
LOW —ENERGY APPROACH TO THE KAON

pole" form of the nucleon form factor would suggest an
eGective cutoB in the range of the vector-meson masses.
This would be another reason for taking 4=m~*.
For the range 8=0.93—1.80 MeV taken in Sec. III,
8 ln(A'/m~*') takes values of (—0.29)—(—0.56) MeV
for 4=m, and 0.22—0.43 Mev for 4=m~. It is dificult
to estimate realistic error bounds. The uncertainty lies
partly in the determination of 5 and y, and partly in the
dynamical assumptions including the value of A. From
the above discussion we believe, perhaps too optimis-
tically, that the result for &n~ given in Sec. III is correct
within 1 MeV. Finally we mention the contribution to
biz from the high-energy virtual processes. In place of
the tadpole dominance, the pole dominance in the angu-
lar momentum plane has been used as a possible explana-
tion of the octet enhancement. "The estimation due to
Buccella et ul. of the high-energy contribution from this

viewpoint gives (—5.7)—(—7.1) MeV as the sum of the
subtraction and the asymptotic contribution. 4 %hen
combined with the low-energy contribution obtained in
Sec. III, the above value well reproduces the experi-
mental 8m~. Thus we conclude that the low-energy
approach as employed in the present work offers a
reliable method of calculation only for the low-energy
contribution, and that the octet-enhancement mecha-
nism cannot be made to appear in any reasonable way
within the low-energy approach.
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In6nite-component wave equations giving rise to a linear mass spectrum and to families of parallel linear
trajectories are considered. A general discussion is given of invariant equations for wave functions belonging
to SI.(2,C) representations and the mass spectra that arise are examined. The simplest possibility corre-
sponds to a higher-derivative equation that gives a linearly rising timelike spectrum that is free of con-
tinuum spacelike solutions. Discrete spacelike solutions are absent for the simplest choices of the SI.(2,C)
representation. The currents and the commutators among the current components are calculated by setting
up for the higher-derivative equation a Lagrangian formalism and a quantization procedure based on the
action principle. An explicitly factorized model is considered, with respect to the internal symmetry group,
and possible nonfactorized extensions are examined, A typical feature of the current commutators is the
appearance of Schwinger terms which, besides satisfying known general requirements, also appear in com-
mutators between time components of currents. An alternative interpretation of the physical system in terms
of a bound-state equation is presented. The interpretation, in terms of a bound system in two space dimen-
sions, leads to a extension to three space dimensions, again formulable as an in6nite-component wave
equation. The system describes a family of parallel linearly rising trajectories spaced by one unit of angular
momentum. No continuum spacelike spectrum is present, and discrete spacelike solutions are absent for
physical choices of the representation of the internal spin group.

I. INTRODUCTION

' 'NFINITE-COMPONENT wave equations have
~ - been widely discussed in the literature. "They have

' The results described in the present paper were summarized in
R. Casalbuoni, R. Gatto, and G. Longhi, Nuovo Cimento I etters
2, 1S9 (1969);2, 166 (1969).

appeared of interest also in connection with Gell-Mann's
program of saturation of current commutation rela-

' For general references, see Y. Nambu, Phys. Rev. 160, 1171
4,1967); C. Fronsdal, i'. 1/1, 1811 (1968); L. O'Raifeartaigh, in
Proceedings of the Fifth Coral GaMes Conference on Symmetry
Princi pres at High Energy, edited by A. Perlmutter et al. (Benjamin
New York, 1968); R. C. Hwa, Nuovo Cimento 5', 107 (1968);
S~A, 127 (1968).
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tions. ' Difficulties with such an approach have been
repeatedly pointed out, ' ' among which is the appear-
ance of unwanted solutions besides those of the timelike
spectrum. The recent success of the Veneziano mode14
has suggested the possible physical relevance of
indefinitely rising linear trajectories. It therefore
appears of interest to look for infinite-component wave
equations which lead to a linearly rising mass spectrum
or, better, to families of parallel linearly rising trajec-
tories. In this paper we shall present a systematic
discussion, within a certain formalism, of such possi-
bilities. We shall first discuss the simplest possibility-
an infinite-component wave equation leading to a
linearly rising trajectory. The solutions of such an
equation do not contain spacelike states for physical
choices of the representation of the internal spin group.
In regard to the problem of saturation of the current
algebra, we shall verify, by quantizing the field and
deriving the current commutation relations, that the
proposed solution is related to Gell-Mann's program.
Additional Schwinger terms may occur in the commu-
tation relations; the appearance of such terms is related
to our choice o'f canonical variables in developing the
quantization procedure, and does not, of course, impair
in any way the physical interpretation of the theory.

We shall also derive an interpretation of our model in
terms of a composite system, of hydrogenlike character.
The interpretation clarifies physically the reason for the
absence of spacelike states. In addition, the composite-
particle interpretation will suggest a generalization to a
model which gives indefinitely rising parallel trajec-
tories, again expressible by an infinite-component wave
equation and essentially unchanged as regards the
absence of unwanted solutions.

The internal spin group for the infinite-component
wave function, in the search for an equation giving rise
to a linear trajectory, will be chosen to be SL(2,C).
Starting from the most general form for such an equa-
tion, we shall look, in Sec. II, for the simplest cases,
finally obtaining an equation with linear mass spectrum,
and other possib1. e alternatives, which will be discussed
in detail.

The discussion of the solutions, classified according to
the various series of representations of the little groups
SU(2), SU(1,1), E(2), and SL(2,C) of the Poincare
group, for the di8erent orbits of the four-momentum,
is given in Sec. III. The particular choice of the
Majorana representations of SL(2,C) will be considered,
and a possible simplification of the wave equation will

be pointed out.
In Sec. IV, we shall perform the necessary work to

relate the results on the infinite-component wave
equation to the problem of saturation of current algebra

at infinite momentum. The particular feature of the
wave equation, viz. , that of being of higher order in the
field derivatives, will force us to develop a formally
complex treatment based on the action principle. We
shall also deal with the possibility of defining alternative
expressions for the currents by performing suitable
contact transformations.

The program of deriving the current commutators
will be completed in Sec. V, where a quantization
procedure for such a higher-order Lagrangian will be
applied to our infinite-component equation. The current
commutation relations will be derived for a factorized
model; some suggestions towards a nonfactorized
model will be advanced. Depending on our quantization
procedure Schwinger terms appear, which modify the
Gell-Mann commutators. We are referring to the com-
mutators among time components, which are generally
assumed to be free of such terms. The Schwinger terms
that appear have vanishing vacuum expectation values,
and they do not alter the once-integrated commutation
relations.

The interpretation in terms of a hydrogenlike com-
posite system is described in Sec. VI. The interpretation
is based on a description of the invariant operator,
appearing in the infinite-component wave equation, as
a diGerential operator in a two-dimensional angular
momentum space. The extension to three dimensions,
in Sec. VII, leads directly to the generalization at which
we were aiming —a system of an infinite number of
parallel trajectories, linearly rising and spaced by one
unit of angular momentum. An infinite-component
wave equation can again be derived, employing the
group O(4,1) and its representations. The solutions
have features similar to those of the system described
in Sec. VI, which, however, describes a single trajectory.

Appendices A and 3 summarize the main results and
notation used in the text regarding the Poincare group
and SL(2,C). The explicit forms of the Schwinger terms
are reported in Appendix C.

II. DISCUSSION OF INFINITE-COMPONENT
WAVE EQUATION

In this section we shall present a general discussion
of the mass spectrum of the following invariant infinite-
component wave equation, written here in momentum
space:

In Eq. (2.1), f(p') is an arbitrary nonsingular function
of p', and W is the Pauli-Lubanski invariant. ' A short
summary of the main concepts relevant for the discus-
sion is given in Appendices A and B.It will be assumed
that @(p) belongs to an in6nite-dimensional representa-

3 M. Gell-Mann, D. Horn, and J. Meyers, in Proceedings of the
Heidelberg International Conference on Elementary Particles, 1967,
edited by H. Filthuth (Wiley, New York, 1968).

