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VII. DISCUSSION

We have demonstrated the existence of complex
Regge poles in the solution of an ABFST model. Ball,
Marchesini, and Zachariasen4 have argued that the
effects at moderate energies of a Regge cut can be ap-
proximated by a complex conjugate pair of Regge poles.
One may ask whether the complex poles in our model
are merely an approximation to the Regge cuts which we
have neglected by cutting oG the high-energy tail in the
kernel. If this were the case, one would expect that the
region in s of the kernel which is most important in the
determination of the Regge-pole positions would be near

the cutoff, 10 GeV'. However, Shei' obtained essentially
the same complex-pole positions as presented here using
the trace approximation to a model with a sharp-p-pole
kernel. From this result, we conclude that the most
important region of the kernel is near m, ' and that the
complex poles we have found are not an approximation
to a Regge cut.
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The on-shell electromagnetic mass splitting of kaons is studied, on the assumption that it is purely electro-
magnetic in origin, in a Lagrangian model incorporating vector-meson dominance of the hadronic electro-
magnetic current. A simple symmetry-breaking term in Lagrangian, which preserves the invariance under
the photon gauge transformation, gives the vector-meson mass spectrum and the negative @-co mixing angle
systematically. The result for Bmz to order a (6ne-structure constant) is cutoff dependent. A relatively low
cutoff value, around 1 BeV, is required to yield a physically acceptable result. The discrepancy between the
theoretical and the experimental values, 8m~'" —bm~'"&'= 5.44—6.22 MeV, is most likely attributable to the
high-energy contribution, which was neglected in the present approach.

I. INTRODUCTION

~HE success of the current-algebra calculation of
the pion electromagnetic mass splitting' has led

people to extend the same method to calculate the kaon
electromagnetic mass splitting, without notable success.
The main difhculty in the kaon case comes from the
fact that one cannot easily find the mechanism of the
octet enhancement in this approach. From a general
standpoint, this situation can be understood. as follows.
The joint success of current algebra and the hypothesis
of partially conserved axial-vector current (PCAC)
in the past several years has indicated that the strong
interactions are nearly symmetrical under the chiral
group SU(3)XSU(3). The symmetry SU(3)XSU(3)
is broken by the presence of nonzero masses of the
pseudoscalar mesons, and also by the presence of the
electromagnetic and weak interactions.

Recently Dashen' has reached the conclusion that
for first-order perturbations around an SU(3)XSU(3)-
symmetrical limit, there can be no dynamical mecha-
nism which enhances the octet part of the pseudoscalar-
meson mass splittings. This idea applies, in particular,
to the electromagnetic mass splittings of the pseudo-

'T. Das, G. Guralnik, V. Mathur, F. Low, and J. Young,
Phys. Rev. Letters 18, 759 (1967);I. S. Gerstein, B.W. Lee, H. T.
Nieh, and H. J. Schnitzer, ibid. 1o, 1064 (1967).' R. F. Dashen, Phys. Rev. 183, 1245 (1969).

scalar mesons belonging to the same isomultiplet. One
expects that the calculatiori of the hi=1 kaon electro. -

magnetic mass splitting in the usual current-algebra
method will not work well, because the calculation of the
pseudoscalar-meson mass splitting in this method is
based on a first-order perturbation around an SU(3)
XSU(3) limit Li.e., all the pseudoscalar mesons belong-
ing to an SU(3) octet have zero mass). This is actually
the case. However, the success of the calculation of the
pion electromagnetic mass splitting is encouraging, and
we may expect that one can calculate the kaon electro-
magnetic mass splitting simply by adding the high-
energy contribution to the value obtained by the
current-algebra method. This procedure would be
justified by the work of Harari. ' On the basis of the
Regge-pole theory, he showed that, for the calculation
of the DI = 1 electromagnetic mass splitting, it is essen-
tial to include the contribution from the high-energy
part of the forward virtual Compton scattering process.
The recent calculation due to Buccella et al. 4 indeed well
reproduces the experimental value. As the low-energy
contribution, these authors used the value obtained by
Socolow. ' It is our intent here to repeat the calculation

g H. Harari, Phys. Rev. t etters 1'7, 1303 (1966).
F. Buccella, M. Cini, M. De Maria, and B. Tirozzi, Nuovo

Cimento 64A, 927 (1969).' R. H. Socolow, Phys. Rev. 13'7, B1221 (1965),.
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of the low-energy contribution to the kaon electromag-
netic mass splitting biz by a somewhat different method
from that used by Socolow, and also to confirm that the
whole value of bm~ cannot arise within the framework of
the low-energy approach' -in any reasonable way. For
this purpose we employ the phenomenological Lagran-
gian method, which reproduces the current-algebra result
for the q =0 meson emission amplitude. The main point
is the way of extrapolating the q=0 result to the large-
momentum-transfer or hard-meson process. Assuming
an explicit form for the Lagrangian, we derive the in-
variance condition under a photon gauge transforma-
tion. We also derive a phenomenological Lagrangian
from the original one and then diagonalize it. This is
done in Sec. II. The effective Lagrangian obtained in
Sec. II is used in Sec. III to give the expression for
bm~ in terms of the free parameters o.~, y, and b, which
can be determined by the decay rates of the vector or the
axial-vector mesons. Section IV contains the discussion.

