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are of second order in chimeral SU(3)-breaking sym-
metry, and Eq. (26) is independent of corrections to
pion PCAC. Taking h~= —0.2" we see that the Eq.
(22) is essentially unchanged for all practical purposes.
We end wth a few comments.

(i) We observe that the main contributions to $(0)
depend only on the observables X+ and Fx/F f+(0).
Taking X+=0.08 and Ftr/F f+(0)=1.28" we obtain
$(0)=—0.6, as is favored by the recent trend in
experimental data. 4

(ii) In the present approach to Ets decay, no
smoothness assumption as a function of p' or k' has
been invoked, in contrast to the earlier investigations. '4

"See C. Chan and F. Meiere, Phys. Rev. 175, 2222 (1968),and
references therein.

(iii) The scalar form factor does not exhibit a zero
between q'= (tttx —rrt„)' and q'= (trttr+rrt )', and hence
does not satisfy the criterion of Ref. 5 to yield a large
negative $(0). One is, nonetheless, led here to predict
$(0)=—0.6.

(iv) The soft-pion theorem of Eq. (2) is satisfied

up to 10%, as may be veri6ed from Eqs. (25) and (26).
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tality. L. 3. thanks the Swedish Atomic Research
Council for financial support.
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A nonrelativistic quark model of the hadrons based on nonlocal separable potentials is presented. The
model contains a quark-antiquark force and an effective three-body force among quarks, replacing the
two-body forces. For single-parameter potentials in which the strength of the interaction drops sharply
as the quark relative momenta increase, reasonable values of the lifetimes and radii of the mesons are found.
A baryon wave function useful for dynamical calculatione is obtained. The validity of the nonrelativistic
approximation for this model is connrmed.

I. INTRODUCTION

INCE the work of Gell-Mann' and Zweig, ' a growing
number of physicists have found it helpful to

discuss hadronic matter in terms of entities called
quarks. These quarks may be elementary excitations
(quasiparticles) of some underlying hadronic field, or
they may be massive particles. Various reports of
experimental effects which might be ascribed to quarks
have appeared. ' ' Although the question of the exist-
ence of quarks is still open, the utility of the quark
concept is su6icient to justify the attempt to create

' M. Gell-Mann, Phys. Letters 8, 274 (1964).
2 G. Zweig, CERN Report No, 8479//TH472, 1964 (un-

published).
3 M. Dardo, P. Penengo, and K. Sitte, Nuovo Cimento SSA,

59 (1968).
4 C. B. A. McCusker and I. Cairns, Phys. Rev. Letters 23, 658

(1969).' L. Kaufman and T. R. Mongan, Phys. Rev. D 1, 988 (1970).
6 %.T. Chu, V. S. Kim, W. J. Seam, and N. Kwak, Phys. Rev.

Letters 24, 917 (1970).

dynamical models of the hadrons based on their
assumed existence.

Nonrelativistic quark models were among the 6rst
to be investigated because of their simplicity and the
wide array of theoretical tools which can be applied to
them. Although justifications for the validity of these
models have been presented, ' the expectation value of
the quark momenta is of the order of the quark mass
if the usual Yukawa-type potential is used, invalidating
the nonrelativistic approximation. However, there is
no a priori reason for using a local potential in a quark
model.

Consequently, we were led to consider nonrelativistic
nonlocal separable-potential quark models of the
hadrons. The use of separable-potential models to
describe the scattering of subatomic particles has often
been dismissed as unphysical because (a) they are
nonlocal and (b) a single-term separable potential can

' G. Morpurgo, Physics 2, 95 (1965).



NON RELATIVISTIC SEPARABLE —POTENTIAL QUARK MODEL 1583

support only one bound state in each partial wave.
But, in constructing a quark theory of the hadrons,
these may not be serious drawbacks. In the 6rst place,
we are no longer dealing with those forces for which a
local-potential description has been shown to be neces-
sary or desirable. Possibly, a nonlocal model may
provide the most economical description of the forces
between quarks. Second, the fact that a single-term
separable potential can support only one bound state
may be a definite advantage in the construction of
quark models of the hadrons. It allows us to develop
models which contain the bound states (hadrons),
which are observed experimentally, and eo other bound
states. Furthermore, we 6nd that separable potentials
that provide reasonable values for hadron lifetimes
and sizes also guarantee the validity of the nonrela-
tivistic approach.