4 G. Veneziano, Nuovo Cimento 5', 190 {1968).

Our metric is that used, for instance, in J. D. Bjorken and
S. D. Drell, Relativistic QNantum Fields (McGraw-Hill, New York,
1964).
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TABLE I. Solutions of Eq. (2.1) in relation to the sign of the function f(p ).

f(p) =o

f(p') «

spacelike continuum
solutions Lprincipal series
of SU(1,1)j
no solutions

spacelike discrete
solutions' b )discrete series
of SU(1,1)j

p2(Q

no solutions

there are in general
solutions' '

no solutionsb

lightiike continuum
solutions )principal series
of E(2)j
lightlike discrete'
solutions Ldiscrete series of
E(2)jd
no solutionsb

p2=0, p„gQ

timelike discrete'
solutions Lof de6nite spin
of SU(2)j
no solutions

no solutions

pm)0

af(pm) )0 for p»0, f(p~) =0 for p'=0 (p& WQ or p& =0) f(p2) &0 for p&&0
b f(p&) )0 for p&)0, f(p&) ('0 for p&=Q (p~+0 or p~=Q) f(p2)&0 for p2&0.
'Only if p (p) belongs to a representation of SL(2,C) which has some unitary irreducible component (see Sec. III).
d See the discussion of Eq. (2.6).

tion oP SL(2,C) (besides transforming according to a
unitary representation of the Poincare group).

The mass spectrum of Eq. (2.1), for p„belonging to
the various orbits (a), (b), (c), and (d), is given by the
following implicit equations (see Appendix A).

(a) p" timelike, in the standard frame p"= (m, 0,0,0):
f(m')/m'= (j+-',)'. (2.2)

(b) p" lightlike, in the standard frame pe = (co,0,0, —s&):

f(0)/~'= f'.
(c) p" vacuumlike, p"= (0,0,0,0):

f(0) =0.

(2.3)

(2.4)

(d) p" spacelike, in the standard frame p'= (0,0,0,q):

f( V')-/( V')-(j+=2)' (2 3)

In case (b) one sees from Eq. (2.3) that solutions that
transform according to the discrete series of E(2) for
which f=0 can be present only if f(p') =p'g(p').
Equation (2.1) then takes the form

p'I g(p') 4~/p'34(p—)=o, (2.6)

and one finds two types of solutions for p'=0. One type,
which is always present, corresponds to the vanishing
of the first factor in Eq. (2.6); in the mass spectrum it
represents a discrete point. The other type is for

f(p')
lim =g(0) =4i+X',
&2 p

(2.7)

' For a detailed study of the group SL{2,C) and of the invariant
wave equations, see M. A. Naimark; Les Representations Lineaires
du Groupe de Lorentz (Dunod, Paris, 1962), and I. M. Gel'fand,
R. A. Minlos, and Z. Ya.: Shapiro, Representations of Rotations and
Lorentz Groups and Their A pplications (Pergamon, London, 1963).

where X is the helicity. When Eq. (2.7) holds, the square
bracket in Eq. (2.6) vanishes (see Appendix A for a
discussion of the eigenvalues of W/p' in the lightlike
case and for the discrete series). Equation (2.7) shows
that solutions of the second type can be considered as
limits of solutions for timelike or spacelike p".

In Table I the existence of solutions of Eq. (2.1) is

related to the nature of f(p'). One sees that the possi-
bility f(p') (0 everywhere for p') 0 has to be excluded.
In fact, we require the existence of physical states,
that is, the existence of definite spin, for timelike p".
Of course, one could have an oscillating f(p'), with
f(p')) 0 only inside some intervals of the positive p'
axis. The mass spectrum would, however, consist of
distinct intervals. Excluding such a possibility, which
does not appear to be realistic, one is forced to assume
that f(p') &0 for all p'&0, or for p' lar'ger than some
positive value, apart from at most some isolated points
where f(p') =0.

A situation with f(p')) 0 for p'(0 and p'=0 can be
excluded by the requirement that no continuum solu-
tions be present.

Summarizing, we are left with two possibilities:
(a) f(p'))0 for p')0, f(p~)=0 for p'=0 (pe&0 or
p"=0), f(p')&«- p'&0; (b) f(p')&«» p &0
f(p')(o o p'=o(p Woor p =0) f(p)(ofor p (0
These possibilities are denoted as (a) and (b) in Table I.
We have exclud. ed the possibility f(p')—=0 for any
p'(0 which would require either vanishing f(p') or
nonanalytical f(p ).Of the two possibilities (a) and (b),
only (a) is compatible with a trajectory regular at
m'=0. In fact, by inspection of Eq. (2.2), we see that
alternative (b) would give j-+Do form'~0; for instance,
for linear trajectories, m'(j)=aj+b; Eq. (2.2) gives
f(~') =~'(j+-', )'=~'[(1/a)~i+-', —f/~j2.

In Sec. VI we shall present an interpretation of the
wave equation (2.1) as a nonrelativistic limit of a Bethe-
Salpeter equation for a system bound by a Coulomb
potential, ~ with the coupling constant depending on
the total energy. ' In such an interpretation, the
coupling constant is proportional to [f(p')/p' J'I'
[see Eq. (6.11)j.The following cases are then excluded,
for a real f(p').

(i) f(p')/p'(0. The coupling constant would have
to be pure imaginary.

(ii) f(p')W0 for p'=0. The coupling constant would
become inhnite.

G. Bisiacchi, P. Budini, and G. Calucci, Phys. Rev. 172, 1508
(1968).' G. Tiktopoulos, Phys. Letters 28B, 185 (1969).
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If we wish to exclude both situations (i) and (ii) as
unphysical, the only possibility which remains is
alternative (a).

Ke can summarize the preceding requirements by
writing

f(p') =p'g(p') (2.8)

where g(p') is a regular, real non-negative function
of p', for p' real. It appears from Eq. (2.8) and from
Table I that the presence of discrete spacelike solutions
is inevitable. On the other hand, as we shall see in detail
in Sec. III, such solutions are present only for particular
representations of SL(2;C). Moreover, all values of X

are a priori possible for the lightlike solutions which

appear when Eq. (2.7) is satisfied, depending on the
chosen SL(2,C) representation, by suitably varying
the value of g(0), unless g(0)

We shall now specialize our discussion to g(p')
=polynomial in p'. To illustrate such a choice we
consider the possibility of deriving Eq. (2.1) from a
Lagrangian. For polynomial g(p') the Lagrangian will

be a function of the field P, of its first derivatives @,„,
and generally of its higher derivatives qb, „„,etc. There
are detailed discussions of such Lagrangians, ' and
theories of this kind seem in principle admissable. On
the other hand, for a nonpolynomial g(p'), one would
have a Lagrangian for which there may in general
appear a "lack of propagation character, " as Pais and
Uhlenbeck' have shown in the exponential case. Such a
situation would not be completely deprived of physical
meaning; also, there have been no detailed studies for
other forms of functional behavior. Nevertheless, the
choice of a polynomial g(p') appears suggestive because
its simplicity and it seems free of evident inconsistencies.

For polynomial g(p') we have, taking into account
the conditions after Eq. (2.8),

The minimum degree for the polynomial is 2lV=2,
i.e., IV=1. In fact, for X=O one has f(p') =(1/n')p'
and the wave equation becomes

[p' '„—p-'n' n—'W]y(p) =0 (2.12)

Equation (2.12) allows at most for one spin value, given
by 1=~'(i+')'-

ForiV =1 one has

LP'(P' P)(P—' P*) —'W—''P—')-0(P) =o, (2.13)

and the mass spectrum, for p'=m'&0, is

zzz' =a [G'(j+—', )'—(ImP)')'"+ReP. (2.14)

In particular, for p=p* one obtains a linear mass
spectrum in j,

nz'= an(j+-', )+p. (2.15)

We shall discuss this case in detail in Sec. III.
Let us apply the considerations we have developed

to some equations which have been discussed in the
literature.

We shall first consider the Majorana equation"

. (P„l'P—Mp)y(P) =0, (2 16)

(p„I'")'=W+—'p'. (2.17)

where Mp is a constant, p(p) belongs to either one of
the two Majorana representations (O, p) or (p,0), and
l|" is the four-vector operator which can be defined
within such representations (see Appendix 8).