II. LAGRANGIAN MODEL

A. Construction of Lagrangian

According to the work of Lee, Weinberg, and
Zumino, a massive Yang-Mills Lagrangian gives the
algebra-of-fields commutators as the canonical com-
mutation relations of the gauge fields. We require that
the Lagrangian have the following properties: (i) The
meson scat tering amplitude calculated from the
Lagrangian by taking only tree graphs agrees with the
corresponding current-algebra result at vanishing meson
four-momentum (q=0). (ii) When the electromagnetic
Gelds are introduced into the Lagrangian, it is possible
to calculate the photon process by relating it to the
corresponding vector-meson process. Property (i) defines
a phenomenological Lagrangian. Property (ii) is satisfied
if the Lagrangian is so constructed that the resulting
electromagnetic current operator is dominated by known
neutral vector mesons (field-current identity). It is
justified in Sec. II C that the Lagrangian given below,
Eq. (1), has both properties (i) and (ii). Using these
properties (i) and (ii), we can calculate the photon-
meson scattering amplitude for a zero-momentum
photon. For the calculation of the meson scattering
amplitude, we take the following Lagrangian for the
generalized massive Yang-Mills field plus matter fields
as a model of SU(3)XSU(3) field algebra:

[Jb.v(x),Jibv(x')). . ., =0, (4)

[J4. (x),J(b (x')).,=., =[(M v).b/f') oui(b X—X')

f-e(~—v') b.(tv') 'e.
Xb(x-x')Ji. (*), (3)

[J4.v(x),J4bv(x')). ,=., = f.b,b(x —x')J4.v(—x) . (6)

(Equal-time commutators involving axial-vector cur-
rents are derived in the same way. )

The standard form of the field algebra is recovered
only for the diagonal mass matrices. Therefore we
assume

(Mv ).,= (iV„).,=m'b. ,+bb.,b„(7)
The explicit forms of Z~ and Z~ are chosen in Sec.
II D so as to yield the Gell-Mann —Okubo formula for
the vector and axial-vector meson masses squared.

B. Gauge Invariance

We introduce the electromagnetic interaction into the
Lagrangian (1) according to the prescription of Lee
and Zumino. YVe rewrite L as

I-=lb —24,. (~v').b4, b
—o4,."(br~').b4, b" (8)

I.p is identical with 1. except for the gauge-Geld mass
terms. By replacing all p„,v (including 8„&„,v) in Lo by
P„,~, we obtain Lp'.

the axial-vector (ga,uge) fields, respectively, which
constitute the basis of (1+8) representations of SU(3).
V„, and A „„are given by

Vpv, a = ~pPva vPpa

+f f (y v@ v+@ Ay 8)

~yv, a =
~purva ~vega

+f fabc(4tclcb 4'vc +4blcb 4bvc ) ~

with real constant f and SU(3) structure constants
f,bey L is a matter term, and f represent the matter
fields. Dag is a covariant derivative of f. We may also
define the field-current identity

~" =[(tv') blf)4"b'

By using the canonical commutation rule for the gauge
field, and the equation of motion for p„,~, one obtains
the following equal-time commutators in an unre-
normalized form'.

4 Vyy, a(~T ) & av,blc4&bpy, (&aA) &abv, blc
( V ) belch o4bica ( A )ab4ob

+I- (ADuAI'", .~u,.) (1)

where

and

I-o'=~o(4 p' ~ 4p. '),
Q„a'——4tClca' —(e/f) gaA

where Zz and Z& are symmetrical matrices and M&'
-and 3E&' are symmetrical mass matrices of the gauge
fields. g„,v and P„," (a=0, . . . , 8) are the vector and

6 We use the terminology of Okubo. See S. Okubo, Phys. Rev.
Letters 18, 256 .(1967).

~ T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

$,=1
g-i/2

=0

(a=3)
(a=8)
otherwise.

(10)

Here, e and f refer to the unrenormalized coupling
8 K. Kang, Phys. Rev. 1'Ff, 2439 (1969).'T. D. Lee and B. Zumino, Phys. Rev. 163, 1667 (1967).



LOW —ENERGY APPROACH TO THE KAON ~ ~ ~ 1493

V„,,
a V„...+f f,b.AavV„. ..,

A v, yy~aAyv, +yfafaac&b Ayyvcy,
v~y v gg v+f f +vs v

yryyya ~ Qyya +f fabc~b ilyyyc

V,»~aV», +f afaacitb A v, c yyy

A v, y~yaA v, +yyfafaac~a V v, cyyy

ytyyya ~ 4yya +f fabc&b 4'yyc

ytyyya ~ ytyyya &yy &a +f fabc&b lac

(15)

(16)

where A;v (i =1, . . . , 8) and i1" (i =1, . . . , 8) are co-
ordinate-dependent infinitesimal parameters. The con-
dition (14) determines i4v (i= 1, . . . , 8) and A,"
(3/iW8) uniquely. We get

h.;v= —(e/f)$;A, A;"(3/i/8) =0. (17)

A3~ and h.s" are undetermined. For the general forms of
Zy and Z~, kinetic parts of the gauge-field Lagrangian
can preserve the Lorentz invariance only if A&" ——As~ ——0.
Therefore we impose the requirement

~ ~=X ~=0

Thus the transformations (15) and (16) for V,„,, and
A„...become

V v, ~yyaVyyv, a+8(X) (f.ba+3 "'f.ba) V», a,
(19)

A v, a ~yyAyyv, a+8(X) (fabb+3 faBa)A v, b yyy

with 8(x) = —(e/f)A(x). Lb contains such terms as
Vyyv, a(Zv) ca Vyyv, by A yyv, a(Zg) abA av, by Dabc V. Aa»v, baPcy

and D,a.e„,avV», aVbc, bP„where P, (c=1, . . . , 8) repre-
sent fields of a pseudoscalar-meson octet. The gauge-

constants. The Lagrangian including the electromag-
netic effect is as follows:

8Pyyv +Lb 84'yya (i' V )ab4'yyb

—:e,."(~").w. ", (»)
where F„„=B„A„—B„A„ is the electromagnetic field
tensor. The equation of motion for A„becomes

&.P»=(e/f)L(iM'v')8b+3-'"(~v')baja, b'. (12)

The gauge-invariance condition under the photon
gauge transformation implies that the Lagrangian is
invariant under the replacement A „aA „BQ—(x)
Thus Lp must be invariant under the replacement

&"'~ 0"'+(e/f) &.~A (13)

This is equivalent to the invariance condition of Lp
under the replacement

y„.v ~@„.vg(e/f)]. a„it, (14)

which depends on the symmetry property of Lp under
the strong interactions. We first note that any in6nites-
imal SU(3) )&SU(3) transformation of P„,v (yty„",
V„„„orA„„,) is obtained by the combined application
of the following two transformations, (15) and (16):

invariance condition leads immediately to the following
restrictions (i) and (ii) on (Zv, ~)aa and D,b„respec-
tively"'.

(i) L,a+Lb, =0,
where

L.a=(fcba+3 "'fcbb)(Zv, ~)... (2o)

(ii) D 'b (f '8.+3 "'fa 8a)+Dab'c(fb'8b+3 "'fb'bb)

+Dab;(f;bc+3 '"f;8c)=o. (21)

C. Comyutational Rule for Photon Process

The equal-time commutators described in Sec. II A
are written in an unrenormalized form. Following Lee
and Zumino, ' we assume the existence of the renormal-
ized theory of the Lagrangian (1) even if the pertur-
bation-series method fails. (Otherwise, the equal-time
commutator between the renormalized current operators
does not exist. ) Then the equation of motion for the
gauge field and the normalization condition of the cur-
rent operator,

Q.v "= i J' —a.v "(x)d'x= i [—Jag v "(x)jiadbx,

imply the renormalization independence of the current
operator defined by Eq. (3)." These relations define
the renormalized and the unrenormalized coupling
constants. LQ,v" is an SU(3)XSU(3) generator and
the subindex E implies the renormalized operator. j
Thus Eqs. (4)—(6) and the related equal-time com-
mutators involving the derivatives can be regarded as
the relations between the physical current operators.
From the work of Kang, ' we know that the Weinberg
second sum rule, derived from the equal-time com-
mutators involving time derivatives, depends on the
explicit forms of Zy and Z~. We take

(ZV) ab fya b+V3 &dc b8 ~ (22)

e is a symmetry-breaking parameter. This leads to the
Gell-Mann —Okubo formula for the vector-meson mass
squared through the single-particle saturation of the
Weinberg second sum rule. One can easily see that the
Zv of (22) satisfies the gauge-invariance condition (20).
In order to calculate the scattering amplitude for the
low-momentum photon process, we 6rst consider the L'
given in Eq. (11). In this form, the photon couples to
both the gauge-field and the hadronic electromagnetic
current. The net effect is equivalent to adding the
efIective Lagraigian L; t,

L;„&=—ej~cmAa ——(em /f)(yfy„b "+3 'i yly„bV)A» (23)

to L given by Eq. (1) as the result of the equation of

' Similar conditions have also been considered by Schwinger.
See J. Schwinger, Phys. Rev. 165, 1714 (1968). Examples of the
D~&, satisfying Eq. (21) are d~&„ f~&„etc.

"N. M. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157,
1376 (i967).
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D. Diagonalization of Phenomenological Lagrangian

A model constructed above can be used to reproduce
the relations among masses and coupling constants
which are derived from the Weinberg sum rules. It is
accomplished by diagonalizations of the phenomeno-
logical Lagrangian. Taking the Lagrangian (1) with the
conditions (7) and (20), we get a model Lagrangian of
the 6eld algebra which is consistent with gauge invari-
ance. Further, replacing unrenormalized field operators,
masses, and coupling constants by corresponding re-
normalized ones, we get a phenomenological Lagrangian
which must by used in the tree approximation. Only in
this form can diagonalization procedures have clear
physical meaning. We 6rst consider the vector gauge
fields. The normalization condition of the kinetic part
of L leads, with the aid of (22), to

@p,126 (1+6) Qp, 126

jh t4p567 (1 26) Qp, 4567

mp2(1 +) 6m, 2mx ' (1 ', 6)-m——'—-(24)

Here the tilde over @„,~ means that it is a physical
operator. We also define the P-cv mixing angle by the

"B.W. Lee and H. T. Nieh, Phys. Rev. 166, 1507 (1968);
G. C. Wick and B.Zumino, Phys. Letters 25B, 479 {1967).As we
use only the renormalized quantities, the subindices R are
omitted hereafter."R.Dashen and M. Weinstein, Phys. Rev. 183, 1261 (1969).

motion. We can also construct a theory, which satisfies
the field-current identity, by introducing the electro-
magnetic 6eld into the gauge-field mass term by re-
placing g„r by jb„r—(e/f) f-,A„. In the latter case, the
photon couples only to the gauge-6eld and does not
couple to the hadronic electromagnetic current. It is
not a matter of convention, but of direct physical
signihcance, that the photon couples to the hadronic
electromagnetic current, or to the hadronic gauge 6eld,
or to something else. ' We assume in the following that
4,6,6~ and A, in Eq. (11) represent the fields of the
vector-meson and the photon, respectively. Then the
lowest-order photon process can be calculated by using
(23) as the effective interaction and noting the relation
4:A„=e72(A„)72 if the vector-meson emission amplitudes
are known. '2 By using the field-algebra relations and
the reduction technique, one can calculate the vector-
meson emission amplitude in the zero-momentum-
transfer (q=0) limit. It is known that the equivalent
result is obtained by applying the Feynman-Dyson rule
to the Lagrangian (1) and taking only the tree graph.
The only effect of the higher-order graph on the soft-
meson process (q=0) is to renormalize the trees. "
Therefore we can regard the Lagrangian (1) with ap-
propriate forms for Z~, ~ and Afy, ~' as a phenomeno-
logical Lagrangian by replacing all the masses and
coupling constants by corresponding renormalized ones.
These techniques have already been used by Lee and
Nieh, and by Wick and Zumino. "

relation"

=Cp(mppcos8r y„—m psiner 46„),

happ
=Cp(mp' sin8& 4f714+m„' cos877 pp„) .