Separable-potential models are su6iciently simple
that expressions for many physically important quanti-
ties ean be obtained in closed form. %e hope that this
simplicity will allow deeper insight into the underlying
physics of the quark models.

II. MODEL

To construct the proposed nonrelativistic separable-
potential quark model of the hadrons we make the
following assumptions. (a) The hadrons are bound
states of the quarks of Gell-Mann and Zweig. (b) The
quark-antiquark (qg) force can be adequately described
by an attractive single-term nonlocal separable 5-wave
(1=0) potential. Thus, the owly possible qg bound
states (rnesons) in this theory are a pseudoscalar-meson
nonet and a vector-meson nonet. (c) The force between
quarks can be adequately described by an attractive
single-term nonlocal separable three-body potential in
the state of total orbital momentum I =0. The only
possible three-quark bound states (baryons) in this
theory are a baryon octet and deeuplet. Furthermore,
the difFiculties introduced into three-body scattering
theory by processes wherein a free particle interacts
with a bound. state of the other two are not present,
Since we deal only with an elective three-body force,
the so-called "disconnected diagrams" a,re not present
in the Lippmann-Schwinger (LS) equation. Con-
sequently, the Faddeev reduction of the three-body
problem is not necessary and the three-body LS equa-
tion is not expected to have spurious solutions. We
emphasize that we can avoid the complications of the
Faddeev approach to the three-body problem and.
simply apply the three-body' LS equation if we can
replace the two-body forces by an effective three-body
force. If we then assume that the three-body force is
separable, we are left with a particularly simple soluble
model of three-particle scattering which may be
applicable to hadron physics.

Obviously, additional meson and baryon states can
be obtained by introducing separable gq forces for /& 1

and separable qgq forces for I-& j.. Furthermore, with
only a slight increase in complication, e-term separable
potentials can be introduced in each state of 3 or I..
For example, a two-term separable t =0 qg force can be
used. to model a repulsive contribution. to the over-all
attractive 1=0 gq force.

The applicability of our model is not limited to the
quark theory of Gell-Mann and, Zweig. The model ean
be used in any theory of the hadrons that involves the
composition of hadrons from X particles in the com-
binations XX and XXX.

IIL BASIC EQUATIONS

We treat the degenerate case in which all quark
masses are assumed equal. Then, with an SU(3)-
invariant force, all members of a given SU(3) multiplet
have the same mass. If the X quark (I=0, S=—1) is
assumed to be more massive than the p and. e quarks
(I=-„S=O), mass splittings will appear within the
SV(3) multiplets. s In addition, the symmetry breaking
needed to reproduce the observed masses can be intro-
duced by assigning diferent values for the potential
parameters for different isospin states with a multiplet.

A. Quark-Antiquark Forces

Wc assume that the singlet and triplet quark-anti-
quark interaction can be adequately d.escribed by the
two-body nonrelativistic partial-wave LS equation

2'~(p p' &') = I'~(p p')

"4 V'I'~(pa) 2'~(s,p'; &')

q'+ie—
where the c.m. kinetic energy E=h'k'/2p and p is the
reduced mass of the quark-antiquark system.

Furthermore, we assume that the singlet and triplet
quark-antiquark force in the )th partial wave can be
described. by the single-term attractive nonlocal
separable potential:

I'~(p p') =~~'e(p)gi(p'). (2)

Although we consider only /=0 in this paper, we shall
sta, tc thc cquatioIls for thc morc general ease.

