponds to an ex-
treme parametrization of the AFS model, in which the
m-x cross section is assumed to be dominated by the
s-channel production of I=O and I=1 resonances. In

view of the fact that the average x-x subenergy is of
the order of 0.5 GeV', the model is not unreasonable.
As pointed out in Ref. 13, the actual shape of the
assumed resonance is not important, as all dynamical
variables are integrated over. What really matters ls a
definite s-channel isospin character of the x-x cross
section.

We obtain the charge distribution in two steps: Ke
first hand the probability distribution for the production
of r I=0 resonances, mi p+ (and mi p ) and mo po'.

(go' lns) '
P(r, mt, mo)s) = s o"P'(mt)mo&s) .

Here go' is the coupling constant for the production of
the I=0 resonance, and g' (implicit in Pr) is the cou-

pling for the production of an I= j resonance; their rela-
tive value can be fixed by requiring that the ~-m. ampli-
tude with T=2 in the crossed channel vanishes (as it
does lil tile s channel). We obtain from tllls condition
go'=~g', but, as stressed in Ref. 13, the predictions of
the model do not depend critically on this assumption.
From (6) it is easy to obtain the pion distribution

(no ——2m is necessarily even in this model):

minioy, m) o+—tnt (mt+mt —1))3o~r+oe2 ~R

PB(tt too s) —(t go ins) o++m2 o+s-go/op'r(s) j-i . (g)
o=o (mi —1)!( m)o! (to+ mi mo—)!(m ——mi)! (2mt+mo)!

III. ANALYTICAL STUDY OF MODELS

In this section we want to perform an analytical
study of the distributions predicted by the various
models in order to obtain some features (like the
asymptotic behavior) of the phenomenologically rele-
vant quantities.

The II model is very simple, and again it is convenient
to start from it to establish the notations. The shadow
function S~(s) can be explicitly computed" from (3),

S~(s) =s")ofcosh(ooa) —1j ——',so',

where here and in the following, a=g2 lns. The charged
particle distribution is

and the average number of neutral particles is

(too")= P P(to~, too, s)too —oa. (12)

The total average multiplicity behaves asymptotically
as g' lns. The coefficient of the logarithmic increase (g')
equals the power with which the shadow function in-

creases, as usual in multiperipheralism.
Because the dependence on n+ and no of P(n~, no, s)

factorizes, the average number of mo produced for a
Axed number of charged particles n+ does not depend
on n+.

A~(oo~, s) =Q NoP(N+, No,s)/ Q P(e+,no, s) = ors (13)-.
(Ro) to+

0 (2to+) ./cosh(o u)

and exhibits Poisson-like features. The average number
S"(s) = g 2"

of positive particles is
2to+2m+1

X~1+ —,(14)sinh(oo u)
-'oa (11)

cosh(-;a) —1 *-"(e+~)= P P(to+, too,s)N+=tou-
C~(n+, s) =P P(to+,No, s) =- In the A model the shadow function is given by

n

"L.Catteochi and A. Schwimmer, Phys. Letters (to be pttb-
lished)."%e do not take into account events in vvhich no charged par-
ticles are produced (i.e., the sum over e+ starts from I+——I).

where we separated the sum into two parts correspond-

ing to an even and odd number of m', respectively. Ke
note that the contribution from the terms with an even

number of xo is the derivative with respect to u of the
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fa2) '8+1/2

S~(s) =~"2I 1+—
I g I

—
I

da/ - &2)

contribution from the terms with odd n o. Therefore, monotonically decreasing as a function of n+ in the
using the doubling formula for the I" function, we can region in which n+ is much smaller than a. For large
recast (14) in the form values of n+ at fixed a, A levels off to the asymptotic

value —,'a.
I.et us now turn our attention to the I model. In

this model the shadow function can be written as

/'a 2m 1
x —ZJ-

n! I 2 n2!F(n+2n+-,')

d) a )1/2
ly(2 ~3g

da) 2vSf

(-', a') "+ (n++np —1)!(2n~)!(-,'a) "'
S'(s) = P

~+=1 (2n+)! no=o (n+ 1)—!(2n++no) Ino!

