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Multiparticle States with Spin-Independent Poincare Transformation Properties
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We consider systems of noninteracting particles. We de6ne, in terms of standard on-mass-shell states and
direct-product helicity states, three complete classes of multiparticle states with spin-independent Poincare
transformation properties. No auxiliary spin group is used, and the new "scalar spin" state labels, which
are eigenvalues of generalized covariant helicity operators, have a direct physical interpretation in terms of
single-particle quantum numbers. In the two-particle case we compare our states with Jacob and Wick's
c.m. angular momentum states.

I. INTRODUCTION

HEN theories of particles with spin have been
developed, it has been common practice to

introduce spinors and finite-dimensional nonunitary
representations of the homogeneous. Lorentz group. In
S-matrix theory, M-functions' are defined in terms of
finite-dimensional representations Di i (L(p)) of single-
particle velocity transformations L(P). One expresses
the physical scattering amplitude as a series of D-func-
tion products with M-function coeKcients. These
D-functions form a complete set in which to expand
S-matrix elements. However, there is no physical inter-
pretation of the 3f-function "spin" labels in terms of
single-particle quantum numbers.

The same criticisms apply in the case of field theory,
where one constructs fields with simple homogeneous
Lorentz group transformation properties. The charac-
teristic Geld labels are related to eigenvalues of functions
of auxiliary-spin-group generators, and not to single-
particle quantum numbers alone.

Recently, in extensions of S-matrix theory in par-
ticular, one has encountered inconsistencies leading to
the concept of families of particles. ' ' The purpose of
our investigation is to determine to what extent these
inconsistencies arise from the use of auxiliary spin
groups, and to what extent they are determined by the
Poincare invariance of the theory. In particular, we
shall show that it is, possible to derive a new partial-
wave decomposition formula in terms of which the
physical arguments for the introduction of "daughter"
and "conspirator" trajectories in conventional Regge
theory become more transparent. With the introduction
of extended spin groups, in both S-matrix theory and
Geld theory one obtains a simplihcation of the formal
mathematical structure at the expense of clarity of
physical interpretation. For this reason, we wish to
construct analogous theories without auxiliary spin
groups. Although this will initially involve us with
more complicated mathematical structures, the physi-
cal signiGcance of all parameters appearing in the equa-
tions will be unambiguous.

~ H. Stapp, Phys. Rev. 103, 425 (1956).
2 G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).
~D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596

(1967).

As a Grst step, we indicate how one may construct
several special kinds of multiparticle state. These
states will be labeled by eigenvalues of operators which
are closely related to the covariant helicity operators of
Feldman and Matthews. 4 We shall show in another
paper' that by using these states one can expand scat-
tering amplitudes in a complete set of functions with
invariant-amplitude coefficients. The invariant ampli-
tudes will be parametrized only by eigenvalues of
physically meaningful single-particle observables. It
will then be possible to compare our amplitudes
with those obtained using auxiliary-spin-group
de compositions.

In this paper we shall be concerned exclusively with
on-mass-shell states of noninteracting particles. We
neglect altogether the trivial though tedious compli-
cations of parity, time reversal, and charge conjugation.

In Sec. II we de6ne basic single-particle states, and
introduce our notation. We then proceed in Sec. III to
define, in terms of direct products of basic single-
particle states, complete sets of multiparticle state
which have spin-independent Poincare transformation
properties. These "scalar-spin-component" states en-
able us to treat systems of particles with spin as if all
particles had spin zero.

In Sec. IV we change the independent single-particle
momentum variables, labeling the scalar-spin-com-
ponent states to include a maximum number of Poincare
scalar momentum products. We then define a class of
multiparticle states which have only four frame-
dependent labels: a total momentum p and a spin
component ). These states have the same transforma-
tion properties as single-particle states.

In Sec. V w'e examine several exceptional types of
state. We Grst of all construct two-particle states and
compare them with those of Jacob and Wick."We
then de6ne an interesting set of three-particle states
in which each particle is treated in an identical way.

In Sec. VI we summarize the results of the previous
three sections.

In Appendix A we derive some properties of signer
4G. Feldman and P. T. Matthews, Phys. Rev. 168, 1589

(1968).' G. L. Tindle (unpublished).
6 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
~ G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).
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rotation functions. In Appendix 8 we give a derivation
of our formula for the construction of scalar-spin-
component states. In Appendix C we determine the
Jacobian of a momentum-space transformation. This
is associated with the replacement of single-particle
momentum variables with a set of parameters including
a maximum number of Poincare scalar momentum
products.

Note that some of our transformation formulas
will not hold for systems of particles with half-integral
spins because we have for simplicity neglected factors
of the form (—1)", where o denotes the particle spin.
We shall discuss elsewhere' the complications intro-
duced by these phases.

II. SINGLE-PARTICLE STATES

plied by Eqs. (1)—(3):
i—[J;,J,)= c;,~J~,
i[J' j~]= e'~'~p~

—i[2,,E;]= e;,I,EI„'

—ig;,E',)=+5;,po,
—i[E;,E;]= —e,,gJg, (8)
—i[j.,j,]=0.

In order to enumerate thestates ot a particle, we
must choose a complete set of commuting .operators
from the universal enveloping algebra of the ten
operators p„and J„„.All other operators which com-
mute with these are associated with internal degrees of
freedom, and we shall not be concerned with them here.

The universal enveloping algebra of p„and J„.has
two invariant elements, the square p' of the four-
momentum P„and the square W' of the Pauli-Lubanski
spin 8'~, where

In a quantum-mechanical system the states of a
single particle are in one-to-one correspondence with
the eigenvalues of a complete commuting set of par-
ticle observables. We shall first of all introduce complete
sets of single-particle operators. We shall then construct
eigenstates with specified relative phases. The results
are well known. We wish, however, to aquaint the
reader with the notation which we shall need when we
come to construct multiparticle states in the next
section.

where

i[J"f ]=g—-fp gP. —

—iU. P~)=o (3)

@=1,2, 3.

The three-vector observables p, J, and K which
generate spatial translations, rotations, and boosts are
given in terms of the operators p„and J„„by

A. Single-Particle Observables

The principle of relativity suggests that by changing
our frame of reference we may infer how a free particle
appears under space-time translation, rotation, or
constant-velocity transformation. We introduce, as
observables, Hermitian operators which generate these
transformations: energy po, momentum p, and relativ-
istic angular momentum J„„respectively. These
single-particle operators have the following commuta-
tion relations:

In terms of rotational tensors we have

W'&-+ W= p x K—pp J,
W'=p J.,

(1o)

(11)

We shall label single-particle states by the eigen-
values of a complete commuting set of operators. Each
set must include the two invariant operators P' and W',
or two independent functions of them.

If we wish our single-particle states to behave simply
under homogeneous Lorentz transformations, we must
6rst of all choose a complete set of operators from the
universal enveloping algebra of the homogeneous
Lorentz group generators O'„„. One could take the com-

plete commuting set of operators: K', J.K, J', and Ji.
A complete commuting set with respect. to the Poincare
algebra generated by J„„and p„ is obtained by adding
the two Poincare invariants P' and W'. Eigenstates of
these six operators are the relativistic equivalent of
total angular Inomentum states. They have rather
complicated transformation properties under space-
time translations.

If we wish our single-particle states to behave simply
under spatial translations, we choose a complete set of
operators from the translation generators y, namely,
the momentum triplet y itself. To obtain a complete
set with respect to the full Poincare algebra, we add
the invariants p' and W', and the helicity operator h, ,
where

&= Ipl 'w'= liI-'J. f (12)

The Pauli-Lubanski spin component W' has been
defined in Eq. (11) and the operator

I pI corresponds to
the magnitude of the three-momentum y,

p~Pi, Ip I

= [p'7'I'. (13)

and
(6)

In order to understand the significance of helicity in
this context, we shall examine the part played by the
intrinsic spin of the particle S.We recall' that the total

They have the following commutation relations im-
F. Gursey, in High Energy Physics, edited by C. de Witt and

M. Jacob (Gordon and Breach, New York, 1966).
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J=S+xxp,
where the spin S is given by

p Jf-
p,J—px

81- m+pp

(14)

angular momentum operator J may be expressed in
terms of the intrinsic spin S and a particle position
operator K,

The function Di.i (&,8,$) is a representation of the
covering group of the rotation group SV(2) .