When the potential (2) is inserted in the LS equation
(1), we can solve for the quark-antiquark partial-wave
T matrix in closed form, obtaining

T)(p,p'; k')

2pCP "
dtt q'gP(q)= —C~'e(p)g~(p') 1+

h' 0 k' —q'+is

A quark-antiquark bound state (meson) with binding

' J. J. J. Kokkedee, The QNerk 3fodel (Benjamin, Neve York,
1969), pp. 34-40.
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2zzCP "
dq q'gi'(q)

p q +n
(3)

er e uation for the "radial" part of the
quark-antiquark bound-state wave unc
mentum space is

E = —lzzn2/213 will be manifested as a pole in
a rix — '. Th f r a given choice ofatrix at k'= —o. . us, o

' of the potential the couplingthe functional form gi(p) o e p

binding energy E& can be etermine

space is

(r) ())"' z' Wi(q)j i(qr) q'dq, (6)

e
'

rq is the spherical Bessel function.
W i ensures the normalizationThe normalization of 8"g q ensures

uP(r)dr =1.

f the s uare of the quark-The expectation value o e sq
antiquark relative momenta is

2p Ci
Wi(q) = —— gi(q)

Izz q'+n'
gi(q') Wi(q')q"dq' (4) izz(p2) = Izz WP(p) P4dp

and, for small quarks, the rms radius oof the bound state
is

1/2

constant A determineu rom e n
dition

Wiz(q) q'dq

lg(r) I'r'd'r

uP(r)r'dr
112

or B. Forces between Quarks

and thus

" q'gi'(q)
me that the force between quarks can be+2C 4

iI32 3 (q2+n2)

We also assume that the interaction
2p C)'

d b th th b d
Wi(q) = —~ gi(q).

n be describe y eIzz q'+n'
1 t' ist c LS equation partial-wave ana y

The radia par o1 t f the meson wave function in posi io

I I I2)» ) i( 2)»» i)» 3)2 s, (wi)w2)w3)wz )w2 )wz j

II II II I I I.ZT ZO 282 Z03 R'y )K'2 )'M3 )d~1 ~2 ~3 L 1) ) )
"d "d "V (w wzwz, wi')w2 )w3 ) z( i", 2, , w

Z —(wi +wz +wz )+z3
, (9)

where Z is the total c.m. energy. '

Izzp 2 $2P 2 Izzp 2

+ — +
2M g 2'. 2M3

w =A';2 2';. Although
1 entum reduction fo

~ the uark mass an w;=
Omnes carried out h g'

1 his analysis can easi y e
hl''t t t I

k tates w'e shall neglect
with s in by using e ici y s

~ ~

no bound states, an e w-
1 db 6 tiforces between qen uarks can be rep ace y

-bod LS equation will notthree-body force, the three-bo y eq

9 R. L. Omnds, Phys. Rev. 134, 81358 (1964).

ted dia rams (which lead to 5 func-

on will not have spurious solutions an
h th -body integral equation

' nofthet ree- o
will not be necessary to obtain a va i so u

'

-b d f rce among quarkse that the three- o y orce
d total orbital angular

d b i 1 -t m tt c-
with iven spin an o a

m I. can be describe y a s'

e-bod otentialtive nonlocal separable three- o y p

) /w)l Z. ( l w)w3, 2w)wl )w2 ) 3

'w ' . (10)Ci zgz, (wz) wz, w 3)gz (w—z', wz')w 3

lution to the three-body partial-wave
obtained for the separableLS equation (9) can be obtained or e s
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three-body potential (10) in the form

TL(W1)W2P 3P 1 4 2 yw3 i Z)

= —CJ, gL(wl, w2, W3)gL(wl, w2, W3 )

dwldw2dw3gL (Wlg 2P 3)
X 1+CL'

Z —(Wl+W2+W3)+23

1 =Cl.'
dwldw2dw8gL (Wl,W2&W3)

E//+Wl+W2+W3

When the three-body separable potential (10) is used,
the "radial" part of the three-quark bound-state wave
function in momentum space is

A three-quark bound state (baryon) with total orbital
angular momentum L will appear as a pole in the T
matrix TL(wl, w2, W3,wl', W2', W8', Z) at an energy
E=—E~. Therefore, for a given choice of the potential
form the coupling strength CL,' needed to support a
bound state with binding energy E& can be determined
from

large. We choose a quark mass of 10 GeV for
convenience.