(ja2)n+

C (n+, 2n++1, —;a). (20)
+=1 (2n+)!

( d 1 Using the integral representation of the confluent
=

~
1+——sinh(v3a) . (15) hypergeometric function,

da W3

Therefore we obtain the simple expression

S"(s) =cosh(v3a)+ (1/V3) sinh(43a) .

C(c,d, x) =
F(c)I'(d —c) o

exuue-1(1 u) d c- ld-u

The function I in Eq. (15) is the Bessel function of
imaginary argument; asymptotically the shadow func-
tion behaves like [(v3+1)/2%3]st&'. The distribution
of charged pions, defined in analogy with (10), is given
by

we obtain the convenient integral representation of
S'(s):

(ja2) n 1

S'(s) = P e'"/2u" '(1 u) "du-
~=1 (n —1)!n! p

In+—1/2(a) +In++ 1/2(a)
C~(n+, s) = — — . (16)

K3 n+!I 1/2(v3a)+(1/v3)I1, 2(V3a)
V2 p

(1—u) '/'
I,([2u(1—u)]'/2a)du, (21)

a cosh(v3a)+43(1 —1/3a) sinh(V3a)
n+ (17)

K3 &3 cosh(43a)+sinh(V3a) g )1/2 1

S'(s) —
~

exp fjoau+a[2u(1 —u)]'/2)
42rv2)which asymptotically behaves like a/V3. For the

average number of neutral pions we get && (1—u) "'u '/'du. (22)

We see that the "Poisson character" of the distribution
where I1 is the Bessel function of imaginary argument.
To obtain the asymptotic behavior of Sr(s) when s
(and therefore a) goes to infinity, we replace I1 by the
leading term of its asymptotic expansion

a cosh(V3a)+43 (1+2/3a) sinh(V3a)
no

43 %3 cosh(V3a)+sinh(43a)
Sr(s) jpso'. (23)

The asymptotic behavior of (22) can be evaluated by
the standard saddle-point method:

8 8~00

(1g)""v3 The charged particle distribution in this model can be
evaluated in a similar way:

(-', a') "+ C (n+, 2n~+1, —',a)
(24)

(2n~)! S'(s)(1+1/a) I„+1/2(a)+I„+2/2(a)2"(n+,s) =a
Ia—1/2(a)+In+1/2(a)

(19)
Using the asymptotic expansion of the confluent
hypergeometric function, we obtain

which for large u behaves like
8 +

C'(n~, s) 6s—2'

n +in '

Asymptotically, therefore, we have an equally in-
creasing number of positive and neutral pions. For the C/(n+, s) =P I r(n+, no, s)
correlation function between charged and neutral pions np

defined in analogy with (13) we get

3"(n+,s):a—n+. , (25)
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%e see that the Poisson-like features are present also The shadow function is given by
in this model, at least asymptotically. Formula (25)
cannot be used to compute the average number of 5 (~)= 2 ~ (ii+~'PioP)

charged particles because the asymptotic expansion of
@ is valid only for a»e+. However, we can calculate
&n+i(s)) using a representation similar to Eq. (22) ":

e'""(1—I)
25r(s) 0

=e"5'(s) . (31)

Using (22), we get for the asymptotic expansion of 5a
)&Io(C2N(1 —I)j"'a)du — -', a (26)

Rnd) ln Rn RDRlogous way)

a e(-,'a')"
&no'(~)) = p NOI"(I+,mo, s) =-

no, ~+ 25r(g) +=i (2ri+1)!

5B(g) ~ i ~8N/2

a~oo

The average number of charged pions is given. by

(32)

)&C (n+1, 2m+2, —,'a)

e' 12'�(1—I)g"'
a) 0 The expression appearing in the numerator was cal-

XI (L2N(1 +pi~2@)dz io (2y) culated in (26). Therefore the asymPtotic exPiessloil
g~oo of (I+) is

The average number of xo at 6xed n+ is given in this
model by

A'(n+, s) =P noI"(rI+,n, ,o,s)/ P P'(n+, eo,s)

C (m++1, 2m++2, -', a)

e~+-', C (I+, 2e++1, -', a)

=a—PlnC(N+, 2e++1, —,'e)j. (28)
dQ

In an analogous way, we get for the neutral average
number

2Bi+Pbi 8 "i 8
So S

5+(g) my, no, mz, ms Ni!~2!