Then the diagonalization conditions of L become

(25)

(1/4En)4'p, »6

cos|jt sin0
@p8 = 4'p

QE4 QE

45p67 (1/"4/E")4p, 4567

sine cose
@pp = 4p+

v'Ep v'E-
(31)

where E,=mp/m;2 (i=p, p, 4p, E*), Ep,=Eir', and
tan8 = —1/K2.

E. Effective Lagrangian for Neutral-Vector-
Meson-Kaon Scattering

In order to calculate the kaon electromagnetic mass
splitting using the method described in Sec. II C, we add

'4 T. Akiba and K. Kang, Phys. Rev. 172, 1551 (1968).
"The values of masses used in this analysis are mp= 765 MeV,

ml;*= 890 MeV, m~ ——1019 MeV, and m„= 783 MeV.' L. M. Brown, H. Munczek, and P. Singer, Phys. Rev. Letters
21, 707 (1968).

Cp (m——mp) '[1+(mp'/m~') tan'8]'" cos8

Cp ——[(m'+b)"'m ] '

X[1+(m '/m ') tan'0]'" cose. (27)

The mixing angle 0 is determined by the equation

(1+b/m')y' —2 "'(1+b/m'6)y —1=0, (28)

where y = (1+b/m ) '7' tang. The p- and 46-meson

masses are given by

m 2 =m2(1+6)(1—26)

X[1+(1—6)y —267 py] 'cos 28,

m ' =m'(1+ 6) (1—26)[(1+b/m') y'
(29)

+(1—6) (1+b/m') —'+2'"py] ' cos—'0.

From Eqs. (24), (28), and (29) we have

m 'cos'0+m 'sin'8=m'(1 —6) =-'6(4m'' —m ') (30)

For simplicity we put b =0 hereafter. Then the require-
ment mp) m„ fixes the sign of 8. We have from Eq. (28)
that tan8= —1/v2 or 0= —35.2'. This value was first
obtained by Akiba and Rang using the Weinberg sum
rules. " A least-squares 6t to the experimental value
gives m=859 MeV, e= —0.196.' In summary, we have
shown that the diagonalization procedures of the
phenomenological Lagrangian lead to the same results
as that of the Weinberg sum rules. (Couphng-constant
relations can also be derived, but are not presented bere. )
Finally, we put relations (24) and (25) in the conve-
nient form given by Brown, Munczek, and Singer. "
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the pseudoscalar meson terms to L of Eq. (1).We take
the following I. for this purpose:

L = —(1/2a )(Dub) +i[&sidaoc+&so(&achro+&oc&ao)]

X Vuv, aV), c,aPcouviv+PifaacVuv, aAuv, aPc

+Pa fao.DuP, D.PoV„..., (32)

with
Du'&. =Duc. f—A."

ma=m'+f /2&22,

~
—(g2+f2/m2) 1/2

Then we see that

(33)

(36)

(37)

where &2, &2;, and P, are real constants. For the covariant
derivatives of the pseudoscalar fields $, (=qP,—), we use
the form given by Coleman et c/. ,

"i.e.,

e'»8[8„if(ct„—v+y, &it„A)]e '&« = iv„—i(D—„))ya (33.)

In these expressions, ctruv ", V„, and Du) stand for 3X3
matrices defined by &truv=pu, vah„etcrt f is identical
with the one defined previously. Under charge conju-
gation, the 3X3 matrices V„„and A„, transform as
V„,—+—Vu, r, A„„—+Au„r. is The symmetrical (anti-
symmetrical) coupling of VVP (VAP) type in L was
determined in this way. The sum of the gauge-Geld mass
term and the kinetic term of the pseudos-alar Geld is
diagonalized by regarding P„",apart from a factor, as
the physical axial-vector GeM in the following way. "

Define @„~by

A —y A+f(&22m2+f2) —1D r] (34)

—( 1/2~')(D k.)'—sm'(0 .")'
= —-', (D„'P.)'—-',m'(j„.A)2. (38)

The right-hand side no longer contains terms like
B„I' p„,~. We assume vector-meson dominance in the
form

f/ my=1/v2, (39)

which gives nz'=2m'. For definiteness, we also assume
Zv=ZA (=Z) in the following. This assumption leads,
apart from a multiplicative factor, to the same spec-
trums of masses for the vector and axial-vector nonets,
which are not in contradiction with experimental
results. "Further, the condition I'(p —+ par) =0 implies
no =0 in our model. Other constants in I. are determined
in Sec. III. Now we can readily write down the effective
Lagrangians for t'he scattering of the neutral vector
meson and the kaon. They are obtained by expanding
the entire Lagrangian as follows:

L pvv af(j u, z ju,z )4»a —+2 r/3f(j, ,tc+j u, »')Aua 8[(f/m')Z—ss Pa](j .,E j—„K ) &1 uFu—, a

su~[(flm —)Zsa p25(j „,E+p—'.,Ec)BuFu. ,s, (40)