Now if the potential form g/(p) falls off rapidly with
increasing P, we see from Eqs. (4) and (5) that
(q2+n2) =n2 for all values of the momentum important
in the interaction, and the normalization (5) ensures
that the meson wave function will be independent of
the quark mass and the coupling strength. Further-
more, the rapid falloff with increasing p will guarantee
the validity of the nonrelativistic approximation since
W12(p) =g32(P) in Eq. (7), resulting in a small expec-
tation value of the momentum.

If we consider, for example, a potential form gl(p)
which falls off rapidly and depends only on a single
"range parameter" E determining the momentum
values of importance in the interaction, the meson
wave function will depend. only on this range parameter.
We can obtain a value for the range parameter E from
the Van Royen-Weisskopf relation (12) and then
calculate the meson radius from the wave function to
check the validity of the model. Also, the expectation
value of the momentum will be of the order of E, and if

lPL(wl&wl, W3) =
CL gL(wl)W2)W8) O'E'/2/3«Moc' or O'It'/(Mc)'«1

&a+Wl+W2+W3 the nonrelativistic approximation is justified.
As a simple example of a potential which falls off

sufficiently rapidly, we choose a Gaussian form

R/(P) =P' exp( —P'/&') .
Again, the Schrodinger equation for the wave function The coupling strength required to produce a meson

y l dadth tgal nEq'(l1) b d tt ' bt' df E (3) h
merely a normalization constant.

~4'(0) I
= 22le 338meeon ~ (12)

Thus, if the meson is considered as a quark-antiquark
bound state, the wave function at r=0 depends only
on the meson mass and not on the quark mass.

This surprising behavior can be guaranteed in our
model by choosing a functional form g/(p) for the
separable potential that falls off rapidly as momentum
increases.

The binding energy of the quark-antiquark bound
state (meson) is

i32n2/2p = (2Mo —238)c2,

where M@ is the quark mass, m is the meson mass, and
2p=Mg. If the quark mass is above the lower limit of
6 GeV fixed by accelerator experiments, n' is quite

'0 R. Van Royen and V. F. Weisskopf, II, Nuovo Cimento SOA,
617 (1967).

IV. MESONS

Upon considering weak and electromagnetic decays
of the rnesons in the quark model, Van Royen and
Weisskopf" arrive at the result

1 1/ q2q

q2+~2 ~2 ( ~2j
and the error in the approximation (q2+n2)=n2 is
expected to be of the order of E2/a2. Thus

CL'= /Ea[ dq q'gP(q)

From Eqs. (4) and (5), the normalized "radial" part
of the bound-state wave function in momentum space is

2) 1/ 3 (2/A) (21+81/2 ~2p/
~,(p)= -I

[IX3X5X X (2l+ I)]"'n'+P'

Xexp( —p2/E2) .

From Eq. (6), using the approximation (q2+c32) =n2,

and, in the strong-binding limit where the meson mass
is zero,

/2 '/2(2 "+' 2M c'

1X3X5X X(2&+I)
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the radial wave function in position space is

gg)(r) 2& I/O K(2/ +3}/ 2& / —exp( —E'r'/4) .
I IX3X5x "(2&+1)]'/'

Now
1 Ng 0(r)

A=-o(r) =--
(4&r) /

so
IA=o(r=0) I'= (g~') "'E'

and using the Van Royen-Weisskopf relation (12) we
find for the pseudoscalar- and vector-meson nonets

E =(2 ')''(rN 'm )'".
It is clear that this weak dependence of E on the meson
mass (E .„m „,"'), which can be interpreted as
an SU(3)-breaking isospin dependence of the potential

parameters, will ensure that the Van Royen-Weisskopf
relation holds for all members of a meson nonet. Hence-
forth we discuss only the pion.