Equation (2.16) can be rewritten in the general form
of Eq. (2.1). To such purpose we note that for both
Majorana representations the SL(2,C) Casimir operator
Cz=-', J,„J&", where J„, are the SL(2,C) generators,
takes on the value Cz= —

z (see Appendix 8) and, using
the relations in Eq. (811), valid for the Majorana
representations, one has

(2 9)
Multiplying Eq. (2.16) by (p„l'"+3fp), one obtains

The polynomial. in Eq. (2.9) is of degree 2%=2 p, zz;

in p'. The mass spectrum, from Eq. (2.2), is given by

The mass spectrum will in general consist of different
branches: one indefinitely increasing with j, with an
asymptotic behavior

m2 at- jl/% (2.11)

and additional branches with increasing or decreasing
behavior. The decreasing branches only allow for a
limited number of values of j (zzz') 0).

9 See A. Pais and G. K. Uhlenbeck, Phys. Rev. 79, 145 (1950),
where exhaustive references may be found. More recently, a
complete work on this subject has been published by A. 0. Barut
and G. H. Mullen, Ann. Phys. (¹Y.) 20, 203 (1962). See also
M. Borneas, Acta Phys. Polon. 24, 471 (1963); Phys. Rev. 186,
1299 (1969).

(Mp' —4 p' —W) p(p) =0, (2.18)

which is of the form of Eq. (2.1), specialized to
f(P') =3fp')0. Table I tells us that Eq. (2.18) has
continuum spacelike solutions, continuum lightlike
solutions, and discrete timelike solutions —a well-known
result for the Majorana equation.

As a second example, let us consider the equation
proposed by Leutwyler":

(P' 2zzP„I'" Mp')4(P)—=0, — (2.19)

with 4(p) belonging to either one of the two Majorana
representations and p, and Mo constants. With the same
procedure used before one finds

I (II4z ')(p' ~p')' ,'p' Wgp(p) =0, —(—2.20—)
I F.. Majorana, Nuovo Cimento 9, 335 (1932); for a detailed

work on the Majorana equation, see W. Ruhl, Commun. Math.
Phys. 6, 312 (1967)."H. Bebie, F. Ghielmetti, V. Gorge, and H, Leutwyler, Phys.
Rev. 1'7'7, 2133 (1969).
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which is of the form of Eq. (2.1), provided that

f(P') =(1/4u')(P' —~o')'.
Clearly f(p2)~)0 for any P2, and Table I tells us that
Eq. (2.20) also has continuum spacelike, continuum
lightlike, and discrete timelike solutions.

IIL WAVE EQUATION WITH LINEAR
TRAJECTORIES

In this section we shall concentra, te on the discussion
of the wave equation (2.13), obtained in Sec. II as the
simplest polynomial possibility. In addition, we assume

P real, such that the mass spectrum is linear, as given

by Eq. (2.15). The wave equation (2.13) for real P is

LP'(P' p)' —'n'P' —-n'W]—e(P) =o (3 1)

Here we shall examine its solutions.

States of timelike momentum In .the rest system,

p I=( m0, 0,0) and W=m'j(j+1) (see Appendix A).
The mass spectrum, from Eq. (3.1), is

I

l

[
/'

//
/

///

FIG. 1. Mass spectrum of the wave equation (3.1). The two
dashed lines correspond to the two branches of Fq. (3.2); the
circles indicate the physical states.

m' =&n(j+-',)+p. (3 2) Equation (3.1) implies

One obtains tiwo branches, as shown in Fig. 1. In
general, the decreasing branch only allows for a finite
number of physical states; such states are absent if the
intercept n(0) satisfies the condition

n(0) &~—1 —j;„, (3.3)

"N. Mukunda, J. Math. Phys. 8, 2210 (1967);9, 50 (1968).

where j;„is the minimum value of j contained in the
trajectory. For the case illustrated in Fig. 1, j;„=0
(this is a "bosonic" case) and the condition in Eq. (3,3)
is not satisfied. Condition (3.3) is satisfied by the
intercepts of the known physical trajectories.

States of spacelike momentum In the .standard. frame,
P"=(0,0,0,g) and' W= —q2j(j+1) (see Appendix A).
It follows from Eq. (3.1) that

n2( j+i)2 (q2+P)2) 0 (3 4)

States of the principal series of SU(1,1) are absent,
since for such states, j+2 is pure imaginary. States of
the discrete series, i.e., with j+~ &0 and 2j=integer,
are in general present, depending on the chosen SL(2,C)
representation. In particular, they are absent if the
chosen representation has jp =0 or jp =—,'."We note that
such spacelike states of the discrete series can be
avoided, for trajectories with j;„)~, simply by
choosing the SL(2,C) representation as one which is the
direct product of an in6nite-dimensional representatiori
with jp=0 or jp=~ and a suitable 6nite-dimensional
representation. Such reducible SL(2,C) representations
are not unitary.

States of ligktlike momentum In the stan. dard frame,
P"= (co,0,0,—cu) and W =&o2f2 (see Appendix A);

f2 —0 (3.3)

X=~jp. (3 7)

The values of n and P do not appear in Eq. (3.7). The
lightlike solution of helicity &jo, Eq. (3.7), is an isolated
point in the mass spectrum. Besides such solutions
there are additional lightlike solutions corresponding to
the vanishing of the parenthesis in Eq. (3.6). They
appear for special values of the ratio n/p. One has

~ =~L(p/n)' —-']"'. (3.8)

Conditions A=integer or =half-integer de6ne such
special values of n/P. These additional solutions are
limits for m —& 0 of the timelike solutions. For instance,
for P/n = —

2 the j=0 state disappears from the timelike
spectrum and reappears as a lightlike state. " Such a
situa, tion can be illustrated in a Chew-Frautschi plot
by noting that the relation between j and 'A for lightlike
"S. Strom, Arkiv. Fys. 34, 215 (1967);R. Delbourgo, K. Koller,

and P. Mahanta, Nuovo Cimento 52A, 1254 (1967); Y. Frishman
and C. Itzykson, Phys. 'Rev. 180, 1556 (1969).

'4This possibility may be of interest for describing the pion
since it provides for a continuous limit to zero mass.

States of the principal series of E(2) are therefore ex-
cluded: Only states of the discrete series can be present.
For such states of the discrete series one has ro„= —Xp„,
where X is the helicity. Furthermore, the limit for
P2-+0 of IV/P2 exists and it is equal to +42. Substi-
tuting W/P ~2) ' into Eq. (3.1), one finds in the limit

P'(P '' n'l—n')~(P-) =0 (3 6)

Equation (3.6) shows that there are lightlike solutions;
for an irreducible representation of SL(2,C), the
helicity of such solutions is"
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states is given by

ll'/p'=+X2= j(j+1). (3.9)

Therefore, the values j=0 and j= —1 both correspond
to ) =0. This is illustrated in Fig. 2.

States of sero momemlgm E.quation (3.1) is satisfied,
for zero momentum, by any Q(p) belonging to a
generally reducible SL(2,C) representation which
contains some unitary irreducible components (see
Appendix A).

So far we have only assumed that the wave function
P(P) belongs to some unspecified, generally reducible
representation R of the spin group, which has been
identified with SL(2,C). More detailed statements can
be made after choosing R. Some general requirements
for the choice of the representation R may be the
following.

(a) the requirement that there exists a bilinear
Hermitian invariant form, such as to make possible the
existence of a Lagrangian from which the wave equation
(3.1) is derived.

(b) the requirement of invarianc'e under the parity
operation.

For a generally reducible SL(2,C) representation R,
(a) is satisfied provided the component (jo, —ji*)
exists together with (jo,ji) in the decomposition of R
into its irreducible components; similarly, (b) requires
the presence of (jo, —ji) together with (jo,ji) (see
Appendix B). If R is chosen to be irreducible it clearly
can only be of the type (j0,0) or of the type (0,ji),
with jo integer or half-integer and j& real or pure
imaginary. In particular, R can be chosen to be (0,—,') or
(s,0), the two Majorana representations, which are
unitary.