L, pvA —— ',i[(2 —"'—f/m)Zsc 2P1]{[—&tc»(&tc„»") &tr», etc„,»—"7 [&tt»c(&tc„,»c"—) &tt»o &trv, zo 7—)BuFu„,s

+l L(2 "'f/ )(Z Z)+2 —"' P+2P]{[~.4 (i.,
")' ~A 'i. ,

—"] [~ 4 '(i.—, ")'
~.4 '4. , "7}F.. l~iL(2 '"f—/m)z. 2p 7{[4 (i.,,

")'—0 V—„K"]
+/@»c(@v,»cA)t &tt»ct@v, »cA])BuF—uv, a+2V3i[(2 ' &f /m)( Zs—s Zcc)+2 '"mP2+2P1]

X{[&lucfc»(4'v,» ) &7uctt» 4'v, » ]+L~u&it»'(&ttv, tc' ) ~u&tctcc Av, tcc ])Fuv, sr

I ppVV Sf [(&frua ) (&itzrtt» +&t'»v&11»c )+2V3&trua 4'ua (&tr»&tCK &ir»ckz )+3(&tcua ) (CtC»4» +&t'K'&tt»' )]
+8[(f /m )Zaa fP2](&ti»&ti» +cti»c&tr»c )8 Fu. acti a +843[, (f /m )Zaa fP2](p»$»— Pzc&ti»c )Bu—Fu. , aria. s

+8~&[(f'/m'}zss fP2](gvc4»' —P»o4 K') &uF„—, q48 +8[(f'/m')zss fP27(4 »4 E'—+4 K 4 Ko') &.F„,8%,8'
+—,'„[(f'/m') (Zaa —-Z44) fpa+ (4&2/m—)fpi](p»&tc»2+ &tc»c&tc»c2) (F„„,8)

'
+1'8%3[(f'/ma)(Z88 2Z44+Zss) 2fpa+(8v2—/m) fpi](&tc»&fc»" &tczcp»c )Fuv aF—uv 8

+2'; [(f'/ma) (Zaa Z44) fps+ (4—v2/m) —fpi](4»4»2+et»'&tc»ct) (Fuv, s) 2, (42)

LPVV 21&228&uv{4[» &l(u4' zv) +ritr» Clufv, » 7( F,1rv83 F1rcs),
—[4»~,(4.. K')' +4 'E~ 4 Ec'](Fi +3 '"Fi 8)& (43)

where

j , uE&&»=ci[&u4»&»c14»&»c& —4»&»c& &tub»&E &],

Fu„,=Butte.;v 8,&„;v (i=3, 8)—.

In the above expressions, (40)—(43), &t E(re»c) stands for
the charged (neutral) kaon field operator. pu, »A ( f , &u)KcA

stands for the field operator of the charged (neutral)
E~ meson, except for a normalization factor.

"S.Coleman, J. Wess, and B. Zumino, Phys. Rev. 1'77, 2239
(1969); C. G. Callan, S. Coleman, J. Wess, and B. Zumino, ibid.
177, 2247 (1969).The choice of the form of covariant derivatives
is not essential, except for the requirement that the time com-
ponent of the current operator should satisfy Eq. (6) as the result
of the equation of motion. One can easily see that. the nonlinear

D„( yves, by the canonical commutation rule, Eqs. (4) and (5)

in exact forms, and Eq. (6) at least to order &2. This is sufhcient
for our- purpose."T implies "transposed. "

"This @„," is an axial-vector partner of the p„v. The physical
axial-vector meson field is obtained by further diagonalization as
in Eq. (31) by replacing E; by E =m'/m .

~' Particle Data Group, Rev, Mod. Phys. 42, 87 (1970),
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III. EVALUATION OF MASS SPLITTING

A. Exyression for Sm~

The expression for bns~' ——m~+' —m~o' is given by"

bmx'= [i/(2~)'][b(P —P')]-'

x(«+(p) Is, IE+(p ))—&Ep(p) Is, IEo(p')))
I „„

tion is explained at the end. )

3(x 1
(bmx') j ———m'

4m 6yp

X((EpKp) 'Iy[(m, /err)', (m /pm r)r'7 cos'8

+(E',K„) 'Ig[(mp/mrs)', (m /mx)'] sin'8), (45)

where

de,
i(2pr) 4 I~[xg,xp) = —Fi(x) I.=.,*=*—=

Ax

Fi(xg) —Fr (xp)

S] $2

NS
L;„t——— V

f QE,

sin8cos8
+ y„— co„A„. (23')

(3Ep)
"' (3K„)'~'

Then we apply the I'eynman rule to get the expressions
for (5m&');, by taking the negative of the effective
Lagrangians (40)—(43) and (23') as the effective inter-
action Hamiltonians. "Here

bm '=P(Sm ');

and

where $2 is the S operator for Compton scattering in
order e' with disconnected graphs removed. We divide
the contribution to M of the effective Lagrangians
(4O)—(43) into 6ve parts M, . Here M; are the contribu-
tions from the graphs of the following types. M& is
the pole graph of second order in j„p„v,plus the contact
graph involving no derivative. M2 is the pole graph of
second order in B„F„„3(»j„,plus the contact graph
involving derivatives. %~2 is the pole graph due to
cross terms of j„p„v and B„F„„,3&8)j„. M3 is the pole
graph with an axial-vector meson in the intermediate
state. M4 is the pole graph with a vector meson in the
intermediate state. Equation (23) can be rewritten in
the form