Let us now proceed to construct a state with arbitrary
momentum p. We first of all define a number of homo-
geneous Lorentz group elements associated with a four-
momentum p„of the form

P„+-+m(coshe; sinhe sine cosP, sinhe sin8 sing,
sinhe cose), (25)

with

The helicity is seen to be equal to the component of
spin S in the direction of motion,

A A

J p=S p.

The syin S is simply related to the Pauli-Lubanski
spin g&,

(17)
andS~S;=—m 'L( —p)'„W",

(29)L(P) =R(P)Z(P)R '(P).

0(S&~, 0(8(~, 0(y&2~. (26)

We de6ne a boost Z(p), rotations Rp(p) and R(p), and
a group element L(p) by

16
R(p) =R(p, 8, —p), Rp(p) = exp(i jpp), (27)

Z(p) = exp( —iE'pe), (28)

where the matrix L(p)"„ is defined by

pp/m —p/m
L(P)".=L(—p)." . (1g)—p/m 1+pp/m(m+pp)

Using Eq. (17), we can obtain the spin commutation
relations

i[S,—,S,j= p;, iSp (19)

from those of the Pauli-Lubanski spin operators,

—i[W~ W")= ppp W (20)

These follow from the fundamental equations (1)—(3).
We note that the spin S commutes with each momentum
component operator

[S,p,j=0, (21)

and by construction its magnitude is a Poincare
scalar,

(22)

Equation (21) implies that we can choose any com-

ponent of the spin S to take the place of the helicity.
operator h in constructing a set of single-particle states.

Equations for the eigenvectors of a suitable complete
set of commuting operators determine the single-
particle states up to a complex normalization factor.
Relative phases are chosen by convention. We now
consider two specific examples.

B. Standard States

We shall refer to eigenstates of the single-particle
operators p', S', p, and Sp with eigenvalues m', p (o+ 1),
p, and X, as standard states. In defining the relative
phases of these states we first of all consider rest states

I m, p". O, X). For a rotation R(&,8,$) defined by

Ag, e,p) = exp( —iJp&) exp( iJpe) exp—( iJAP), (23—)

we have

(m, ~: o,~'IR(4, 8,|P) lm, ~: o,~)=D, , (@,s,y). (24)

With every element of the homogeneous Lorentz
group A., we associate a self-representation 4)&4 matrix,
which we shall denote by A.. For example, in the case of
the transormation L(p), we have the associated self-
representation matrix L(p) of Eq. (18).

We now define a single-particle state
I m; p. p,X) in

terms of a rest state lm, p". O, X) by the unitary trans-
formation

lm, p". p,X)=L(p) lm, p". O, X). (30)

Let us verify that the new state is an eigenstate of
the momentum p with eigenvalue p and of the spin
operator S3 with eigenvalue ),. We have already
noted that, in the self-representation, the operator L(p)
takes the form L(p) de6ned in Eq. (18). We have the
momentum eigenvalue equation,

PpL(p) I m, a". O,X) I.(P)L=(p) "P Im, p"."O,~)
= P„X,(p) I m, ~: o,~), (31)

and our state is indeed an eigenstate of the momentum
operator p. For the spin component S3 we have, using
Eq. (17),

SpL(p) I m, o:O,X)= —. m 'L( —p)'„W"I.(p) I
m, p O,X)".

m'@p—)W'
I m, p O, X) . ". (32)

We see from Eq. (10) for the Pauli-Lubanski operator
W that, when operating on rest states, the third
component TV3 is equivalent to the spin operator nsS3,
and

S3
I m, o: p, X)= X

I m, n: p, X) (33)

as required. This completes the proof that the states
defined by Eq. (30) are standard states.

Under translations a defined by

d= exp(ip" a), (34)

and general homogeneous Lorentz transformations A.

defined by

it(y', 8',p'; s'; 8",y")=R(y', 8',p')z(s')2P(0, 8",y"), (35)
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the standard states behave in the following way:

dim, o". p,X)=e'&'lm, o p".,)),
~lm, : p,~)=D...(W(~,p))lm, : y', ~'),

where

These expressions closely resemble Eqs. (36) and
(37) for standard states. One can show from the de-

(36) fining equations (30) and (41) that helicity states are
simple linear combinations of standard states,

37

(38) where the overlap coefficient is

&l'I» =D' (~(p)).

p'= h.p,
and the Wigner rotation W(h. ,p) is defined by

W(A, P) = L '(imp)A—L(p) .
(49)

We conclude this section with the observation that
our helicity states lm, o". y,» differ by a phase from
those of Wick. ' The Wick boost operator H~(p) is of
the form

(39)

C. Helicity States

H (P) =8(p)&p(p), (50)We shall refer to eigenstates of the single-particle
operators p', S', p, and 7i, with eigenvalues m', o (a+1),
p, and X, as helicity states. We introduce a homogeneous
Lorentz transformation 8(p) associated with the four-
rnomentum vector p„of Eq. (25),

H(P) =L(p)&(p), (40)

where the operators X,(p) and A(p) are defined by Eqs.
(29) and (27). We define single-particle helicity states
in terms of unitary transformations of standard rest
states,

and helicity states are given by

lm, o". p,»s ——e—'"~& ilm, o". y, »p. (51)

These states satisfy transformation equations similar
to those for the states

I m, o: p, »p. Under homogeneous
Lorentz transformations A. , we find

~lm o: p,~)~=D"(W~(~,p))lm, o: y', ~')~, (52)

where
W~(~,p)=LH (~p)j '~ (P) (53)

Our choice of helicity operator H(p) coincides with
that of Jacob and Wick. The boost operator 8~(p) is
not well delned if the vector p has zero 6rst and second
components. On the other hand, the operator H(p) is
well de6ned if the momentum p is in the positive
3-direction.

Note that the definitions of all the single-particle
states which we have considered are consistent with the
Poincare invariant normalization

lm, o: p,»„=8(p) lm, o: O,X). (41)

Let us verify that these states are indeed eigenstates
of the helicity operator h. We have, from the defining
equation (12),

h, lm; o: p,x)„=
I
pl-'W'8(p)

I , moo, x)
= l pl

—'8(p)l H(p)Wjplm, o: O,X). (42)

Now we recall that the operator W„behaves like (0; ms)
when acting on a rest state and the momentum

I p I
is

related to the boost angle 6 of Z(p) by (54)(m, o y', X'I m". ,o: y,»= 2ppb)), .b(p —y') .

III. SCALAR-SPIN-COMPONENT
MULTIPARTICLE STATES

(43)lpl =m sinhb.

Equation (42) then takes the form

A
I m, o". p, X) =8(p)Sp

I m, o". 0,»
=), Im, o". p, x)p

In Sec. IV we shall construct states labeled by a set
of single-particle quantum numbers, and a maximum
number of Poincare scalar "internal variable" parame-
ters. The first step in such a program is to replace the
spin-component labels of direct-product states by
eigenvalues of a complete set of Poincare scalar spin
operators. This we do in this section. We define a new
class of states in terms of direct-product multiparticle
states, and examine some of their properties in detail.

as required.
Note that the limit of the helicity matrix H(p) as

p —+0 is not in general well defined. This ambiguity
corresponds to the rotational degree of freedom in
taking the zero-momentum limit of expression (12) for
h. For this reason we prefer to take as our standard
states eigenstates of the spin-component operator S~.

The helicity states behave in the following way under
translation and homogeneous Lorentz transformations:

a
I
m, o: y, »p ——e'&'I m, o p, »p ". (45)

Elm, o". p, ) )p= D ), i(W"(A,p)) lm, o". y', X')p, (46)

where the transformed momentum p' is given by Eq.
(38) and the Wigner rotation is P~:4~i:I~] EP~:&i':P3 L~i:P9~i:P~j

iW j; z, j= 1, 2, . . . , n. (55)(47)W"(h.,p)=H '(Ap)AH(p).

A. Multiparticle Observables

We consider a system of n free particles (i). We
introduce, for each, space-time observables J;:„,and
p;.„satisfying the commutation relations (1)—(3). Since
the particles are independent, observables -of different
particles commute,
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n

lp*,~')=II {I~', *:p',~')) (56)

They are eigenstates of the momentum operators yi and
spin-component operators S;,3, with eigenvalues y; and
);, respectively.