Let us identify R with (0,2) or with (2,0). In Sec. II
we discussed two examples of infinite-component wave
equations, namely, Eqs. (2.18) and (2.20) which, using

relations (B11), could be reduced to lower-degree
equations in p2, viz. , Eqs. (2.16) and (2.19), respectively.
Equation (3.1), for R = (0,~~) or R = (~,0), cannot
similarly be reduced since the reduced form would
contain the variable gp' and therefore be essentially
of nonlocal character. Also we note that the above
choice of R does not allow for the construction of a
pseudoscalar form, bilinear in p. ' For either choice,
R = (0,—',) or R = (—',,0), one can write Eq. (3.1) in the form

[p'(p' —p)' —,'n'{r„,r.}p p jy(p) =0. (3.10)

There are no spacelike discrete solutions, but vacuum-
like solutions cannot be discarded, since the Majorana
representations are unitary.

For reducible R, the simplest choice is a direct
product of a Majorana representation and a Dirac
representation. It is nonunitary. Both requirements (a)
and (b) above are satisfied in this case also. For such a
choice, Eq. (3.1) can be reduced to the lower-degree
equation"

b.P"(P'-P) - P.I'"j4 (P) =o (3 11)
One verifies that multiplication of Eq. (3.11) by
[y„p&(p' —p)+np„I'&j gives Eq. (3.10) by taking
Eqs. (B11) into account. There are no spacelike solu-
tions and, furthermore, the p„=0 solutions are absent
because R is now nonunitary. There exists a pseudo-
scalar form bilinear in p.

IV. LAGRANGIAN FORMALISM. CURRENTS

In Sec. III we have discussed the conditions to be
satisfied by the SL(2,C) representation R, to which $(P)
belongs, in order to try to construct a Lagrangian from
which Eq. (3.1) can be derived. We shall here assume
that R is indeed such that it satisfies those conditions;
and we shall determine a possible Lagrangian and the
related conserved currents. '~ For the physical interpre-
tation of the currents in the frame of an infinite-
component wave equation and for their connection with
measurable quantities such as form factors, etc. , we
shall again refer to the papers quoted in Ref. 2, in
particular, to Nambu's work.

A conserved current can be derived directly from the
wave equation (3.1) by a standard procedure; one
verifies directly the lack of divergence of the current

I'.(p', p)
@t(p&) $(p+ p&) {(p2+ p~ 2 p) 2 pI2p2

—n'(-,'+~J„,J~")}
+l '(p+p')"{&...J."}]e(p) (4 1)

()=Q -a

FIG. 2. Representation of the X=0 (X is the helicity) lightlike
states on the plane (m', j).The isolated state with X=~jo is not
shown.

"The only psuedoscalar that can be constructed out of the
Si.(2,C) generators is the Casimir CQ=&cp p

J&'J&'; however, C2
is zero for a Majorana representation Lsee Eq. (83)j.

"For a third-order equation analogous to Eq. (3.11), see A. Q.
Barut, P. Cordero, and G. C. Ghirardi, Nuovo Cimento 66A,
36 (1970); these authors propose a unified treatment of leptons
based on a third-order equation.

"We denote by pt the adjoint of p in the proper metric. The
bilinear Hermitian invariant form is ptA&, where A is the matrix
giving the metric; for the J„„generators, one has J„„tA=AJ„„.
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or, in a slightly di6erent form,

p'. (p', p)
=y'(p'){(p+p') L~"+p'+p'p" 2~-(p"+p')]

v(p—+p').+&..(p+p') "}y(p), (4 1')

where

F(~) = {Z(x) Bx~+ (~~(x) B,y(x)+~~"(x) Boy,„(x)

+x~"~B,y„,(x)+H.c.]}d~„, (4.10)

with

v =~'(~+V»~"")
Tyv to2{jy Jvk}

(4.2)

(4.3)

BZ(x)
x~(x) =

By,„(x)

BZ(x)—8
By,„„(x)

BZ(x)
+Op& p

By,„„p(x)

The current (4.1) can of course be derived from a
suitable Lagrangian —not necessarily the simplest one.
For the moment, to build up our formalism, it will be
convenient to start from the following Lagrangian:

~(x) =y,,'(x)(vg""-2'"")y,.(x)
+2Py, '(x)y ""(x) y'—(x)y ""'(x) (4 4)

where y,„(x)=By(x)/Bx", etc. The current derived from
(4.4), from the action principle, is different from the
current (4.1).We shall, however, show later on that the
Lagrangian (4.4) can be reduced, by means of a contact
transformation consisting in the addition of a diver-
gence, to a Lagrangian which gives directly the
current (4.1).

The wave equation for P follows from the Lagrangian
(4.4) by application of the action principle. "

The action is de6ned as

Z(x)d4x,

where 0-0 and 0. are spacelike surfaces that limit the
integration volume from "below" and from "above, "
respectively. The "local" variation of the field is

B.y( ) =y'( )-y( ),
and the "total" variation'8 is

&y(x) =y'(*')-y(x) =&.y( )+I B,y( )]&*". (46)

The variation 8$' is

B2 BZ(x)

By,"(x) By;"(*)

()
x~"~(x) =

By,„.,(x)

In all these equations the derivatives of the
Lagrangian with respect to higher-order gradients of
the 6eld is understood to be symmetrized in the follow-
ing sense Lsee Eq. (16) of Barut and Mullen']:

8$ pI ~ ~ r pfs

1 — BZ(x) BZ(x)
+ +(all permutations)

It pl'''4' ~ nt p2pI'''pn

A more convenient form for F(0), obtained by use of
Eq. (4.6), is

F( ) = L&".(x)Bx"+j"(x)]do„(x), (4.12)

= ~(x)g „—l~ (x)y, „(x)+x-(x)y,„(x)
+x»& (x)y,,&„(x)+H.c.], (4.13)

j~(x) =x~(x)by(x)+x~"(x)By„(x)
y~ "(x)By„,(x)+H.c. (4.14)

(4.15)

BW= B,Z(x)d'x+ Z(x)B(d4x).
O'P 0P

B(d'x) = (B„Bx~)d4x

one has, after partial integration,

(4 g)

The Lagrangian Z(x) in Eq. (4.4) contains third-order
derivatives of the field; however, the following method
is general. From

This equation must be satisfied for arbitrary Boy(x),
implying the field equations

BZ(x) —B„x~(x)=0,
By(x)

(4.16)

In particular, for a variation of the field that vanishes
on the contour of the integration region, one has

F(0)=F(00) =0.

BZ(x)
88'= —B„~~(x) B,y(x)+H. c. d4x

By(x)
BZ(x)

B„x»(x)=—0
By'(x)

(4.17)

+F(0)—F(op), (4.9)

'-' J. Schwinger, Phys. Rev. 82, 914 (1951);91, 713 (1951).

One verifies that Eq. (4.17), with Z(x) as given in
Eq. (4.4), coincides with Eq. (3.1), in its configuration-
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j,(x) =nJ„(x) (4.19)

where, for the Lagrangian in Eq. (4.4),

', (x) = —~4'(x)('
+(8 8")(CI8 — 8 )+(8 8 8"8')8„' &7

+2Pt- 8„—68„—(8,8') 8„&-')
—78.'-'+~.,™8''")4(x) =4'(x)IA(*) (420)

with 8„( & =8„8„.
In configuration space, the current of Eq. (4.1) takes

on the form

v, (*)= —'~"(*)L( '+ o+o') 8.'-'
+2P( +~)8p' ' Y8 p' —'+'u. 8' '")4(x) (421)

V„(x) is clearly different from J„(x).The difference is,
however, the divergence of an antisymmetric tensor,
namely,

where
Z„(x)=V„(x)+8 V,„(x), (4.22)

V..(x) =W"(x)l 8.(o+o)8,-8,(o+ )8,
+8„8p8'8„8„8,8—'8„+2p(8„8„8„8„)—)y(x). (4.23)

Obviously, the additional term in (4.22), 8"V,„(x), is
divergenceless and does not contribute to the total
charge.