Xpr(mi, m2, s)

=-',a+ P miP'(mi, m2, s)/5'(s)

g+' —1
A'(m+, s) - —,'a —(v++1)+

The average total number of particles produced behaves

therefore as 3g' lns.

and we expect a monotonically decreasing function of
e+ at 6xed large s. However at small values of a, the
third term in the expansion can give a small increase in

e, this feature disappearing rapidly with increasing u.
For n+ large compared with u, we can use the asymptotic
expansion at Axed u and n ~~, and we get

A'(N, s) ,'a+0(1/I )— (30)

For the R model, analytical calculations Rre more
cumbersome. However, using the results of the I
model, a few basic quantities can still be calculated.

"Another straightforward method is to de6ne two formally
different coupling constants g+ and go for the emission of positive
and neutral particles, &and to consider the relevant derivative of
the shadow function.

The function P(n+, no, s) derived in the previous sec-

tions contains in principle all the information about
the charge distributions. Very few experiments, how-

ever, can determine the number of neutral particles
present in the final state (none, to our knowledge, in

the cosmic-ray energy region). Therefore, the charged
particle distribution C(n+,s) de6ned in (10) is par-
ticularly relevant. The information contained in the
function C can be exploited in diRerent ways. %e can
6x an energy 8 and plot the dependence of the cross
section on the number of prongs. The experimental
information available on this dependence supports the
Poisson-like structure common to all the models that
we have considered. In Fig. 1 we compare the predic-
tions of the four models with the data of Ref. 4. %e see
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FIG. 2. Dependence of the cross sections with given number of
prongs on the energy. The data from the compilation of Ref. 16
are compared with the predictions of the R model.

FIG. 1.Dependence of the cross section on the number of prongs
at 6xed energy. The data of Ref. 4 are compared with the predic-
tions of the R model (solid line), the I model (dashed line), the A
model (dot-dashed line), and the H model (dotted line).

that the general shape is predicted by all models, even
if the H model falls off too rapidly.

Another possibility is to study the s dependence of a
given topology. Figure 2 shows the predictions of the R
model compared with some data at accelerator energies.
The prediction of the other models are qualitatively
similar. ' We note that every individual cross section
decreases to zero in this kind of model as s raised
to some negative power, and we see that the present
data are compatible with this feature, even if no in-
dividual inelastic cross section shows a clear trend to
decrease at the present energies. We note in particular
that our model reproduces well the data on the basis of
which a 2 "+ rule for the (constant) asymptotic be-
havior of the cross sections with a definite number of
prongs was proposed. "A third way of exploiting the
information contained in C(n+,s) is to consider the
probability of having a number 2n+ of charged tracks
at an energy at which the average number of charged
tracks is 2(n+). We obtain in this way a set of functions
P„((n+)) that is plotted in Fig. 3. The main interest

At large energy, however, the total cross section for a 6xed
multiplicity n behaves in the H, I, and A models like (lns) "e "('),
whereas the R model predicts the slower decrease (lns) "~'e '~'"&').

"A. Wroblewski, Phys. Letters 32B, 149 (1970). As expected,
the predictions of our simple-minded models are systematically
larger than the experimental results in the region of low s and
large n, where phase-space e8ects play a dominant role and cannot
be e8ectively represented by the nl factor in the denominator
of (1).
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Fzo. 3. The functions 2' ((n+)) predicted by the H model

(dashed line) and the R model (solid line), compared with the data
from the compilations of Refs. 3 and 6.The predictions of the other
two models (A, I) are intermediate between the H and R models.

of this kind of plot is in the fact that the set of functions
P„((n+)) looks experimentally universal, namely, in-
dependent of the particular type of reaction considered
and this fact is, in our opinion, an indication that the
details of the dynamics do not play an essential role in
determiriing these distributions.