We define multiparticle helicity states
I p;,)„)„by

I p', &'&~=II ( I
~',~*:p;,lt').) . (57)

These are eigenstates of the momeritum operators pi
and helicity operators fi„with eigenvalues p; and X;.
The Poincare-invariant normalization of these states
follows from that of the single-particle states

I m, o". p,X&

of,Eq. (54),
n

p, ',) lp;, z;&=II (zp. ..s' s(p' p'
i=1

In order to determine the space-time transformation
properties of our multiparticle states, we observe that
the generators of translations and homogeneous Lorentz
transformations of the n-particle system are p„and 7„„,
respectively, where

P &:PP
i 1

We form the universal enveloping algebra of the
Poincare group generators 2';..„.and p;,„.The states of
the multiparticle system are then characterized by the
eigenvalues of a complete commuting set. The 2n
operators of the form p 2 and W;2, which correspond to
the masses mi and spins o-i of the n particles, commute
with all Poincare generators J;,„.and p;,„.Thus, all
multiparticle states will have 2n mass and spin labels
mi and 0-;. For simplicity of notation alone we shall
suppress these parameters in the following sections.

B. Direct-Product States

The simplest n-particle states are those formed by
taking the direct product of n single-particle states. We
define standard multiparticle states

I p;,X;& by

C. Scalar-Spin-Component States

We define a function h(pi p„) of the n four-
momenta pi p by

~(p" p-)= ldet(p' p)l'" (65)

This function vanishes if the momenta pi, p~, .. ., p„
are not linearly independent. For one and two momenta,
respectively, we have

and
~(p) = ~(p) =

I p'I '" (66)

~(pi p2)= l(pi pm&' —pi'p2'I'" (67)

The Wigner rotation function W(A, p) has been defined
in Eq. (39).

These transformation formulas are rather compli-
cated. If the operators, the eigenvalues of which label
multiparticle states, had had simple transformation
properties under homogeneous Lorentz transformations,
formula, (62) would have been correspondingly simple.
For this reason we wish to construct multiparticle
states in such a way that the labels correspond to a
maximum number of Poincare scalar operators. Ke
construct such states in three stages:

(1) We replace the spin-component operators S;,3

by a complete set of Poincare scalar-spin-component
operators S;&, where

S, = q,"W;/L(q, "p,)'—q,'p,'j"'. (64)

We shall refer to such states as "states of type I,"
"q-spin states, "or "scalar-spin-component states. "

(2) We replace 3n momentum operators p; by 3n 6—
scalar-product operators of the form p; p;, three
momentum operators p, and three additional nonscalar
angle operators 0, p, and g. We shall refer to these
states as "states of type II."

(3) We replace the three angle operators 0, p, and g
by a scalar spin S&, the magnitude of the spin 8', and
one spin component S3 or A. We shall call these states
"states of type III."

In the rest of this section we shall only be concerned
with states of type I.

Consider any set of four vector-momentum operators
(60) q; „defined by

We now use the single-particle equations (36) and (37)
and the commutation relations (55) to derive the multi-
particle-state transformation formulas

u
I p;,x;)= e'~'I p, ,x;&, (61)

A

q; g=~g'+agpss' (68)

where the a;, are constants, chosen so that (a) the eigen-
values of j;.„are timelike four-vectors in the space of
standard states and (b) for all i we have the relation

A(q;, p;) NO. (69)

where

p=P p; and p =Ap;. (63)

zip, ,l,& =II (D.....,,.(w(~,p,))) lp, ',~,'&, (6z)
j'=I For each particle (i) we can then define a q-spin

operator S;& by Eq. (64). We note that for a single-
particle system no operator S& exists since condition
(b) cannot be sa,tisfied; we have only one independent
momentum P„.
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The operators 5;& commute with all momentum-com-
ponent operators p;,„but not with the spin-component
operators S;,3 or A;. It is thus possible to construct a
complete set of multiparticle states which are eigen-
states of the scalar-spin-component operators Sp and
momentum operators y; alone. We shall give here a
de6nition of a class of scalar-spin-component states
l p;: X;&, and verify that they are indeed eigenstates of
q-spin operators 5;~ with correpsonding eigenvalues );.
In Appendix 8 we show how such states may be con-
structed directly using the momentum and spin-
eigenvalue equations.

We introduce a boost operator 3II(q;) associated with
each momentum q;, where

M(q;) =X„(q;)E.;, (70)

lp;: ~,&,=II &m;(q, )e,(m- (q;)p,)) I o,x;&. (71)
j'=I

I.et us now verify that these states are q-spin eigen-
states. For particle (k) we have

and the rotation 8; is arbitrary. We then de6ne q-spin
states Ip, : 1i;)e in terms of standard multiparticle
direct-product states in the following way:

al p;: li'&.=e'"'lp': l '&. ,

~
I p', ~'&.=e-""'Ip'', ~'&. ,

where p =Ap; and the phases Q~ are given. by

(81)

(82)

We now substitute this expression into Kq. P2) and
rearrange terms to obtain the q-spin eigenvalue equation

5', lp;: x,&,=~, lp;: x;),. (79)

The construction of q-spin eigenstates in the case
where the four-vector operators g;,u have spacelike
eigenvalues is in general more complicated. We shall
only consider a speci6c example in Sec. V.

It is interesting to note that, if we formally take
q;:„ to be of the form

q;:„+-+(1;0)

in al/Lorentsframes and set/;=I Eq. (71) defines the
helicity states (41).The noninanifestly covariant nature
of the 4-tuples q;.„ in this case is reflected in the non-
manifestly covariant nature of helicity under Lorentz
transformations.

We now consider the behavior of these states under
translations ~ and homogeneous Lorentz transforma-
tions A.. They have the following properties derivable
from the defining equation (71):

O'W. lp*:l '&e=II (IrI (q)~ (~ (q)p))j-1

X[q~ ~(qi)II(~ '(qi)pi)W~j10 l~') ~ (72)
where

e 's'&'= W"(W (A,q;),iV '(q;)P,),
Wm(A. q )=M '(Aq;) AM(q ) . (84)

We now use the definitions of 8(p) and 3II(q), (40) and
(70), respectively, to simplify the expression in square
brackets,

qi, M(qp)H(M '(qi, )pu)W„—
= i' '(qi)qa ff(~ '(q~) p~)Wi
= ~(q~)[Z(~ '(q~) p~) Wajo (73)

Now the four-vector M '(qi) p~ has 0-component of the
form

These phases are rather complicated in general. We
recall that in Kq. (70) the operator M(q;) was not de-
Gned uniquely. We now take advantage of the degree
of freedom in the choice of the operators A; to eliminate
the phases qb& altogether.

For each particle (i),we introduce a four-momentum
i;,.„, where

(85)

[M—
'(qg) pi jo——h(pi) cosh', (74)

and, the constants b;, are chosen so . that (a') the oper-
ators r".;, havue timelike eigenvalues and (b') the eigen-
values r; satisfy the equation

where 8 is .the angle associated with the boost
Z(M '(qi)pq). Moreover, the four-vector M '(@)qq is
by definition (70) of the form

[~ '(q.)q.3u= ~uo~(q. ) . A(p;, q;,r;) WO. (86)
(75)

Condition (86) ensures that the vectors q; and r; are
not collinear. We may thus de6ne uniquely operators

p6) c9'(q;,r;) which are not trivially dependent on the
&our-vectors r;,

'

Thus the Poincarb scalar boost angle b is given by

pk'qi, = A(pp)A(qy) cosh5,
and

sinhb= 0'(pi„qi)/h(pg)h(qi) . (77)
M(q;, r,)=X,(q;)A( —r ),

whereThe spin W„ is equivalent to the operator (0; h(p)S)
when operating on a rest state, and. Kq. (73) takes the &(r'') =&(r'') =&(L '(qi)r') ~ (88)

and operators X,(p) and A(p) have been defined by
5(qk)(Z[M-'(q~)pijWi)olO, X;& Eqs.

'

(29) and (27), respectively. We now express the
= 5(pi, qz)gi, 8lO, X;). (78) rotations/(L '(q;)r;) in terms of boost functions alone,
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We find that up to a 3-axis rotation on the right,

8(—r') =I.—'(q)I (r)H(I.—'(r) q) . (89)

In order to see this, it is suKcient to note that the right-
hand side is a rotation which leaves invariant a four-
vector of the form (1;0,0,0), and inverse takes the
object L '(q)r to a 4-tuple with "spacelike" component
in the negative 3-direction alone.