The Lagrangian 2'(x),

~'(*)=~'()(- +&""8.8,+2P '+o')~(), (4.24)

gives rise to a current, by using a formula analogous to
Eq. (4.14), which coincides with the current (4.1') in
configuration space. The Lagrangian 2'(x) differs from
Z(x), defined in Eq. (4.4), by a divergence. It can be
obtained from Z(x) by a contact transformation, which
leaves the 6eld equations invariant but modi6es the
current. The two Lagrangians 2 and 2' provide for two
equivalent descriptions of the same physical system.

A more general class of Lagrangians, containing the
Lagrangian (4.4) as a special case, can be obtained by
adding to the symmetric tensor TI"" an antisymmetric
tensor, which will have to be proportional to J&", the
only algebraic antisymmetric tensor at our disposal.
The addition leaves the equations of motion un-
changed —it is equivalent to adding a divergence. The
new Lagrangian 2"(x) is

Z"(x) =y,„'( )(qxg"" T""+ibJ"")y,.(x)—
+2P~,„'(*)~"(*) ~:,'()~""(*), (4.25)

with a real arbitrary parameter b. From the invariance

space form

( +2p —YQ)y(x)+T "y„„(x)=0. (4.18)

The current j~(x), as given from Eq. (4.14), where it is

specialized for a gauge transformation of the first kind,
by(x) = —iny(x), is

of 2"(x) under a gauge transformation of the first kind,
one obtains the local conservation of the more general
current

where
V„(x)+8"V,„(x)+8"'U„„(x),

Z,„(x)= bq—V(x)J„„@(x)

(4.26)

(4.27)

V. QUANTIZATION AND CURRENT COMMU-
TION RELATIONS IN FACTORIZED MODEL

In this section we shall derive the current commuta-
tion relations in a model of the kind called "factorized. "3

The current commutation rules are derived by
quantizing the held @.The action principle provides for
the commutation relations among the canonical
variables. The commutation relations among the
currents are then obtained by explicit calculation.

The field p is a free field; therefore, the set of one-
particle states of the field, if complete, will saturate
exactly the algebra of its currents at infinite momentum.
The one-particle states are fully determined by the
wave equation (3.1).

The above program will be seen to be related to
Gell-Mann's program, in the factorized case. ' The
algebra of the currents will in fact be found to diGer
from Gell-Mann's algebra" by the appearance of
Schwinger terms. Such Schwinger terms are such as not
to modify the once-integrated commutation relations
(i.e., charge-current commutators), and they have
vanishing vacuum expectation values. They follow from
our choice of canonical variables.

The completeness of the set of states, which is
required for saturating the current algebra, is de6ned
with respect to the Poincare invariant norm

(@,y) = yt(x)1"y(x)d~„(x), (5 1)

with I" defined in Eq. (4.20). The integral in (5.1) is
over an arbitrary spacelike surface; it is, however,
independent of the actual choice of 0. since the current
is conserved.

The vacuumlike solutions with p&=0 have a vanish-
ing Poincare norm, defined as in Eq. (5.1)." The
SL(2,C) representation E, to which P belongs, must
therefore be chosen in such a way that the appearance
of such states is avoided. We have seen that this can be
done for Eq. (3.1) by choosing a nonunitary representa-
tion R.

The completeness relation, with the scalar product
defined according to Eq. (5.1), has a nonvanishing
contribution from the isolated lightlike state of the
spectrum with X=~jo /see Eq. (3.7))."

The Lagrangian (4.4) is the simplest one, among
those discussed in Sec. IV, which leads to the field
equation (3.1). We shall use such a Lagrangian to

' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
'0 C. I'ronsdal, Phys. Rev. 182, 1564 (1969).
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deduce the commutation rules. To this end, it will be
necessary to introduce a sufhcient number of Lagrangian
coordinates for the description of the mechanical
system specified by the Lagrangian (4.4). The speciffca-
tion of the Lagrangian coordinates is essentially a
problem of specifying a set of initial conditions, in the
classical sense. It was solved in classical mechanics for
Lagrangians containing higher time derivatives of the
coordinate q(t) by Ostrogradsky. " We shall employ
here a generalization of the Ostrogradsky formalism to
relativistic 6eld theory. '

Let us define the canonical covariant coordinates
(the treatment is Hmited here to Lagrangians involving
at most third-order derivatives)

y, =n,D"y, y, =n„n,D"D~@, (5.2)

where n is the normal to the spacelike surface 0., and

and b(x,y) =n„b"(x y—) is the covariant generalization
of b'(x —y) to a spacelike surface orthogonal to n„

Schwinger has shown that for consistency, from
Kqs. (5.8) and (5.9), one deduces

[~,(x),bx, (y)].=0, (5.10)

The result follows from a contact transformation which
interchanges the variables p„and ~„.

Let us add a few remarks about Eqs. (5.8) and (5.9).
First, we could have chosen anticommutation rather
than commutation relations. The choice does not affect,
however, the current commutators, in which we are
interested: In fact, the currents are bilinear expressions.
Second, Eqs. (5.8) and (5.9) are also valid for renor-
Inalized fields. Indeed, they follow from the identity

D'=n" (n, B~) (5.3)

F(0)=p [ir,"»,+H.c.]do„,
r=1 a

(5.4)

where we have explicitly introduced the variations of
the fields of Eq. (5.2). In Eq. (5.4) we have also
introduced

(5.5)

with

x 2"=x»n p
—2n„V'A+I""~ )

m3" =x'""I'n„ep,

V'p= Bp—Dp,

(5.5')

(5 5")

(5 6)

which is a space gradient for n = (1,0,0,0).
In going from Eq. (4.12) to Eq. (5.4), terms of the

kind

Expression (4.12) for F(0) can be rewritten for bx"=0
in the form

+~."(y)[4 (x),».(y)]}d~.(y) (5 11)

(or from the corresponding identity with anticommu-
tators) and cannot therefore tolerate a change of scale.
Finally, one can convince oneself that Eqs. (5.8) and
(5.9) cannot contain Schwinger terms on their right-
hand side. The only additional solutions of Kq. (5.11)
are provided by commutation rules like those of
Eq. (5.8) with the addition of a nonvanishing q number
on the right-hand side, in such a way that it com-
pensates in Eq. (5.11) for a similar q number appearing
in Eq. (5.9).This possibility corresponds to the so-called
parastatistics, and we will exclude it here.

Assuming the validity of Kqs. (5.8) and (5.9), we are
in the position of calculating the commutators among
the currents J'„'(x) (i being an index related to an
unspeciffed internal symmetry group), which we define
as

J„'(x)=@t(x)I„y'y(x) . (5.12)
do„V,( ),

arising from partial integrations, have been neglected,
under the usual assumption that the 6elds vanish fast
enough asymptotically in any spacelike direction.

The canonical variables conjugate to the fields p„
(r =1,2,3) are

~r ~r +p o (5.7)

Schwinger's quantization procedure gives the following
commutation rules:

"M. Ostrogradsky (1850), as quoted in E. T. Whittaker,
Analytical Dyna~zcs (C@IDbridge U.P. , Cambridge, England,
1937), p. 265.

[4.(x),x.(y)].='~-b(x y) (5 9)

where the symbol [, ],denotes a commutator for
arguments x,y both lying on the spacelike surface 0.,

In Eq. (5.12), y' represents the generators of the
internal symmetry group in the representation to which
the field P belongs. The form (5.12) of J„'(x) is the
direct extension of the current of the preceding section
to a non-Abelian symmetry group, under the assump-
tion of factorization.

The calculation of the commutators is straight-
forward although rather lengthy. For the components
J'(x) =J '(x)n&, we obtain

[J'(x) J'(y)].=4f""J'(x)b(x y)
+S„&'i'i(x,y) V~(y) b(x,y)
+S„,' ' (x,y)V (y)V"(y)b(x, y)
+s."'""( y) v"(y)v" (y) v'(y)b(, y)
+S„„,&&4&"(x,y)V"(y)V"(y)V'(y)'P(y)b(x, y), (5.13)

where the coefficients f""are the structure constants of
the (compact) internal symmetry group and V„ is
deffned as in Eq. (5.6).
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The Schwinger terms S& "'(x,y) (n= 1, . . . ,4) are

q numbers and have the following properties: They
have vanishing vacuum expectation value and they do
not contribute to the once-integrated commutation
relations, which are

(5.14)

(see Appendix C). In Eq. (5.14), Q' is the charge
associated with J'(x),

for the current can be changed by performing a contact
transformation. In particular, the Lagrangian in
Eq. (4.25) gives the conserved current of Eq. (4.26).
Such current differs by a divergence from the current
in Eq. (4.20): The difference is the divergence of the
tensor 'U,„in Eq. (4.27). I et us call

J„'(x)=J„(x)—f a"(qV(x)J„„y(x)),

with b real. A nonfactorized model can be obtained by
introducing a current

Q'= d~ (x)J'~(x). (5.15)

The explicit expressions of the Schwinger terms are
reported in Appendix C. They exhibit an apparent
noncanonical structure: They are sums of products of
nonconjugate variables.