Let us now examine the neutral particle distributions.
In all the models under consideration the average num-
ber of m' and of x+ are the same asymptotically: Fig. 4
shows how this asymptotic limit is reached. We see
that all models (except for the E model, which has by
necessity the opposite behavior of the I model) predict
a slight excess of ~+ over m' at low energies. In the A, I,
and 8 models, the difference (n+) —(no) decreases very
rapidly to a constant value, which survives asymp-
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FIG. 4. Difference between the average number of charged
and neutral particles produced in the various models.

lo

totically. The few data available on (no) are, however,
not sufficient to test this prediction. A very interesting
quantity for which some experimental data are available
is the function A(n+, s) introduced in Sec. III that
measures the correlation between charged and neutral
particle emission. As argued in Ref. 13, the available
data show a clear dependence of A on n+, and therefore
cast serious doubts on any model in which the neutral
and charged particles are emitted independently (like
the H model). Also the prediction of the I and A models
(see Fig. 5) are not in agreement with the data of Ref. 4
that on the contrary support a mechanism of resonance
production of the form of the E model.

A further interesting point related to the neutral
particle distribution is suggested by the study of cosmic-
ray events. In this kind of experiment only charged
particles are detected, and also the momentum analysis
is usually very difficult. Therefore, the only experi-
mentally observable quantity is the scattering angle
Oi,b. It has been observed that a rather high percentage
of events presents large gaps in the ln tan0i, b distribu-
tion. Assuming limited values for all the transverse
momenta, this fact corresponds to the existence of large
gaps in the longitudinal momentum distribution of the
charged particles. It is therefore possible to classify the
charged particles produced in this kind of event into
two (or more) clusters in such a way that the relative
energy between any pair of charged particles belonging
to different cluster is larger than, say, 3 GeV'. These
events are usually referred to as "two (or more) fireball"
events, and their occurrence is a challenge to the multi-
peripheral scheme. Recently, DeTar and Snider"
examined the problem and found suitable mechanisms
within the MPM to account for the occurrence of this
kind of reaction. One obvious explanation for the
presence of a large gap between two charged particles
in the framework of the MPM is that several neutral
particles have been emitted between them along the
multiperipheral chain and have gone undetected. DeTar
and Snider estimated that the subsequent emission of
two neutral particles is sufhcient to produce a gap be-

"C. E. DeTar and D. R. Snider, Phys. Rev. Letters 25, 410
(19701.

tween the longitudinal momenta of the adjacent
charged particles large enough to meet the phenomeno-
logical requirement for the classification of the event
in the 6reball category. It is therefore a relevant
question to ask what is the probability in the various
models for the subsequent emission of two or more
neutral particles. V(e expect that the A, I, and E models
in which the various charges are somehow correlated
will give a higher probability than the H model, which
simulates uncorrelated emission. In Fig. 6 we plot the
function O(n) that gives the probability of having an
event with n particles in the final state without any
subsequent pair of neutral particles. As expected, the
A model (in which neutral particles always appear in

pairs) gives the lowest probability, and the I model, in
which charged particles are forced to appear in pairs,
gives a smaller probability than the H model. The
computation in the E model is less straightforward.
We will assume that any I=O resonance decaying into
2z-' produces a gap and, by phase-space considerations,
we estimate that the relative energy of a pair of charged
particles produced by the decay of two adjacent charged
resonances exceeds 3 Gev' about 10%%uo of the time. With
this figure, the function 0(n) in the R model is practic-
ally equivalent to the one of the Imodel.

4.0—
I l l I I l l l i I

& z0 W

W
W

~o
Z CL

W
W

5.0—

2.0

Inelastic 2 prong s
I.O—

All 2 prongs

0.0 ' ' ' i l l I i i

0 2 4 6 8 l 0 12 14 l6 l 8 20
NUMBER OF CHARGED TRACKS

I'rG. 5. The function A (I+,s) predicted by the A, I, and E. models
compared with the data of Ref. 4 on the x p interaction at pleb
=25 GeV/c. The II model predicts a constant behavior.

V. CONCLUSIONS

The charge distributions look like a promising ground
for testing models of particle production. They are
rather easy to observe experimentally; they look re-
markably universal so that the data from different
reactions can be combined to obtain better statistics,
and this feature of universality hints to the independ-
ence of these distributions from the details of the
dynamics.