If we replace the matrix M(q, ,r;) by M(q;, r;)e's'@ in
Kq. (83) the phases pi do not change. We may thus
substitute expressions (89) and (87) into Kq. (71) for
the q-spin states

~
p;: X;&,. At the same time we replace

the operator H(M '(q;)p;) of Kq. (71) by the Wick
helicity operator Hw(M '(q;)P;). This has the effect of
multiplying states by a phase.

We may now examine the modiiied expression (83)
for the phases p& which are associated with homogene-
ous Lorentz transformations of these states,

~ *'"'=14' (Ilr"(If'(Ari), L '(ri)q~), Qi), (9o)

where the rnomenta Q; are given by

Q=I:H (L '( )qt)?'I '( )p, (91)

We show in Appendix A that the Wigner rotation
IF"(R,q) of a rotation R is a rotation about the 3-axis,
provided the 3-vector q does not lie in the negative
3-direction. Moreover, the Wigner rotation W~(RB,Q)
of a 3-axis rotation R3 is the identity, provided either
the first or second component of the momentum Q is
nonzero.

By construction the momenta I. '(r, )q; have at least
one nonvanishing "space" component. We may re-
write expression (91) for momentum Q; in the form

Q =~a '(I '(r)q)~ '(I '(r)q)& '(I '(r)q)
&&~(L-'(,)p,)&(L-'(;)p,)L-'(p, )p„(92)

which has nonvanishing 6rst or second components
provided

&(I '(;)q~) &~(L -'(') p)-
This condition is satisfied provided the vector q, is
not a linear cobmination of vectors p; and r, . This is in
turn ensured by the constraint equation (86). We then
learn from Eqs. (90) and (A11) that by construction all
phases Q~ are zero.

One should note that, for a two-particle system with
only two independent four-momenta, condition (86)
cannot be satisfied. We shall examine this important
exceptional case in Sec. V.

We have shown that for systems of at least three
particles, it is possible to construct a set of scalar-spin-
component states

~
p;: X;.&, according to the equation

lp, :X,&,=g (H;(p, ,q, ,r;)) ~o,z,&,
j=l

where the boost functions 8;(p,,q,:,r,) are given by

H(p, ,q, ,r,)=X,(r,)8(L '(r, )q;)—
XHir(H i(1 i(y )q.)1 i(r )p ). (95)

These states behave in the following way under space-
time translations d and homogeneous Lorentz trans-
formations i:

A
I p': 4&,= I

p'': 4&. ,

(96)

(97)

where p =hp. .
From the defining equations (94), (56), and (30), we

see that the q-spin states
~
p;: X;&, may be expressed as

linear combinations of standard direct-product states
I p', &'&,

lp': ~,&.=Z 0 l~'&, lp', ~''&, (98)

where the overlap coefIicients are given by

n

(l ''ll '&.=ll {D~" 'P='(p~)H(p*, q*,r*)l) (99)
s=l

In general each choice of vectors q; and r; satisfying
Eq. (86) defines uniquely a class of multiparticle states
with spin-independent Poincare transformation proper-
ties. As the number n of particles, increases the number
of classes of n-particle states increases very rapidly
indeed. For each particle (i) in a system of n particles
we have at least n —1 degrees of freedom in the choice
of a vector q;, and at least n —2 degrees of freedom in
the choice of a vector r;. The true number of degrees of
freedom is actually greater because we may contract
any three four-momenta with the tensor e&"1" to form a
new four-vector, in terms of which we may define vec-
tors q;, and r;. Altogether this suggests that for n~) 2,
we have at least n(2n —3) degrees of freedom in the con-
struction of scalar-spin-component states.

IV. MULTIPARTICLE STATES WITH
SINGLE-PARTICLE LABELS

In forming states of type I, we replace the frame-
dependent operators S, .3, the eigenvalues of which
labeled multiparticle direct-product states

~ p;, X;&, by
Poincare scalar-component operators S . We shall now
replace the 3n momentum-state labels p; by single-
particle labels p, ~, and X, and a set of (3n 5) Poin—care
scalar parameters. This we do in two stages.

A. States of Tyye II
We replace the momenta p; by a maximum number of

Poincare scalar momentum operators of the form s;;,
where

s'i= (p'+ pi)',

p.=L-'(p) p. , (101)

s0;=(p —p,)', i, j=1, 2, . . . , n (100).
Since all momentum operators p;,„commute, the prob-
lem is essentially one of changing independent momen-
tum variables p;.

We define a c.m. momentum p& by
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and define angles 8 and p by

R(-p.)=R(~, 8, -~).
tor. If we choose this function to be equal to the modulus
of the Jacobian of the momentum-va. riable transfor-

102 m ation,

R8(p8) =R8(1P) . (105)

For systems of at least three particles, we label our
states by the complete set of n scalar spin components
l~„and 3n momentum parameters' s, p, 1P, 8, 1P, s82,

$03 $04 $23 $24 and $0Ic, $2Ic, $3~ for 5 (~ k ~( n, where

s= 6'(p) =p'. (106)

We shall examine the two-particle case separately in
Sec. V.

We define the new states of type II by

I:y,@, A: 12, ')2= -'"ly*: ').,

j=o, k=2, 3, . . . , n
=81, 2, . . ., n j=2, k=3, 4, . . . , n (107)

j=3, k=5, 6, . . . , n

where the function J„ is a suitable normalization fac-

We then tentatively introduce another c.m. momentum
P8*, where

P *=R '( p)—J- '(P)p . (103)

Using arguments similar to those following Eq. (89),
we can show that the components of vector P8* coincide
with those of the vector p8, where

P8= JJ '(I '(P2)p)L '(P2)P8 (1o4)

We define an angle ip by

n

J-= Lf«'/II (2P':8&& det
i=1

8(y )

8(Pp j g &
cos8&t: $18)-

(108)

and

J8= 2r2/2s,

J4= 2r2/32sh(p, p2 p8 p4),

(110)

(111)

32J '=—sh(pi, p2)
~2

X
~ Q (P*4:ip*4:2 P*4:2P*4;1) P*4:2P 8:1~
i=5

n

Xg 16&(p,p2, P8,P;), n&5 (112)
i=5

where Poincare scalar momentum components p*, .l
and P*;,2 are given by

the new states will have the normalization

,(s': p'; 4P', 8', ip': s,8', li
~

s: p; 4tp, 8,1P: s,8,li;)8
= 8(s—s') 2P88(y —p') 162r28(1p —p') b(cos8 —cos8')

X8(ip —ip') 8(s;8—s;8') bg,.g, (109)

In Appendix C we obtain closed-form expressions for
these functions J,

(P P4'P2 P2'PP4'P) (P P2'P8 P2'PP8'P)++ (P)P2) (P P4'P8 P8'PP4'P)
*i:1

~(p,p )~(p,p,p )

«"""PPP2: P8:—Pp: ~~(p P2 P8 P)'
i:2=

~(p,p.,p) ~(p, p.,p )

(113)

(114)

In order to determine the space-time transformation
properties of states of type II, we must first of all know
how c.m. momenta p2 and p3 change under homogene-
ous Lorentz transforrnations A. From the defining
equation (101), we see that momentum P2 undergoes
Wigner rotation,

p.-p.'=W(~, p)p' (115)

From Eq. (104) for the c.m. momentum P8, we find

P8~P8'= W"(W(~,P8) I '(P8)P)P8. (»6)

Our states
~

s: p; &,8,1P: s,8,X;), thus behave in the follow-

ing way under space-time translations u and homogene-
ous Lorentz transformations A:

where p'= Jt p and angles p', 8', ip' are defined by

R(4IP', 8', —if') = W(A, P)R(4tP, 8,4tP") (119)

B. States of Type III

for some angle p", and

R8(4') = R8(P8') = W"(W(&&P2),L '(P2)p)R8(|p) (12o)

We note that the overlap of states of type II and
states of type I is proportional to the square root of the
function J„, defined by Eqs. (110)—(112),

.(y*',l'Is: p;4, 8A:sP', ~').
=J.'ll' I2P*:o8(p*'—p*)I. (121)

a
~

s: p; qh, 8,1P: s,8,X;),= e'&'~ s: p; 4t1, 8,1P: s18,li;)„
4

I
s: p' 1t' 8,1P: sp2, X;),= I

s: y; 4tp', 8',1P'. s,8,X;)„

9 In the case where n (4 see Eqs. (186) and (193).

(117)

(118)

We now construct a complete set of multiparticle
states labeled by eigenvalues p and X of the momentum
operator p and spin-component operator S3, respec-
tively, a number of Poincarb scalar momentum products
$;;, and scalar spin components X;. We define these
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states of type III by

l s,o '.p,x:p; s, i„x;)q

(2~+1)1/2 4~ w 2w

D..*(R(~,8, -~+a))

We thus identify p with the eigenvalue of the Poincare
scalar-spin-component operator S».