We note that the current J'(x) can be decomposed in
such a way as to exhibit the existence of a part that is
responsible for the appearance of the Schwinger terms.
The decomposition is

where b' acts on the internal space. The imposition of
the charge-current commutation relations (5.14) and
the charge-charge relations leads to

[y~

+jan

zf~ july k [Vi gjj= zfkjkf k

On the other hand, using the canonical commutation
relations, one sees that the additive tensor term (whose
associated charge is zero) commutes with itself for
any O'. In particular, it is consistent to choose

where

J'(x) =J'(x)+J'(x) (5.16)
In this way one obtains a nonfactorized model of the
kind considered by Hamprecht and I&leinert. 2'

J*(x)= i,P [x,~(x)y'y—„(x)—H.c.]ri„,

J*(x)= iW, [x—»(x) 2V„x—~"~(x)y*y, (x)

(5.16')
VI. ALTERNATIVE INTERPRETATION IN TERMS

OF BOUND SYSTEM IN TWO SPACE
DIMENSIONS

One obtains

+2~~"~(x)e y'y (x)

+~ (x~" (x)y'y, (x))—H.c.]N„. (5.16")

[J'(x),J'(y)], =if"'J"(x)b(x,y) . (5.17)

The current J'(x) is associated. to a vanishing charge;
it has a noncanonical form in the sense described before.
In a conventional Lagrangian theory without higher
derivatives, the quantities m» and x&"& would be absent;
the term J'(x) would then also be absent, whereas J'(x)
would still satisfy Eq. (5.17). Thus the appearance of
J'(x) in the theory with higher derivatives lies at the
origin of the Schwinger terms in Eq. (5.13).

Fronsdal has pointed out' that the addition of
. particular terms to Gell-Mann's commutation relations
allows for the absence of spacelike states in the satura-
tion problem. "The Schwinger terms we have discussed
here have no relation to such additional terms con-
sidered by Fronsdal. "Rather, they must be attributed
to the presence of higher derivatives in the Lagrangian
(4.4), as we have shown. through the decomposition
in Eq. (5.16).

We conclude this section by speculating on the possi-
bility of constructing a simple nonfactorizable model
on the basis of the Lagrangian formalism developed
here.

We already observed in Sec. IV that the expressio+.

In this section we present an interpretation of the
model developed before in terms of a bound system.
The trajectories defined from the in6nite-component
wave equation will be interpreted as analytical inter-
polations of bound states of a particular dynamical

. system. Such an approach seems useful in at least two
respects. First, it will offer a natural procedure for
extending the model that we have discussed so far to a
richer model that produces families of trajectories. This
will be considered in Sec. VII. Second, we think that a
description in terms of a composite system may offer a
direct approach for the extension to a nonfactorized
model that is in a way different, in general, from the
model suggested at the end of Sec. V. It will in fact be
sufhcient to attribute a definite behavior under the
internal symmetry group to the constituent particles.

Ke shall concentrate on the simplest possibility, that
of bound states of two particles, supposing a non-
relativistic relative motion. The latter assumption,
which is u priori artificial, has a number of possible
justi6cations, " but essentially it is adopted here
because of the great simplification it provides. v

The interpretation is based on the observation that
the operator W/p', in the rest system of the bound
state, p=—pg with pg=o, coincides with the modulus

"B.Hamprecht and H. Kleinert, Phys. Rev. l80, 1410 (1969).
~' G. Morpurgo, Physics 2, 95 (1965).
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S=(-'+W/p ')"' (6.2)

squared of the intrinsic angular mornenturn. More
precisely, it can be interpreted as the squared modulus
of the relative orbital angular momentum when the
constituent particles are spinless, assuming for the
Sl.(2,C) representation R, to which P(P) belongs, an
irreducible representation with jo——0. For spin-2
constituents, the natural choice for R will be the direct
product of an irreducible representation with j0=0
and two Dirac representations Lthat is, (2P) Q (—',,

——,')].
The representation with j0=0 will describe the states
of internal orbital motion. It will be unitary, and
therefore its value of jz will be either pure imaginary or
real, satisfying 0&j«1, as in the Majorana repre-
sentation (0,~) (see Appendix B).24

More definitely, we shall write the operator W/p' as
a differential operator defined on the unit sphere and,
correspondingly, the wave function P will be interpreted
as a function g(ps, u) defined on the unit sphere, u de-
noting a unit vector in three space dimensions. The
interpretation is possible only if the solutions are all
timelike. By considering in place of Eq. (3.1) the
corresponding equation divided by P',

L(Ps' P)' 4~' —~'W—/Ps'l4(Ps u) =o (61)

one can eliminate the isolated lightlike and vacuumlike
solutions found in Kq. (3.7). A correct choice of the
representation, on the other hand, allows for eliminating
the spacelike solutions of the discrete spectrum, as we
have seen.

Let us consider the operator

have been used. Recalling that

1/~u v~ =2s P (j+,)—'F,.„(v)I;. *(u) (6 7)
20m

one can rewrite Eq. (6.4) as

@(PR,V)
dv

Ps' P-
P(pe, u) = (6.8)

Let us now consider the Schrodinger equation for a
hydrogen atom in two space dimensions. In momentum
space the equation. is

(6.9)

p(Ze') P(v)
P(u) = dv

2~v (u-v~
(6.10)

Comparison of Eqs. (6.8) and (6.10) shows that the
wave equation (6.1) can in fact be interpreted as the
wave equation of a two-dimensional hydrogen atom,
provided that the coupling constant Ze' is taken to be
an increasing function of the energy E, namely,

where q'= —2IJ,E and E is the binding energy; LM, is the
reduced mass. One can transform Eq. (6.9) by making
a stereographic projection from the plane, where k lies,
to the unit sphere in three dimensions. Let us call u the
unit vector corresponding to k. The equation one
obtains" is

in the space of the solutions p(ps, u). The operator S is
well-defined: In fact, x+(W/ps') is positive definite in
the space of the solutions of Eq. (6.1). We can re

Eq. (6.1) in the form

(6.11)

write
where ps' is now the total mass of the bound system.
On the other hand, the eigenvalues of a two-dimensional

(6.3) hydrogen atom are given by the formula"

or, equivalently, E;= —p(Pe')'/L2( j+—',)']. (6.12)

Ps'
g(Pg, u) = n-' dvy(p

The equations

P Y, (v) I',„*( )=ub(u v), —
fry

SV; (u)=(j+-', )I", (u)

Inserting, in Kq. (6.12), Kq. (6.11),one verifies that the

&,v) b(u —v) mass spectrum of Eq. (6.1) has indeed been exactly
reobtained.

The treatment so far is noncovariant: We have fixed,
from the beginning, the reference frame as that with

pg ——0. A covariant treatment can be performed follow-

ing the line of the work by Bisiacchi et al.'
Finally, we remark that the interpretation of a

hydrogenlike atom with energy-dependent coupling
that is proposed here is to be regarded as a mechanism
to simulate the appearance of an increasing number of

(6 6) open channels with increasing energy.

24 For a system composed by scalar particles this contradicts
the requirements on the representation of SL(2,C) (see Sec. III) "M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 (1966);
to avoid vacuumlike states. E. Kyriakopoulos, Phys. Rev. 174, 1846 (1968).