The error in the approximation (/&'+n') =n' is of the
ordcl of

(2&r')"'re '/u'

or, in the strong binding limit,

(2m')'"m 'A'/2(M c)'=0 036'/f

The expectation value of the momentum is A'(p')
=-'(Ii+3)A'E' so in the pion case (l=0)

A'(p')/(Mqc)'= 5.4X 10 ',
justifying the nonrelativistic approximation.

For small quarks (the Compton wavelength for a
10-GeV quark is Ac/Moc'=2. 0X10 ' F) the predicted
value of the meson radius is found from

(r')=( l2+ )3/ E'.

For the pion this becomes

rg~s ——(r')"'= (3/&r)"'2 "'/5$~ =1.27 F

which is to be coInpared with experimental values for
this somewhat poorly defined parameter ranging from
0.628 F to an upper bound of 4.5 F."

V. BARYONS

In the baryon case,
I EI/I = (3Mo rr//3)c', where m/}-

is the baryon mass. If we choose three-body potential
forms in Eq. (10) such that gr, (w~, wg, w») —+ 0 rapidly
whenever any w; =Amp, 2/2Mo, becomes large, we may
set E/+w~}+w +w,2=8 in /E}q. (11).This produces a
three-quark bound-state wave function which does not
depend on the quark mass. Such wave functions have
been used by Mitra and Majumdar, " Kreps and De

"R.A. Christensen, Phys. Rev. D 1, 1469 (1970).
"A. N. Mitra and R. Majurndar, Phys. Rev. 150, 1194 (1966).

Swart" and I.icht and Pagnamenta" in earlier con-
siderations of the quark model. Furthermore, the sym-
metry or antisymmetry properties of the wave function
are determined by the properties of the function
g/', (wx&w2&w3)

Consider potentials which depend only on the mag-
nitude of the relative mornenta between quarks

p"=(p' —p)'.
Since we work in the c.m. frame where

pi+p2+p3 =0

and all quark masses are equal, we find

p = (2M/A') (2w;+2w; —w/), k/i, J.
Then, for I =0, if we choose

gr, 0(wg&w2&wa) =exp( —pg2'/12E')

Xexp( —p~p/12E') exp( —pgp/12E'),

gr, =o (wg& w2&w, ) =expL —M (wg+wm+w, )/2A'E2].

Making the approximation E/}+w~+w~+w3 ——E/} in
Eq. (11) I which is expected to cause an error of the
order of 3(A'E'/Mo'c') in the strong-binding limit],
the three-body bound-state wave function of the baryon
takes the form

&fr, 0(wy&wm&wg)

=W expI —M(w, +w, +w,)/2A2E2] (13)

or, in position space,

&pr, =o(xg,xm, x3) =1P expL —(x}2+x22+xa')/K'] (l4)

in the c.m. system, where lV and S are normalization
constants. Thus we have a symmetric wave function
which corresponds to the neglect of quark spin and
statistics or the assumption of parastatistics for quarks.

Recently, Licht and Pagnamenta'4 have used just
such a wave function to derive expressions for the
proton clcctI'OIQagnctlc foI'IIl factoI' wlllch, aI'c lIi good
agreement with experiment.

The coupling strength required in Eq. (10) to support
an I-=O three-body bound state with a binding energy
E~ is

Cr.=o'= — ~a

or, in the strong-binding limit where the baryon mass
ls zero)

Ci,=o' 3Mo4c'/8A'K'. ——

For small quarks, if &P(x&,x2,xg) is a completely sym-
metric or antisymmetric wave function for total I.=O

"R. E. Kreps and J. J. De Swart, Phys. Rev. 162, 1729 (1967).
'4 A. L. Licht and A. Pagnamenta, Phys. Rev. D 2, 1150 {1970);

2, 1156 (1970).
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in the c.m. system where

x&+x2+x, =0,
then the baryon mass distribution is"

and

p(r)r'dr
0

(r2 br)—p(r)dr.

p(r) = d'x~P(r, x, —(r+x)) ~'.

We determine the cutoff parameter E in Eq. (14)
by setting the baryon rms radius

(r 2) 1/2
-1'p(r)r'd'r '"
fp(r)d'r

equal to the proton rms radius which we choose to be
0.80 F. The resulting value of E is 0.88 F '.