We may express these states of type III as linear
combinations of states of type II. From the defining
equation (122), we see directly that

X
l
s:p; $,8,$:s,i„X;),sin8dpd8dip (122)

l s,o".p,X:p; s,i,X;),= (&,8,ill o X":.p)

= (2-+1)"I-(p) D~,*(R(~,8,&)A)~,8,e)

x l
s:0; 0,0,0:s,i„x;),dy, (R), (123)

where the invariant measure of the rotation group
l SU(2)j is of the form

dp(R) = (1/16ir2) sin8dgd8diP,

0~& P(27r, 0~& 8~&s-, 0 ~&iP(4'. (124)

The constants preceding the integral signs have been
chosen so that these multiparticle states have a "single-
particle" normalization

,(s',o': p', X'. s, i,',X,'l s,o". p, x: s;y, x,),
=8(s—s')8„2p08(p —p')box 8(s,i—s;&')8i,.z, (125)

From the defining equation (123) we may determine
the behavior of these states under translations 4 and
homogeneous Lorentz transformations A. :

ills, ~r: p, X: p, s, &,X;)~=e'&' ls, o". p, X: p; sjj'c X;), (126)

and

A
l
s,o". p, X: p; s,i„k;),

=Di, i, (W(h. ,p)) l s, rr: p', X'. p, , s,i,X,),. (127)

The latter equation implies that our states are eigen-
P

states of total spin operators S' and $3 with eigenvalues

o(a+1) and X, respectively.
We now wish to determine the physical meaning of

the parameter p, . Consider the effect of the transform-

ation e's"'x on the state defined by Eq. (123). The
Poincare scalar operator S» commutes with the homo-
geneous Lorentz group operators X,(p) and R(&, $8),
and has the same e6ect as operators S3 and J3 when
acting on the states

l s; 0; 0,0,0: s,s,X;),. This leads to
the relation

exp(iS&'x)
l s,o".p, X:p; s, i,x,),

= (2e+1)"'L(P) Dg„*(RQ,8)iP))R(g, 8; iP —&)

X
l
s:0; 0,0,0:s,„X;),dp(R) . (128)

We now use the invariance of the measure dp(R) to
replace the angle P byiP+ X and so obtain the eigenvalue
equation

e' "'"
l s,o: p, X:Ii, s;~,X;),= e'»

l s,o". p, X:p,' s,& X;) . (129)

Xls:p;08':s~'~').@(R) ('3")

where the overlap coefficient is given by

(4,8A I:~:1)=(2 +1)'"D:(4 —4, —8, —4) (131)

Alternatively we may express states of type II as linear
combination of states of type III,

l
s:p; $,8,$:s;i,X,),

=Q, , x „(e'X:pl $,8,P) l s,o".p,&:p; s, i„X;), (132)

where
&:~: ~I~,8,&)=((~,8,&l.: l:~))*. (133)

These formulas will prove useful when we come to
consider partial-wave decompositions of scattering
amplitudes.

By analogy with the single-particle states
l m, o' p, X) i,

we may construct multiparticle helicity states
l s,e". p, X: p,

'
, s, q, X;),i, which are eigenstates of the

operator h, . Such states are related to the standard
multiparticle states

l s,a". p, X: p; s,x,X;), by

ls, :p, l~: y, ; s, i„X;),i,

=P& (Vl l )&ls,~:p,X'. p;s...X;)„(134)
where the overlap coefiicient (X'

l X)i, is given in Eq. (49) .

V. TWO- AND THREE-PARTICLE STATES

The formalism which we have developed in Secs. III
and IV applies in general to systems of at least three
particles. We replaced spin-component-state labels by
eigenvalues of scalar q-spin operators S&, defined in
terms of momenta q, which were timelike in the physi-
cal region. We now examine two classes of state to
which the foregoing theory does not apply. We first
of all consider two-particle states of types I—III, and
compare them with the Jacob-Wick' ' helicity states.
We then construct a class of three-particle states
labeled by eigenvalues of scalar q-spin operators S&,

where the momentum q is spacelike in the physical
region.

A. Two-Particle States

We have seen in Sec. III that in the case of a two-
particle system, where we only have two independent
four-momenta pi and p2, the general formalism breaks
down. In this case alone the scalar-spin-component
operators S& are uniquely determined up to a sign. For
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a momentum q of the form

&1P1+&2P2) (135)

They behave in the following way under homogene-
ous Lorentz transforrnations:

where v~ and v2,are nonzero constants, we Gnd

sgn(v2)51'= Sio= [6(p4p2) j '2&"&'p2.„pi,ji..„,
sgn(1 1)S2 ——S2 =[A(p4p2)] ' " 'pi:„p2J2,.,

(136)

(137)

where
(141)pi'= hpi and p2'= +p2

and the phase @' is determined by

e 's»'= W"(W(A, p),L '(p) p ) . (142)

Each of these two-particle states may be expressed
as a sum of direct-product helicity states. From the
defining equations (44), (57), and (138) we have

IP4P2i ~4~2)o &(~1 )~2
I ~4~2) oIP4P»~1 )~2 )@~ (143)

where the overlap coefficient is given by

2(X1',l~2'
I X4X2)„=Dg; 1,"(W"(L(p),pi))

XD)„&,"(W"(L(p),p2)) (144)

In the c.m. frame, the P-spin states
I pi, p2'. li4X2)o and

helicity states
I p4p2, X44)2 coincide.

I et us now construct states of type II. We change
momentum variables from p~ and p2 to the total
momentum parameters p and s, and the c.m. angles
8 and p associated with the c.m. momentum —g2. The
Jacobian of this transformation is well known, and is
given by Kq. (C45).

The new states de6ned by

Is: p; y, 8: 7 „l,),=[~a(p„p,)/sj'»Ip„p„ l „X,), (145)

have the simple normalization

These scalar p-spin component operators have been
called "covariant helicity operators" by Matthews and
Feldman. 4

We define p-spin eigenstates using a modi6ed form of
Eq. (71):

i yi, y2. l~i, l~2), =L(p)A 1(pi)82(p2) i 0,0; l~4),2), (138)

where the c.rn. momenta p~ and p2 are dehned by

pi=L '(p)pi and p2=L '(p)p2. (139)

The operators 8(P2) and H(P1) are not well de6ned if
the vectors $2 or g4 respectively, lie in the negative
3-direction. Thus, our two-particle states

I pi, p2'. 4,4),
are not well dehned if the first and second components
of the c.m. momentum P ~ are both zero.

From Eqs. (81) and (82) we see that, under homoge-
nous Lorentz transformations 11,the states

I pi, p2'. F144)o
behave in the following way:

Ai pi p2 ~ lii k2) = e *'e'"&+~""
I
pi', P2' .. x4) 2)„, (140)

0 0

Xe "&"2Is:y & &,8: X4X2)„sin8d8dg (148)

X[A(@,8,p) exp(-,'~2J2)j
X i

s:0; 0,—2,2r: X4li2)„dp(E), (149)

where the invariant measure on the covering group
SU(2) of the rotation group dp(R) has been de6ned
in Eq. (124). We recall from the discussion preceding
Eq. (129) that p denotes the eigenvalue of the scalar-
spin-component operator S&'. Now this operator is
related to S&& and S2& by

S»= Sp —52&, (150)

and this implies the condition

p= 'Ag —'A2. (151)

One can alternatively show, using invariance of the
rotation-group measure dp(E), that the integral in
Kq. (149) vanishes unless this constraint (151) is
satisfied.