VII. BOUND MODEL IN THREE SPACE
DIMENSIONS. FAMILIES GF

TRAJECTORIES

%c shall consider here the extension of the bound
mod. el discussed in Sec. VI to a Inodcl in three space
dimensions. The extension will be made by simply
writing down the equation analogous to Eq. (6.8) for
three dimensions and developing an equivalent formula-
tion in terms of ar inhnite-component wave equation.
The model will bc seen to describe a whole family of
pRrRllcl llncRl tl'RjcctoI'lcs.

Ke shall here proceed in a way opposite that of
Scc. VI. Lct us stRI't from thc SchlodlngcI' cquRtloD of
the three-dimensional hydrogen atom

ttt' =II(j+12)+p, (7.6)

by introducing n=II' and p=p'+-', ll'. Equation (7.5')
becomes

IN'=n(j+n, ', )—+-p

Equation (7.2) becomes

(7.7)

fu —v['
(7.8)

We consider the trajectories obtained from {7.5') for
6xed n„and varying j.Such trajectories are parallel and
separated by one unit on the (ttt', j) plane. The highest
trajectory (to be called the "mother" trajectory) has
n„=1; it will be written in the form used in Sec. II,

where g'= —2pE, p is the reduced mass, and. E is the
bind. ing energy.

We can transform Eq. (7.1) by stereographically
projecting each vector k in three dimensions into a
corresponding unit vector u of the unit sphere in four
dimensions. "The transformed equation, which is quite
analogous to Eq. (6.8) but is for three dimensions
instead. of two, is

~(«') 4(v)
P(u) = dv

2tr'v iu —vi'
(7.2)

As in Sec. VI Lsee Eq. (6.11)j, we put

v m' —P'
Zc

p 0!
(7.3)

(ttt' P')' =n—'n" (7.4)

We shall concentrate on that solution of Eq. (7.4)
which gives an m' increasing with n. The other solution
will be discarded in the interpretation in terms of an
ln6nlte-component wRvc cquRtlon, which will bc glvcn
below. The mass spectrum is

(7.5)

where n is the principal quantum number. %C shall

put n=n„+j, where n„ is the radial quantum number,
n„=1,2, . . . , and j is the orbital quantum number.
Equation (7.5) becomes

where m is the total mass of the composite system and.
n' and P' are parameters. The energy spectrum for a
three-dlmcnslonal hydI'ogcn atom ls

8„=—p(ZC')'/(2e') .

Illscl tlllg Eq. {73)lllto 'tllls cqllRtloI1, ollc gets

The linearity of the trajectories has again been obtained
at the price of an energy-dependent coupling constant,
Rs Sllowll lI1 Kq. (7.3).

We shall now obtain from Kq. (7.8) an infinite-

component wave equation. To such purpose, we use a
formula analogous to Kq. (6.7) but for u,v in three
dlIQcnsloDs 1DstcRd of two

iu —v/'

I
=2tr' P —F.,„(u)F„,„*(v). (7.9)

+t2t~ n

In Eq. (7.9) the integer n is the principal hydrogenhke
quantum number, j and m are the orbital and. magnetic
quantum numbers, respectively, and F;„(u) are the
hypcI'sphcI'lcRl hRlInonlcs on thc four-dlmcnslonal urllt

sphere. The functions F„; (u) are eigensolutions, with

clgellvalllc Ã, of tllc opcl'Rtol (D +1') 1
t wllclc D ls

the modulus square of the angular momentum in four
dimensions. t " Inserting Eq. (7.9) into Kq. (7.8),
Rpplylllg tllc opcI'Rtol' (D +1) i to both sides of thc
resulting equation, and using the completeness of the
hyperspherical harmonics, one obtains

The wave function tP is defined on the unit four-

dimensional sphere. We shall interpret tP, in analogy to
what was done in Sec. VI as a function of the mass ag.d.

of a spin variable. Correspondingly, XF will act as R

mRtl'lx.
In order to write Eq. (7.10) in a general Lorentz

frame, wc note that D~ can be expressed through the
invariants W and p of IO(4, 1). The invariant W of
IO(4, 1) is

W=-',p.p Jl„J"—p.pt J"J', (a,b,c=0,1, . . ,4), (7.11).

and P'=P P~. Specifically, Dr is W/P' in the IO(4, 1)
reference frame where p=ps —=(ttt, 0,0,0,0). However,

W/p is an invariant for IO(4, 1), and therefore in any

ttt' =n'(n, +j )+p' (7.5')
"There -is a misprint of a factor 2~& in Eq. (A2) of Ref. '/

Lsee J. Schwinger, J. Math. Phys. 5, 1606 (1964)j.
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frame of IO(4, 1), Eq. (7.10) has the form

PP(P' —P+ ~Q) P —o'PP —o 'W])P(P) =0 (7.12)

In a general Lorentz frame we shall identify p with
p= (pp)pr)pp)pp)0); thus

W =W P'I'—„I')'+P„P„I')'I'", (7.13)
where

Finally we have been led to the wave equation

Lp'(p' t3+'—~)' ~'p' —~'W]4(p) =o (7 14)

where W is given in Eq. (7.13).
With respect to the choice of the 0(4,1) representa-

tion to which )P(P) belongs, it must be noted that those
representations which are suitable for the description
of a hydrogenlike atom are such that the quadratic
invariant J gJ " is negative, and the biquadratic
invariant —zv m vanishes', vv is

~e & &@bedeJ J8 bc de ~

We already saw that the eigenvalue of W/pp+I is n'-.

Thus the mass spectrum of Eq. (7.14) is formally
analogous to that for Eq. (3.1), except for the substitu-
tion of (j+~~)' in place of n'. In particular, the spacelike
solutions have negative I', as in the case of SL(2,C) in
connection with Eq. (3.1), where (j+a)' was negative
for such solutions. Spacelike solutions are thus avoided.

VIII. CONCLUSIONS

We shall mention here some results of the present
work which appear of particular interest.

We have seen that the requirement of a linear mass
spectrum automatically eliminates the continuum
spacelike solutions. The question of the presence of a
discrete spacelike spectrum is directly related to the
choice of the representation. The discrete spacelike
spectrum can be eliminated under quite natural choices
of such a representation.

In fact, an additional result has been obtained: The
requirement that certain unphysical solutions be absent,
together with the simplifying assumption of a
polynomial Lagrangian, leads to the conclusion that
the lowest-degree equation satisfying such conditions
possesses a linear mass spectrum.

The quantization procedure we have adopted, based
on a choice of canonical variables originally due to
Ostrogradsky, ' "is not to be considered as unique. The
appearance of Schwinger terms in the commutators
between time components of the conserved current
essentially follows from that choice. For instance, it can
be shown that a suitable choice of the canonical
variables can lead to the disappearance of such
Schwinger terms. "The particular form, in Eq. (5.13),

APPENDIX A: ALGEBRA OF POINCARS
GROUP AND LITTLE GROUPS

The Poincare algebra is

$M)'",M)"]=i(M»g" +M"'g» M")'g"—M"'g")'—),
fM"" P)'] =i (P)"g)'" P"g)'") [P"P—"]=0. (A1)

Introducing
~I, =g~j, lm~lm, +I =~10)

one has

t M(,M ]= [N),,N ]=ip—( gM)„

CMc A ]=t%)Mm) =«)mp&)

(A2)

(A3)

The Casimir operators are I"=P„PI' and lV= —m„m»,
where m„ is the Pauli-Lubansky four-vector

Thus
K IA g 6IAPPy lf P (A4)

W=-'P'M M~" P~P M»M. ~. —(A5)

The vector m„has three independent components
(because w"P„=O); they generate the little groups
associated with P„. For the eigenvalues p„of P„, one
has (a) p„ timelike, (b) p„spacelike, (c) p„ lightlike,
and (d) p„vacuumlike.

(a) p„ timetike In the standard fr. ame, p"= (m, 010,0),
re&=—(O,mM), (A6)

and the little group is SU(2), generated. by M. The
eigenvalues of W are

W=m'j(j+1), (A7)

of the Schwinger terms is thus to be considered as
related to the special quantization procedure we have
adopted here.