Encouraged by the success of the multiperipheral
model in predicting the energy dependence of the total
multiplicity and in hinting a general Poisson-like
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FIG. 6. The function 0 (n) which gives the probability of having
a high multipliticity event without the subsequent emission of

structure of the charged particle distribution in good
agreement with the data, we have exploited the con-
sequences of several detailed assumptions on the
iso spin structure of the dominant exchanges. The main
results of this analysis have been the following.

(a) The average multiplicity of each charge grows
1ogari thmical 1y with the same coe%cien t in each model .
The diRerence (n+) —(n') goes to 0 in the II model, to
a positive constant in the A and I models, and to a
negative constant in the R model, and can be sizeable
in the region of intermediate energies.

(b) The charged particle distribution function
C(n+, 's) shows Poisson-like features for all the models in
good agreement with the data. These distributions do
no t particularly favor an iso spin structure over another.

(c) The function A (n+,s) that measures the correla-
tion between neutral and charged particles emissions
is, on the contrary, very sensitive to the models. The
available data are rather preliminary, but they seem
to rule out the sharp decrease with n+ predicted by the
A model, the nearly constant behavior predicted at
s =50 GeV' by the I model, and the n+ independerice
predicted by models in which the emission of charged
and neutral particles is not correlated (like the H
model). The resonance production (R) model, on the
contrary, predicts a rapid. rise of A (n+,s) for low values
of n+, the correlation being due to the decay of the
charged resonances. At large values of n+, phase-space
eRects eventually take over and A (n, s) decreases to a
constant limit. These qualitative features are in reason-
able agreement with the data.

(d) The introduction of a definite isospin structure
in the multiperipheral model is likely to increase the
correlation between the emission of the various charges.
In particular we found that in all the models considered
(A,I,R) the probability of emitting two or more neutral

particles in a row is considerably larger than in the H
model that simulates independent emission. In view
of this result, we feel that the mechanism of the sub-
sequent emission of several neutral particles can be
proposed as a major explanation of the occurence of
"Greb al1s" in the framework of the mul tipe ripheral
model .

(e) If the total cross sections approach a constant
limit asymptotically, it is enough to multiply our prob-
ability distribution by this constant to obtain the
partial cross sections o (n+,ns, s) for the various reactions.
It is clear that in this framework every individual cross
section decreases to 0 asymptotically like (ins) '"++"'/
S(s). It seems generally impossible to accommodate a
finite limit for an infinite number of the partial cross
section without forcing the average multiplicity to
approa, ch a constant limit itself (or to grow at most as ln
1ns). In the framework of the multi-Regge bootstrap' dif-
fractive eRects (i.e., inelastic Pomeranchukon exchange)
can be introduced only if the intercept of the Pomeran-
chuck trajectory is slightly lower than I (and therefore
also the diRective contributions vanish asymptotically).

(f) One of the difhculties of the multiperipheral
scheme is that in any model with direct emission of
pions (including therefore the H, A, and I models
considered here), the value of g' determined from the
coefficient of the logarithmic increase of the multiplicity
is unreasonably large for interpretation as a true
coupling constant. On the contrary, this value is ex-
actly what is needed to produce through unitarity a
Pomeranchuk trajectory around 1 and a self -consistent
meson trajectory around 0.5 .5' In a scheme of reson-
ance production, like the Itt scheme, the mul tiperipheral
production of n resonances corresponds to a 6nal
multiplicity 2n. The coupling constant required to
reproduce the observed multiplicity is therefore one-
half of the one needed in the direct production models,
and its value corresponds now to acceptable resonances
widths. " The shadow function S~(s) however also
increases with a power roughly half of what is needed
and, consequently, the intercept of the Pomeranchuck
trajectory generated by the shadow in this model is
very low. " This shortcoming could possibly be over-
come by introducing in the R model a diff rac tive
mechanism corresponding, for instance, to a Pomeran-
chuk-dominated large-subenergy tail in the x-x cross
section .

"L. Caneschi and A. Pignotti, Phys. Rev. 180, 1525 (1969);
184, 19I5 (f969); G. F. Chew and W. R. Frazer, ibid. 181, 1914
(1969)0 M Towy Phys Rev D 2 154 (1970).