From the de6ning Kq. (149) one can show that under
homogeneous I.orentz transformations these two-
particle states behave in the same way as the single-
particle states of Eq. (37),

h.
I s,o". P,X: X4),2)„=Dg 1 (W(h, p))

X i s; o: P,X'. l~, li )„. (152)

This implies that parameter X is the eigenvalue of the
spin operator Si and o(o+1) is the eigenvalue of the
effective spin operator 52.

One may also construct helicity states. We replace
the operator X,(p) in Eq. (149) by the helicity operator
II(p) of Eq. (40). The relation between such helicity
states Is,o". P,X: l~4li2)„2 and the standard eigenstates
of S2 is given by Eqs. (48) and (49):

his: P; $,8: li»l~2)o ' y'8'X X), (147)

where the phase angle g' is defined by Eq. (142), the
transformed momentum is p'= Ap, and angles 8', p' are
determined by Eq. (119).

We may also construct two-particle states with
single-particle labels:

I s,o".P,x: xi,x2)„

o(s: p; $,8: X»X2I s: y; $,8: li»l~2)„
= ~(s—s') 2Po~(p —p')«~(4 —4')

Xb(cos8 cos8') hi, i;8—1,1, .

is,o: p,&: 4,&2)o2 Dvi (&(p))is,o: y,&:&472), . (153)

(146j They transform in a similar way to single-particle
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helicity states

~s,a. p, X: X,,l~, )~y, ——Di i'(W"(h. ,p))
X ~s,o". p, X': Liked)~i, . (154)

X D„&.(Z-'(4, 8,0))A(4,8,0)

X I pi~pi: lii~li2)~if cos8dy ~ (158)

where the momentum p~ lies in the positive 3-direction.
These states coincide with our p-spin helicity states

We did not consider helicity states of a single particle
(41) to be well defined when the momentum p was in
the negative 3-direction. Similarly we do not consider
c.m. helicity states, or two-particle states of the form
(153), in which the total momentum p lies in the
negative 3-direction, to be well de6ned.

We can also define Wick-type helicity states
~s,o' p, li: 4,l~&)i,s if we replace the operator I.(p) in
Eq. (149) by the helicity operator~ II~(p). These states
differ from the helicity states ~s,o'. p, X: l~i, 4)„i by a
phase

~
s,o: p, ), : 7 i,7,),s.——e—*"«"&

~
s, ir p, li.: li, ,X,)„i„(155)

and are not well defined if the 6rst and second com-
ponents of the total momentum p are both zero.

One may compare our states with those of Jacob
and Wick. ' ln the c.m. frame the total momentum p
is of the form

p. ~~(p)(1 o00). (156)

The operators Si& and S2& are then equivalent to
helicity operators h~ and h2 when acting on c.m. frame
states ~s:0;&,8: Xi,hi)~. Apart from a momentum-
dependent normalization function X, we find that the
Jacob-Wick helicity states

~ ~Pi~, o.,li; 4,X&)zw are
simply related to our c.m. frame p-spin standard states
of type III,

) ~pi~, o, l~; Xi, l~.)iw
=K(—1)'" '»~s; o'O, X: 7i, l~2), . (157)

The Jacob-Wick parameter X is the eigenvalue of the
spin-component operators Si or Ji or (1/m)Wi, etc.
The ambiguity arises because the states are de6ned
only in the case of zero total momentum. Similarly the
Jacob-Wick parameters lii and X2 are the eigenvalues of
helicity operators h& and h2 or scalar-spin-component
operators 5~& and S2&, etc. We shall see later that the
real meaning of these parameters critically affects
the crossing properties of associated partial-wave
amplitudes. '

In a more recent paper, ~ Wick de6nes a class of
helicity states

~ p; o, l~: lii, X&) w for two-particle systems
with nonzero total momentum p, by

-D(pi pg) "' 20.+1 "'
i p; 0,p, : hiked)s = & (P)

4s 4m

We should like to emphasize the point that in these
states the parameter X is the eigenvalue of the total
helicity operator k, and the parameters P& and ) 2 are
eigenvalues of the scalar p-spin operators Sii' and S2i'
and not of the helicity operators A& and k2.

B. Three-Particle States

Three-particle states of type I may be constructed
in which each particle is treated in an identical way.
We can in this case alone define two independent four-
momenta p and Q, with

/l ~/l 1 v 2 p 3 y'y (160)

=II {1.,(P, ,Q,P)}~0,0,0; X„X„X,), (166)

where the operator L(p;,Q,p) is of the form

~(P, ,Q,P) =~(p)11(~- (P)Q)
X&(& '(I '(p)Q)L '(p)pi) (167)

This expression is similar to that for a timelike mo-
mentum Q which we gave in Eq. (95).

We now verify that the state defined by Eq. (166) is
an eigenstate of operators SP, S2@, and S3 with eigen-
values P&, P2, and X3, respectively. From the de6ning
equation (166) we have the relation

14"i Q~pi, p2,pa, 4,4,~s)q

=II {I-i(PJQP))L '(P~QP)Q lf ~

which remain the same, up to a sign, on the inter-
change of any two single-particle momenta.

We have primarily been concerned with scalar spin
components S& associated with timelike momenta q.
We now wish to show how to construct eigenstates of
the spin-component operators SP, S~@, and S3@ when
the momentum Q is spacelike.

Let the momentum Q„be of the form

Q„&—& (sinh8, —cosh8 sin8 cosP,
—cosh8 sin8 sing, —cosh8 cos8)h(Q) . (161)

We associate with it homogeneous I,orentz trans-
formations R(Q), 25&(Q), and 8(Q), where

52(Q) = exp( —iJig) exp( —ijq8) exp(i Jq&f&), (162)

Ri(Q) = exp( —iJig), (M3)

H(Q) =g(Q) exp( —iX38) . (164)

For timelike momenta p of the form (25) we also
introduce the operator

&(P)= I-(P)&i(p) (165)

We may then define Q-spin component eigenstates by

~ pi, p2,ps
' 4,4,&a)q

~ p, o,X: Xilig) w
~
s,o". p, X: l~i)4)„w. (159) X

i 0,0,0; lii, 4,lip) . (168)
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We wish to determine the form of the momentum
L '(Pi:,Q,P)Q. From the defining equations (164) and
(167) of 8(Q) and L(p/„Q, p), we see that it is given by

L '(P~ QP)=N '(& '(L '(P)Q)L '(p)p~)Q' (169)

where Q' lies in the 3-direction,

Q:~~(Q)(0; o, o, —1). (17o)

Now the c.m. momentum H '(L '(p)Q)L '(p)p/, has
zero 3-component because vectors Q and p~ are orthog-
onal. The associated boost function must be of the form

N(& '(L '(P)Q)L '(P)p~)
—e—iJgge—iJRw/2e —ix85eiJmw/2 (1 7 l )

which is an element of the little group of momentum Q'.
We now recall that, on a rest state, operators S'p..„
and (0; 6(pq)Sq) have the same eigenvalues. After
substituting the new expressions for L '(p/„Q, p)Q and
W/, into Eq. (168), we obtain the eigenvalue equation

W/ ' Ql P4P2)y& ~»~2|~8)Q

=~(Q)~(p~)l ~lp~, p2, P~: l ~,l ~,l ~)o (»2)
as required.

Under homogeneous Lorentz transformations A and
translations 8, we see from the defining equation that
these states behave in the following way:

+
I ylpp2)PS ~ ~»~2)~3)Q

=e""'+"'+"'&' ly~, ym, y3..Xq,h»ha)o, (173)

A.
l pg, yg, y3'. xgik2, ha) q

3

=II (e ""'"'}
l y ',y ',y ':~,~,~ )o, (»4)

where pi'=hp, . The phases g&' are given by

e '~&&'= W"(W"(W(A. p) L-'(p)Q)
X~-'(L-'(p)Q)L-'(p) p,), (»5)

lp;, ~,),=Z, (~''I ~.),lp. ,~.'), (180)

where the coefficients (X,'lX,), are given by Eq. (99).
Under homogeneous Lorentz transformations A. , the
scalar-spin-component state labels X; do not change,

Alp;: x,),= lp, '. x;)„
and the transformed momenta p are given by

(181)

VI. SUMMARY AND CONCLUSIONS

We have characterized a system of noninteracting
particles by the eigenvalues of complete sets of com-
muting-operator observables. Each state of the system
is a function of individual particle masses m;, spins 0.;,
and a number of frame-dependent parameters. We
took as standard states ly;, X,), eigenstates of momen-
tum operators p;, and spin-component operators S;:3.
Our aim has been to construct a, class of states labeled

by a maximum number of frame-independent eigen-
values of Poincare scalar observables.