The reinterpretation, in Sec. VI, of the wave equation
discussed in this work in terms of a two-dimensional
compound system, can be considered as the realization
of a simplest model of a quantum-mechanical bound
state, having linear trajectories (see Ref. 8). The
extension to a three-dimensional system, in Sec. VII,
does not destroy the linearity, but rather implies the
existence of families of trajectories (daughters), bringing
the model in closer contact with other models (apart
from questions of degeneracy).

The model presented here is of course rather far from
providing a complete picture, but we consider that its
value mostly resides in underlining some still interesting
aspects of the infinite-wave-component approach,
especially in relation to current algebra and to linear
trajectories.
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(b) p„spaeetike. Choosing the standard frame such



1512 CASALBUON I, GATTO, AND LONGH I

that p"=—(0,0,0,q), one has

«z"= (qM«, qV«, —qE«, 0) . (AS)

The little group is SU(1,1) with the algebra

[rlvX«j= —«M«v [3I«vol j=ilV«v [X«vs«]=ilVi. (A9)

The eigenvalues of 8" are

W = —q'j(j+1), (A10)

where j(j+1) is an eigenvalue of the SU(1,1) Casimir
operator Q=N'o« —Xi«—1V««. The unitary representa-
tions of SU(1,1) are infinite dimensional. They belong
to the following three classes.

(i) PrinciPal series. 0& j+o i~ on the imagi-
nary axis and, for the eigenvalue m of M3,
m=0, ~1,&2, . . . , integer representation

half-integer representa-
tion.

(ii) Discrete series j=—. 1«, —1, ——,', . . . and

«n= —j, —j+1, —j+2, . . . ,
"plus" representation

j) j 1p j 27
"minus" representation.

(iii) SuPP/e«nentary series —
o (j. &&0 and

no=0, &1,&2, . . . .

(c) p„ /ight/ike. In the standard frame, p p—= (oi,0,0,—oo)

«eP—= (—ol~ovolF«volF«vooM«) v (A11)

where )i is the helicity. One has W=O, from (A14) for
f=0; however, one can still define the eigenvalues of
W/p', as limits from timelike p" or from spacelike pp,
obtaining, in both cases,

W/p'=) '. (A17)

(d) pp vacuum/i/«e (p"=0).The little group is SL(2,C)
(see Appendix 8).

by

C2=4&/ v/
&I""J"

Ci —jo'+ ji 1, C«=2—«joj 1 ~

(B2)

jo is the minimum spin value contained in the repre-
sentation (jo,ji). If

l jil = jo+n, n=1,2, . . . , then the
representation is 6nite dimensional and nonunitary,
and its spin content is

APPENDIX B: REPRESENTATIONS OF SL (2, C)

The SL(2,C) generators J„.obey the algebra

[Jp Jp ]—«(Jppgva+ Jvpgpp Jvpgpv Jppgvp) (Ill)

The irreducible representations of SL(2,C) can be
sPecified by the Pair (jo,ji), where jo is an integer or a
half-integer, and j~ is an arbitrary complex number.
The representations (jo,jl) and (—jo, —ji) are equiva-
lent; therefore, jo can be restricted to jo~&0. jo and j&
are related to the eigenvalues of the two SL(2,C)
Casimir operators

with
F«+1+lM2 F2 ~1 ll o. (A12) jo jo+1, ",Ijil —1

The little group is E(2), with the algebra

[FlvF«j=0, [F«v3E«j=«Fl, $3fovFl)=«F« (A13).

The eigenvalues of 8' are

W =o&'f', (A14)

where f' is an eigenvalue of the E(2) Casimir operator
Fi'+F«' The unita. ry representations belong to the
following two classes.

(«) Principal series 0&f& oo an.d

m=O, &1,%2, . . . , integer representation
half-integer representa-

tion.

(ii) Discrete series. f=0 and

sz Oy ~2y ~ 1p ~ ~ ~ ~

In the discrete series, Fi ——0, Fo 0, and from (A——11)

(A15)
In a general frame,

~"=p"M p/lpl,

If
l jil Hj o+n, then the representation is infinite

dimensional and the spin content is jo,jo+1,. . . .
Finite-dimensional representations are sometimes

specified by giving (/1/«), with /1 and li integers or half-
integers, defined as

2(l jo+jil —1) /«=o
I ji—jo—1

I
. (&4)

Unitary representations are as follows.

(a) PrinciPal series ji pure imag. inary.
(b) SuPP/e«nentary series jo ——0, . ji real with

o&lj, l&1.

A generally reducible SL(2,C) representation R allows
for a bilinear, Hermitian, invariant, nondegenerate
form if and only if it contains, for each irreducible
comPonent (jo,ji), also (jo, —ji ); in Particular, if R is
irreducible, i.e., R= (jo,ji), either ji is Pure imaginary,
or jo =0 and jl is real. Under parity (jo,jl) p (jo, —ji)
Therefore for an irreducible E., dehnite parity implies
either (jo,0) or (0,ji). For general R, a four-vector
operator I'„exists if and only if E. contains, for each
(jo,ji), at least one of the components of

giving as eigenvalues

«e" = —
)happ, (A16)

(0,2)8(jo,ji) =(jo, ji—1)8(jo, ji+1)
6(jo—1, ji)$(jo+1, jl) ~ (Bs)
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S."'"(x,y) =s((~.r.(y)&v'v'4. (y)
+3(~.~ ~.r (y))v'v'4»(y)
+~"[(~mrs(y)&V'v'4 i(y))
—r.(*)v'v'(~pl. (y)&+H c }

+(*-y, '- j),

(86)[J&",r)'] =i(r~g" —r g») .

In particular,

r s l
r, j,m) =p c,' "

l

r', j,m),

Within any such R, the representative of F„can be found to be
calculated from the relation

where r= (j—s,ji), j and m specify the eigenstates of J'
and Js (one defines J,= se;, sJ, s), and

TTcTT[(j~j)(J~J+1)]1/2
for r'= (js&—1, ji) (Bg)

=c' "L(j~ji)(j~ji+1)]'"
for r'=(j sji~1). (BS')

An irreducible R which allows for the existence of F„
coincides with either one of the two (unitary) Majorana
representations (O, s) or (is,0), as is evident from (85).
For them, putting c' =1, one has

The coefficients c " are left undetermined. The repre-
sentatives of F can then be determined from

(89)

5'„""'(x,y) =i((~,~.rs(y)&v'v*4i(y)

r.—(x)v'v'4. (x)g~
—r s(x)V'V'(~, ~A i(y))
+2(~.rs(y))v'v'(~ &i(y)&+H c }

—(x~y, i~ j),
5'„i""'(x,y) =i(»(x)v'v'(~. 4 i(y)&g i

+2rs(y)v'v'(~A i(x)&g i
—2(c),Ts(y))v'v'$1(x)g i+8'c'}

+(x~ y, i~ j),
Sp„i.&')'&(xy) = i(2r s(x)v'v'Pi(y) g„gi.

—2»(y) v'v'4 i(x)g,„g..+H.c.},
where a summation convention in r for r = 1,2 is adopted
and

ri(x) =2Pys'(x) —srs(x),

»(x) = —24 s'(x), rs(x) = —es'(x)

rol& jm)=(j+s)lr jm). (810) One has the symmetry rules

Finally we recall that by suitably normalizing I'„one
has, in a Majorana representation, "
[r„,r„]=—sJ„„, (r„,r„}= —(J„,,J„i}—g„„. (811)

APPENDIX C' EXPRESSIONS FOR
SCHWINGER TERMS

The Schwinger terms in Eq. (5.13), calculated by
formal use of the canonical commutation relations, are

"See, for instance, A. Bohm, in Lecturesirl, Theoretical Physics,
edited by W. E. Brittin et al. (Gordon and Breach, New York,
1968), Vol X B, pp. 483—526.

5,'""(x,y) =5, " '(y x)
(2)ip(x y)

— 5' (2)i')(y x)

S „i&s)"(x,y) =S,i(s)"(y x)

i (4)~i(x y)
— S & i4)i~(y x)

From (5.13), the expression for the commutators, one
sees that only those parts of the tensors S which are
totally symmetrical in the tensor indices, p, v, etc. ,
contribute to the commutators. The commutation
rules (5.14) are easily verified using