The expectation value of the quark kinetic energy is,
from Eq. (13),

Thus, if
(w,)=2A'E'/Mo .

2A'E'/(M, c)'«1,

J(b) LI —J(b)]db,"¹L. Grigorov et u/. , Kosmich. Issled. Akad. Nauk. SSSR 5,
383 (1967)."N. L. Girigorov et a/. , Kosmich. Issled. Akad. Nauk. SSSR 5,
395 (1967).'

¹ L. Grigorov et 0/. , Kosmich. Issled. Akad. Nauk. SSSR
5, 420 (1967)."J.Dooher, Phys. Rev. Letters 23, 1471 (1969).

"The threshold for the appearance of the anomalous behavior
in the cosmic-ray proton spectrum lies between 17 and 31 GeV
total c.m. energy, corresponding to a quark mass between 6 and
10 GeV.

"R.J. Glauber, Phys. Rev. 99, 1515 (1955).

the nonrelativistic approximation is justified, and when
X=0.88 F '

2A'E'/(Moc)'= 6X10 '.
The expected error introduced by the approximation
E +swg+w +2w3 Es is, in the strong-binding limit,
2A'K'/3 (Moc)' =0.02%.

We have previously noted' that some apparently
anomalous results for the primary cosmic-ray proton
Qux and the proton-carbon cross section at energies
above about 225 GeV (obtained from the Proton
satellites by Grigorov et al." ") might be ascribed,
following a suggestion of Dooher, " to the breakup of
the primary cosmic-ray protons into their constituent
quarks. " Consequently, we used the wave functions
derived from our quark model to estimate the cross
section for diffraction dissociation of protons into
quarks in proton-nucleus collisions at high energies.
Our estimate for the proton-nucleus diffraction-dis-
sociation cross section o-, which is based on Glauber's
approach' and which applies in the high-energy limit,
is 0 =2+22, wher'e E. is the nuclear radius,

Using the DESY value for the strong-interaction
nuclear radii, "

R(A) = (1.12+0.02)A'» F,
we estimate the cross section for diffraction dissociation
of protons on carbon (A =12) as 24.6 mb. This estimate
compares very favorably with the value of 26 mb for
the diffraction-dissociation cross section for protons
on carbon which we obtained from an analysis of
Grigorov's data. 5 Similarly, using Glauber's formu-
lation' and our quark-model meson wave function,
the m--meson diffraction-dissociation cross section on
carbon is 19.6 mb. It is worth noting that Refs. 3 and 4
indicate the possibility of quark Quxes requiring the
production of quarks with cross sections in the mb
range.

VI. SUMMARY

We have considered a nonrelativistic quark model
of the hadrons in which the following assumptions are
made.

(1) The quark-antiquark force can be described by an
attractive S-wave nonlocal separable potential.

(2) The force among quarks can be described by an
attractive three-body nonlocal separable potential in
states with I =0.

Such a model contains only pseudoscalar- and vector-
meson nonets and a baryon octet and decuplet.

We find that separable-potential forms which fall off
rapidly as the relative momenta increases produce
internal wave functions for the hadrons which do not
depend on the quark mass and for which the non-
relativistic approximation is valid.

Furthermore, we find the following conclusions.

(1) A single-parameter Gaussian potential form can
be obtained which provides adequate values for the
meson radii and decay lifetimes and allows the Van
Royen-Weisskopf relation to be satisfied by a weak
dependence of the potential range on the meson mass,
i.e., an SU(3)-breaking isospin dependence of the po-
tential range.

(2) A three-body Gaussian potential form yields a
proton wave function which has been used to derive
expressions for the proton electromagnetic form factors
which are in good agreement with experiment.

(3) The model predicts substantial cross sections for
diffraction dissociation of hadrons into their constituent
quarks in high-energy hadron-nucleus collisions.

"H. Alvensleben et a/. , Phys. Rev. Letters 24, 792 (1970).