(5/Dx should be replaced by 8/Bx when x~=xp),

F g(x) =x Inx —(x—4) 'W(x —2, 1),

W(a b) = —(u'+au+b) 'du—

(Bmx') p ——(3n/8s) m'bpb p

X((E,Ep) 'Ip[(m, /—mrr)', (mp/mrr)'7 cos'8

+(E,E ) 'Ip[(mp/mrs)', (m /mrs)'] sin'0), (46)

where

Ip[xg)xp] = (bp+-', yp) In(h/mx) '

+16yp+pyp(~/»)Fp(x) I .=.,*=*',

Fp(x) =(,';x' ', x—4b—p/-yp)—x lnx—'x'(x —4) 'W(x —2, 1)——,'x' (4'i)

(bmx') &p
= (3n/8~)m'(bp+bp)

X((KpKp) 'Igp[(mp/mJr)', (mp/mac) 7 cos 0

+(E„E„) 'I~ [(p/mp)m', r(rm„/ )m')raisin'0),

where

I12[xl)x2]=-', +(6/»)F12(x) I .=*,'=*',

Pgp(x) = (—,', x'+-', x) lnx+ —,',x(x—4)'W(x —2, 1) .

(bmrr')p ——(3n/8x)m'(Ep) '((EpEp) 'Ip

X[( /mp)m', x(mp/mrr)') cos'8

+(KpK„) 'I [(pm/m )'r,r( m/ m)'r)csin'8), (48)

(bmx');=
3E;

de.
i(2n)4

where

I3[xg xp) = —(a4' —syapap) [ln(A. /mrs) '—In(2/y) 7

(i runs over 1, 2, 12, 3, and. 4.) In the expressions for

(bmz');, we must always use the values obtained in

Sec. II D for the vector-meson masses and the p-co

mixing angle 0. Integrations over vitrual photon four-

momentum can be carried out by using the standard
Feynman technique. (bmrr')p and (Qnx')p are cutoff

dependent. We obtain the following results. (The nota-

"M. Cini, K. Ferrari, and R. Gatto, Phys. Rev. Letters 2, 7
(1959).

"T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962};
J. Rei6 and N. Veltman, Null. Phys. 813, 545 (1969).

—pa4'+ (5/48)yapap —pa4(ap+ap)

+ (a/ax)F, (x) I. ..*=*,

1 2 3

Pp(x) = ———1 [a4 +apap —a4(ap+ap) 7
6 y

1
X —ln (1——',y) ——yapa ax'

g 24
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A(x) and B(x) are given by

A (x) = (I/48)yasasxs+[3'3 a4' —(1/24+y/16) asas+pa4(as+as)]x'

+[(1/2y+4) a4' ——,',y(2/y —1)'asas —(1/2y+4) a4(as+as)]x
—

4 (2/y —1) a4 +(y/48) (2/y —1)'(10/y+1) asap —33 (2/y —1)3[a43+asas —a4(as+as)](1/x) &

&(X)= —(1/48)ya3asX +33[ a4'+(1+y)asa, —2a4(as+as)]X
+[-',(1—1/y) a43+(1/6y ——',—zy) asa, +(5/12) (2y+1)a4(as+as)]x'

+[(2/y'+4/3y ——,')a4'+( —4/3y'+1/y+-', +y/12)asap —(1/y'+1/3y+-', )a4(a3+as))x
—

3 (2/y —1) (1/y —1)a43+ (1/48) y(2/y —1)3(28/y' —4/y —1)asap

——,', (2/y —1)'(2/y+1)a4(as+as) ——,', (2/y —1)4[a4'+asap —a4(as+as)](1/x) .
3n 64ng'

(&mK)4 —m' (K„) '((K,K4) 'I4[(m, /m )K', ( m4/ m)K') cos'0
43r 3f'

+(K,K ) 'I4[(m, /mK)', (m„/mK)'] sin'e), (49)

where

I4[X3,X3]=3+(6/AX)F4(X)
~

s=„*=*',
F4(x) = —s(2/y —1)'[ln(1—y))(1/x)+[ —3 x'

+43 (1/y+ 1)x+43 (1—1/ys) +333 (1/y —1)3(1/x) ]1n(xy)

+(1/12x) [x'—2x(1+1/y) +(1—1/y) ']'
XW(x—1—1/y, 1/y).

In the above expressions,

(L3 —Z33 5) Cs Z88 8
p 84 —Z44

bs =Zss+8~ bs =Zss+8, b4 =Z44 2y, —
bp = [2b4 ——',(bs+bs) ]/b3bs,

b = msP3/f, —y = 2%2mP3—/f,
yp=(mK/m)', y=(mK/mK )'.

Using the values of Z„and 8 in Sec. II D, and taking
m~=496 MeV, we have

(bmK') 3 = (343/43r) m'(1.673), (51)

(bmK3) 3
——(3 /4 4r3) mvs( 0 357+—0 .3978.

—0.021bs+1.771'), (52)

(bmK') 33
——(3n/43r) m'(0. 136+0.1278),

(bmK') 3 ——(3n/43r) m'(0 717+0 0. 26) 0.001b'— .
—1.605y+0 897ys —0.028yb), (54)

(bmK') 4 (343/43r)=m (64n '/3 f') (0.092), (55)

where only the convergent parts were collected. The
total cuto6-dependent term is given by

(bmK') f 4
——(3n/4 )m' 13m(h/mK ~)'(—0.031—0.4818

+0 0408 —0.962' —0.528'') . (56)

A is a cutoff momentum for the virtual photon in self-
energy graphs.