In Secs. III and IV we have shown how, for systems
of at least three particles, multiparticle states trans-
forming like single-particle states may be constructed.
They were labeled by four frame-dependent parameters

p and ) corresponding to the total momentum p and a
component of the total effective spin S3. In order to
do this, we first of all replaced the eigenvalues of
spin-component operators S;,3, labeling standard direct-
product states by eigenvalues of scalar-spin-component
operators S;& of the form

S,&= W,"j;/A(j, ,p;) . (179)

In these new states of type I denoted by l p, : X,)„
P

we measure components of spins S; for each particle
(i), relative to frames fixed by four-momenta P;, /I;,

and r;. Such states are related to standard direct-
product states

l p;,X,) by

and the Wigner rotation W"(h.,p) is of the form p =Ap;. (182)

W"(A,p) =N '(Ap)AN(p) . (176)

We show in Appendix A that the multiple Wigner
rotation (175) is equal to the identity, and all phases
p& are zero by construction.

We may express our three-particle states as linear
combinations of direct-product standard states in the
following way:

lp~~p»p3' ~»~»~3)@

(Xz',X2') X3'
l X»X»X3)o

x ly»p2)ps. &g')&g')&3'), (177)

where the overlap coefficients are given by

The construction of these q-spin eigenstates with spin-
independent Poincarb transformation properties should
prove useful in the generalization of spinless particle
theories or models to include external particles with
spin.

In Sec. IV we proceeded to construct scalar-spin-
component states of type II. We replaced the frame-
dependent three-momenta p; by the square of the total
momentum s, the total three-momentum p, a number
of scalar momentum products s;;, where

s,,=(p;+p, )', s,,=(p —p,)', ij=1, 2, . . . , n (183)

and three angle variables P, 8, and |P. These angles may
be defined in terms of the c.m. momenta p2 and p3 of
Eqs. (102) and (103),

(/ ', / ', / 'l~, /, ~ ) =II (»; '(L '(P )L(P,Q,P))}.

(178)

&(e, 0, -e)=&(-p.),
~3(4)=~8(P3) ~

(184)

(185)
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The new states of type II, ls: p; &,8,$: s,&,X;)„are
simply related to the states

l p, : X;)«of type I,

l
s: p; $,8,$:s;i, l~,),=J "'l p;: X,)„(186)

where the range of parameters i, j, and k is given in
Eq. (193), and the coefficients J„are defined by Eqs.
(110)—(112).

Neither the momentum parameters s;I, nor the spin
parameters ); change under homogeneous Lorentz
transformations A.,

Lls: p; &,8,$: s,2,X;)«= ls: p'; $', 8',lp': s,2,),)« (.187)

The new angles p', 8', and lp' are defined by Eqs. (119)
and (120) and the transformed momentum p' is given

by p'=Ap.
Using the Poincare-invariant nature of a scattering

operator S one can show that matrix elements between
these states are invariant amplitudes, functions of
Poincare scalars alone. '

Finally in Sec. IV we introduced states of type III
labeled by a minimum number of frame-dependent
parameters. They could be de6ned in terms of the

16x2 0 0 0

X
l
s:p; &18,lp: s,2,li;) «sin8dpd8dhp. (188)

The new state parameters 0(0+1), ll, and p are the
A

eigenvalues of eBective spin operators S', S3, and S&')

respectively. Under homogeneous Lorentz trans-
formations 4 these states transform like single-particle
states,

X
l s,(r: p,):p, sp„X,)«

= Di,„'(W(A,p)) is~a i p~ Y p& s,„,X„)., «.(189)

and parameters (T and p do not change. Matrix elements
of a scattering operators S between these states are
partial-wave amplitudes. 5

The multiparticle states of types I—III have the
following normalizations:

scalar-spin-component states of type II, and overlap
coefficients ($,8,lpl0: 'A: p) of Eq. (131),by

ls,a.'p, ):p; s, l,x;)«

4)r )r 2m'

n

«(p': l '
l
p': l *)«=II {2P':o8(p*—p'')8l'~')

i=1
(190)

,(s'. p'; p', 8',lp': s, ', l~,
'

l
s:p; $,8,$:s, ,l~„),

=8( —')2Po8(p-p')16 '~(4 -4')8( o 8- 8')~(4 -4")II {8( — ')8;; ) (191)

«(s', 0': p', 9:p'; s,2', ),
l
s 0:p, li: p; s,&,li,)«=8(s—s')8„2P«8(p —p')8&i 8„„ II {8(s,& s«2')Bi, l,'), —(192)

~ ~ ~ ) IV)

~ ~ ~ ) 1P

.j=3, k=5, 6, . . . , n, e~&5;

where the ranges of the indices i, j, and k are

j=0, k=2, 3,

i=1) 2, . . . , e; ~ j=2, k=3, 4,

j=0, k=2, 3, 4;

j=2, k=3, 4, m=4;

j=0, k=2, 3, m=3.

(193)

In the two-particle case the procedure for construct-
ing states of type III was no more complicated. How
ever, states of types I and II did not have simple
homogeneous Lorentz-group transformation proper-
ties. %e could dedne a class of two-particle states of
type I in terms of direct-product helicity states

l p, ,'n;) &

and overlap coefficients 2(tu', 4'
l
) 2,4)~ of Eq. (144) by

lp„p, . ) „z,),= P,(~, ,)„ la„x,)„

X
l
pl)p2)l~l')~2 ) h ~ (194)

Under homogeneous Lorentz transformations A. the
scalar spin components X~ and 'A2 do not change, but
the state is multiplied by a function of the phase @'
defined by Eq. (142),

h.
l pl, p2. Xi,X2)~= e "&'i' 4'""

l
pl', p2'. tu, ) 2)~. (195)

States of type II were defined by

l
s: p; y, 8: ) 2,) 2),= [«rh(pl, P2)/s$'"

l pl, p2. ill, X2), . (196)

They also transformed with a fraTne-dependent phase,

ills: p; $,8: ) i,X2)~

=e—'«'"' «""'&ls: p', y', 8'. xi,x2)„, (197)

and angles P' and 8' were given by Eq. (119).
Finally we defined states of type III in terms of

states of type II and an overlap coeflicient $,8l 0: li),

2

l
s,~:p, &: 4,&2).=— (y,8l ~: ) )e "'"2

4m

X
l
s:p; @,8: ill, 4)„sin8dpd8, (198)

where

Q,8lo". ))=(20+1)"2Dl, ),, ),,'*(R($, 8, —Q)). (199)
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Under translations and homogeneous Lorentz trans-
formations these states transform in the same m'ay as
the multiparticle states of Eq. (188). We have shown
in Sec. V that they are closely related to the helicity
states of Wick, ~ and in the c.m. frame coincide, up to a
normalization factor with the Jacob-Wick helicity
;states. '

The two-particle states of types I—III have the
following normalizations:

s (Pi ~p~: 4 l~~
I Pi&P2: "i~"2)i

= 2pi:oS(pi —pi')2p2. o5(P2 —P2') 8i,i, 8)„x, , (200)

~(s': y'; 4', S': 7,',X,'
~

s: y; 4,0: 7 „X,),
= ~( -")2poh(p-P')4 ~(~-4')

X5(cos8—cos&') 5i,i, 8&„&„, (201)

~(s')o': p')X'. Xi',X2'~ s,o.: P,X: 7 i,X2)~
= 8(s—s')8„2po8(p —p')5i.i 5y, i, 8y,i, . (202)

All these states were labeled by eigenvalues of q-spin
operators 5;& defined in terms of momentum operators

j mith timelike eigenvalues q in the physical region.
In Sec. V B we gave an example to show that such a
restriction is not really necessary. We constructed a
special class of three-particle eigenstates of operators
8;@, where the four-momentum Q was spacelike in the
physical region. Such states had similar transformation
properties and normalizations to those of the three-
particle states of Eq. (180).