B. Determination of e~, y, 8, and 8m~

The above expressions for (bmK3), still contain the
unknown parameters nq, y, and b. Using Eqs. (23') and
(40)—(43), we find that these parameters are determined

by the decay rates of the vector and the axial-vector
mesons. In our model, we get the following expressions:

r(p ~ srsr)

1 3—(I+p) 6) 3 f'—(mps —4m~3) "',
12m' 4 1 44r

=,.'.(' '. '")'(-,')

X ml;*' —2 m~' m ', 58

r(A 3~ P3r)

1 f' m, ''
m (-'a' —1)"'

24 4~ m'

X((a'+4) [Z —&+a(~—y) 7'

+2a(2 —a')(b —y) [Zss —b+a(b —y)]
+(a' —2)'(b —v)'}, (59)

where
a =-', [3—(m./m 3)'7.

We determine the value of fs/43r by relating it to the
decay rate of the p meson into the lepton pair

f' q-'ms- /m34q-
r(, I+I-) =-,' —

(
—I+O~

~
. (60)4/ m, &m, 'i

From the experimental value" r(p —& e+e )/r(p ~ all)
=(6.0&0.6)X10 ' we get f'/43r=2 3&0 7 For de.fi-. .
niteness, we take fs/43r=2 3in the follow. ing. The
value of 0.& is obtained from the rates of Vt/'P-type
decays:

(8433m)3 f'
r(4p-+ srsy) = — (0.138) MeV, (61)

4m 4m

(8nm)' f'
r(srs~ 2y) = — (2.46) eV. (62)

4x 4x
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TABLE I. Decay widths in MeV for AI —+ pm, p +~@, and
E*+—+ E~ as functions of the parameters y and B. (f'/4n =2.3).

TABLE HI. The cutoff-independent term A of 5m~ in MeV
defined by P(biz);=A+B ln(A'/m&"), with Z= 1, 2, 12, and 3.

1.2 1.4 1.6 1.8 2.0 2.2 2.4 1.2 1.4 1.6 1.8 2.0 2.2 2.4

r(A

r(p ~~)
F(E*+~ E~)

0.0
0.2
04
0.6
0.8

40 31 24 17 12 8 6
77 65 53 43 34 27 20

127 iii 95 81 69 57 47
189 169 150 132 116 101 87
264 239 217 195 175 156 138
94 102 110 119 127 137 146
45 50 55 61 66 71 77

0.0
0.2
0.4
0.6
0.8

1.91 1.76
1.91 1.75
2.00 1.84
2.18 2.02
2.45 2.29

1.60 1.44 1.27 1.11 0.94
1.59 1.43 1.26 1,09 0.92
1.68 1.51 1.34 1.17 1.00
1.85 1,69 1.52 1.35 1.17
2.12 1.96 1.78 1,61 1.44

The experimental value I'(ss —+ m'y) =1.19&0.35 MeV,
combined with fs/47r =2 3, r.esults in I'(xs ~ 2y)
=9.2~2.7 eV, which is consistent with the observed
width 7.2&1.2 eV. Further, our y and. 8 are related to
the ratio of the longitudinal and the transverse coupling
constant gI, and g&, respectively, in the A& decay. ampli-
tude. In the notation of Gilman and Ha, rari, "

(63)
(&ttsx)4=0.34 s.os+'" Mev. (65)

and 8=0.93—1.80 MeV. The value of 8 is not small
compared with that of A. Therefore the whole expres-
sion for 8m~ is critically dependent on the cuotff mo-
mentum A. For the moment, we neglect the cutoff-
dependent term. This is equivalent to taking A=mz*
=0.9 BeV and the possible justihcations will be given
in Sec. IV. The contribution of the vector-meson inter-
mediate state (&tsx)4 is determined by (o.'t/f')'. Using
Eqs. (55) and (61), with the experimental value" for
I'(a& ~ xsy), we obtain

Thus our model for the kaon electromagnetic mass
splitting predicts, with 4=m~' for the cutoff-dependent
term, Bttsx ——1.50—2.28 MeV for 5=(—1.4)—(—2.0) and
y=(0.0)—(—0.4). Taking Smrc'"s" = —3.94 MeV, " we

get 6m+'" —8m+'"I" =5.44-6.22 MeV. Note that we
cannot make biz negative with any choice of A, if
A.&m~*, because the coeKcient of the cutoff-dependent
term is positive in the allowed ranges of 6 and y.

IV. DISCUSSION

The most troublesome problem in the present ap-
proach to the mass splitting is the appearance of the
cutoff-dependent term. Previous authors" have treated
this term by choosing a suitable cutoff so as to reproduce
the experimental biz, or by imposing the condition
that makes the coefficient of the cutoff-dependent term
vanish. These procedures are not applicable to our case
because the coefFicient of the cutoff-dependent term is
positive. Even if the coeflicient were negative (e.g. ,

5 =y =0), it only means a diiferent choice of the method
of extrapolating the field-algebra result (q=0) to the
high-energy virtual process (qs ~~), and so we think
it unattractive. A physically acceptable result should not
be sensitive under minor changes of the extrapolation
method, which depends on the parameters 6 and y. A
different extrapolation method gives a different coeffi-
cient of the cutoff-dependent term. Thus the success of
the calculation of the on-shell pion electromagnetic
mass splitting due to Gerstein et al. ' should be ascribed
not to the smallness of the coe%cient of the cutoff-
dependent term, but to a relatively low-cutoff momen-
tum, h. =(vector-meson mass). This is a possible justi-
fication for taking 4=m~ in our calculation of 8m~.
Further, as was noted by Scott,"the empirical "double-

"See, for example, K. Tanaka, Nuovo Cimento 60A, 589
(1969)."D.M. Scott, Phys. Rev. 187', 2153 (1969).

(64)(omx); =A+B 1n(A'/err') .
i=1,2, 12,3

The cutoff-independent term A is shown in Table III.
The above ranges of 6 and p imply A =1.25—1.84 MeV

TABLE II.Values of ~gz/gz, ~

' as functions of the parameters r and 5

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.0
0.2
0.4
0.6
0.8

1.17 1.01 0.85 0.66 0.45 0.25 0.07
1.39 1.28 1.17 1.03 0.89 0.79 0.57
1.54 1.45 1.37 1.27 1.16 1.05 0.92
1.64 1.57 1.50 1.42 1.34 1.25 1.16
1.71 1.66 1.60 1.54 1.47 1.40 1.32

"F.Gilman and H. Harari, Phys. Rev. Letters 18, 1150 (1967)."J. Ballam et al. , Phys. Rev. Letters 21, 934 (1968). The
corrected experimental value is cited in P. Horwitz and P. Roy,
Phys. Rev. 180, 1430 (1969), or in S. G. Brown and G. B. W'est,i'. 180, 1613 (1969). A more recent value obtained by Ballam
et al. , ( gp/gL, ~

= (0.48~0,12) && (mA/mp), is a little smaller than the
value cited in the text. See J. Ballam et al. , Bull. Am. Phys. Soc.
14, 573 (1969).

With our choice of f'/47r, the decay widths for A i —+ pir,

p —+xw, and E*+—+Km are given in Table I. The
values of

~
gT/gr,

~

s are given in Table II (fs/4x =2 3) If. .
we assume that the A& decays predominantly via the
Ai —+ ps. mode, we have" I'(Ai —& px) =95&35 MeV.
This value gives an experimental upper limit for
I'(A i ~ pir). We also have I'(p —+ ~s.) =125~20 MeV,
I'(K*+~Xs)=50.1&0.8 MeV, " and ~gr/gI. ~'=0.64
&0.25.24 From Tables I and II, we see that it is difficult
to get over-all fits by choosing values of b and p if we

take the existing experimental values too seriously. The
experimental situation is still uncertaiTi, in particular,
for the Ai-decay data. Therefore the ranges 6 = (—1.4)—

(—2.0), y=0.0—(—0.4) would be acceptable. The sum
of (bttsrc), , (s/4), can be written from Eqs. (51)—(54)
as follows:
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pole" form of the nucleon form factor would suggest an
eGective cutoB in the range of the vector-meson masses.
This would be another reason for taking 4=m~*.
For the range 8=0.93—1.80 MeV taken in Sec. III,
8 ln(A'/m~*') takes values of (—0.29)—(—0.56) MeV
for 4=m, and 0.22—0.43 Mev for 4=m~. It is dificult
to estimate realistic error bounds. The uncertainty lies
partly in the determination of 5 and y, and partly in the
dynamical assumptions including the value of A. From
the above discussion we believe, perhaps too optimis-
tically, that the result for &n~ given in Sec. III is correct
within 1 MeV. Finally we mention the contribution to
biz from the high-energy virtual processes. In place of
the tadpole dominance, the pole dominance in the angu-
lar momentum plane has been used as a possible explana-
tion of the octet enhancement. "The estimation due to
Buccella et ul. of the high-energy contribution from this

viewpoint gives (—5.7)—(—7.1) MeV as the sum of the
subtraction and the asymptotic contribution. 4 %hen
combined with the low-energy contribution obtained in
Sec. III, the above value well reproduces the experi-
mental 8m~. Thus we conclude that the low-energy
approach as employed in the present work offers a
reliable method of calculation only for the low-energy
contribution, and that the octet-enhancement mecha-
nism cannot be made to appear in any reasonable way
within the low-energy approach.
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In6nite-component wave equations giving rise to a linear mass spectrum and to families of parallel linear
trajectories are considered. A general discussion is given of invariant equations for wave functions belonging
to SI.(2,C) representations and the mass spectra that arise are examined. The simplest possibility corre-
sponds to a higher-derivative equation that gives a linearly rising timelike spectrum that is free of con-
tinuum spacelike solutions. Discrete spacelike solutions are absent for the simplest choices of the SI.(2,C)
representation. The currents and the commutators among the current components are calculated by setting
up for the higher-derivative equation a Lagrangian formalism and a quantization procedure based on the
action principle. An explicitly factorized model is considered, with respect to the internal symmetry group,
and possible nonfactorized extensions are examined, A typical feature of the current commutators is the
appearance of Schwinger terms which, besides satisfying known general requirements, also appear in com-
mutators between time components of currents. An alternative interpretation of the physical system in terms
of a bound-state equation is presented. The interpretation, in terms of a bound system in two space dimen-
sions, leads to a extension to three space dimensions, again formulable as an in6nite-component wave
equation. The system describes a family of parallel linearly rising trajectories spaced by one unit of angular
momentum. No continuum spacelike spectrum is present, and discrete spacelike solutions are absent for
physical choices of the representation of the internal spin group.

I. INTRODUCTION

' 'NFINITE-COMPONENT wave equations have
~ - been widely discussed in the literature. "They have

' The results described in the present paper were summarized in
R. Casalbuoni, R. Gatto, and G. Longhi, Nuovo Cimento I etters
2, 1S9 (1969);2, 166 (1969).

appeared of interest also in connection with Gell-Mann's
program of saturation of current commutation rela-

' For general references, see Y. Nambu, Phys. Rev. 160, 1171
4,1967); C. Fronsdal, i'. 1/1, 1811 (1968); L. O'Raifeartaigh, in
Proceedings of the Fifth Coral GaMes Conference on Symmetry
Princi pres at High Energy, edited by A. Perlmutter et al. (Benjamin
New York, 1968); R. C. Hwa, Nuovo Cimento 5', 107 (1968);
S~A, 127 (1968).