In another paper' we shall construct and analyze de-
compositions of general multiparticle scattering ampli-
tudes using these states, without introducing auxi-
liary spin groups. The techniques developed will also
enable us to generalize dynamical theories and models
involving spinless particles to include external particles
with spin.

ACKNOWLEDGMENTS

I should like to express my appreciation to Dr. K.
Bitar and Dr. P. Mourad for an invitation to visit
the American University of Beirut, where part of this
work was completed, and to the British Council for
a travel grant which made this possible. I should also
like to thank members of the theoretical physics group
at Queen Mary College, in particular, Dr. K. Barnes
and Dr. R. B. Jones, for many stimulating discussions.

APPENDIX A: PROPERTIES OF SOME
GENERALIZED WIGNER ROTATION

FUNCTIONS

We shall examine two generalized Wigner rotation
functions which are related to the phase changes of our
scalar-spin-component states under homogeneous Lor-
entz transformations A.

We 6rst of all consider the triple Wigner rotation
function Wi(A; p, q, r), where

Wi(A; p, q,r) =W~(W" (W(h, p), q),r) . (A1).

is of the form
H"(r) = R(y', 8',0)Z(r),

the transformation H~(Rr) will be given by

H~(R (v)r)=R(V+e', ~', 0)~(r).

(Ag)

(A9)

On substituting these expressions into Kq. (A7), we
discover that this Wigner rotation is equal to the
identity

(A10)W~(R, r) =I.
We now combine Eqs. (A6) and. (A10) to obtain an
expression for the triple Wigner rotation Wi(A, p, q, r),

W~(W" (W(h, p), q),r)=I. (A.11)

We now examine the triple Wigner rotation
W, (A: p, q,r) of Eq. (175),

W&(A p q r) = W"(W"(W(A p), q),r), (A12)

The ordinary Wigner function W(A, P), defined by Eq.
(39), is a rotation and, like the operator X,(p), is well
defined for all values of the momentum p.

The function W"(R,q) of a rotation R and four-
momentum q de6ned by Eq. (47) is of the form

W"(R q) =H—'(Rq)RH(q) . (A2)

From the defining equation (40) for the boost function
8(q), we see that it is given by

H(q) =R(y, S, —y)Z(q), (A3)

and it is well de6ned provided the vector g is nonzero
and does not lie in the negative 3-direction. Now,
since the product of two rotations is again a rotation,
we may express the homogeneous Lorentz-group ele-
ment R(o.,P,y)H(q) in the form

R( A~7)H(q)=R( P v)~(q) (A4)

where angles n', P', and y' are functions of parameters
a, P, y, 0, and P. The boost function H(Rq) is then
given by

H(R(~,P,v)q) = R(~', P', —~')~(q) (A5)

The Wigner rotation W'"(R,q) is obtained by substitut-
ing expressions (A4) and (AS) into Kq. (A2) and by
making use of the zero commutator of operators J3 and
E3,

W"(R(~,P,v), q)=R (~'3+v') (A6)

We have shown tha, t the Wigner rotation W"(R,q) of an
arbitrary rotation R and four-vector (t is a rotation
about the 3-axis.

Let us now examine the Wigner function W~(R3,r)
of a 3-axis rotation R3(y) and a four-vector r defined by
Eq. (53),

W (Rig)=[H (Ri(v)r)3 'Ri(v)H (r)

Like the operator H~(r), it is well delned. unless both
the 6rst and second components of the vector r vanish.
Now, if the boost function H~(r) defined by Eq. (50)
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where

q=L '(P)Q, (A13)

«=H '(L '(P)Q)L '(P)P (A14)

The Wigner function W(h. ,p) defined by Kq. (39)
is a pure rotation. The function W"(R,q) of a rotation
and spacelike four-vector q is given by Eq. (47),

W"(R,q) =H '(Rq)RH(q) . (A15)

By definition the vector Q is orthogonal to the vector
p. Consequently the vector L '(p)Q has zero timelike
component and the operator H(L '(p)Q) is a pure
rotation of the form

H(L-'(p)Q) =R(~, ~, -~). (A16)

Since the product of two rotations is again a rotation
we find

R( P,v)H(L '(P)Q)=R( ',0',7') (A17)

for some angles n', P', and y' which are functions of the
parameters u, P, y, 8, and g. The function H(R(n, P,y)q)
is thus given by

lp', &') =ll {»(P)» '}IO,~'),
j=l

(B1)

where R, is an arbitrary rotation. The eigenvalue
equation takes the form

p ~p;,X,),=g {H(p,)R, '}H(p )R —
'p„~O, X;)

j=l
=p~ lp', &'),

We wish to determine the constraint we must impose
on the rotations 8; if we are to obtain q-spin eigenstates.

Consider the e6ect of the operator &VI, j on the new
states, where the momentum jhas timelike eigenvlaues,

APPENDIX 3: SCALAR-SPIN-COMPONENT
EIGENSTATE8

We wish to construct states ~p, : li,), which are
eigenstates of momentum operators p, and scalar-spin-
component operators S,', with eigenvalues p; and li, ,
respectively.

We construct eigenstates of the momentum operators
P; by boosting standard direct-product rest states. The
most general form for such a state is

and on substituting this into Eq. (A15), we find

W"(R(a,P,y), q) =Rg(a'+y') . (A19)

+(«)
—e iJg pe ix18— —

and the function E(R3(y)«) is of the form

(A21)

cV(R3(y)«)=e '~&~&+»e 'x" (A. 22)

On substituting these expressions into Eq. (A20), we
we find that the Wigner rotation W"(Ri(y),«) is equal
to the identity

W (R (y)3, )=«I (A23)

We now combine Kqs. (A23) and (A19) to obtain an
expression for the Wigner rotation W2(A; p, q,«),

W.(W"(W(A p), q), «) =I. (A24)

This formula holds provided the boost functions H(q)
and P(«) are well defined. This is the case if the vector

g does not vanish, or lie along the negative 3-axis.

We have shown that the Wigner rotation function
W"(R,q) of a rotation R and spacelike vector q is a
rotation about the 3-axis.

We finally consider the function W"(R8(y),«) of a
3-axis rotation R3(y) and the four-vector «of Eq.
(A14),

W"(R8(y),«) = llew '(Ri(y)«)R&(y)X(«) . (A20)

Since the vector pi is orthogonal to the vector Q, the
vector r must have zero third component. The boost
function 7q(«) is then given by Kq. (171),

W'qlp', ~').=rr {H(p)» '}R H-'(p )q W. IO,~').

lp': l ').=II {~(q)H (~ '(q)P )}IO,~') (B6)
j=l

APPENDIX C: MOMENTUM SPACE
TRANSFORMATION FUNCTIONS J„

We wish to compare the phase-space volume elements

n dp;
dV =g (C1)

2P~ 0

dp d|pd(cos8)dt's
d V„=ds S

2p0 16m'
(C2)

(B3)
On the rest state the eigenvalues of operators WI, „and
(0; miSi, ) coincide. Since the parameter li; is the eigen-
value of the operator S;,3 we shall have constructed
q-spin eigenstates if the first and second components of
the momentum Rl,H '(pi, )q are zero. In order to achieve
this we choose RI, to be of the form of

assigner

rotation,

Ri, W"(M '(q), pi,.), —— (B4)

where the operator M(q) is defined in Eq. (70). This
evidently produces a momentum RiH '(p&)q with the
required properties. We now substitute this expression
(B4) for Rk into Eq. (B3) and use arguments similar
to those following Kq. (73) to show that

W, q~p, : ~,),=X,a(p„q) ~p, : ~,),. (Bs)

On substituting from Eq. (B4) into Eq. (81) we obtain
an expression for the q-spin eigenstate

~
p;: l~,)„
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where the range of parameters j and k is given by Eq.
(193).The function J is defined by

P'=& '(—02)P*,

P*'=& '(P-.)P'

(C12)

(C13)

with
dv„= &J„dU„,

~(p')J.= L16~'/g (2p;.,)]det—
8 (P„;d, cosepP: s,3)

(C3) Using arguments similar to those following Eq. (89),
we may express the c.m. momenta in terms of single-
particle momenta alone,

p'=H '(I- '(P2)p)I- '(P2)P, (C14)

(C4)

Direct computation of the Jacobian of the transforma-
tion is mathematically too tedious. We shall determine
it indirectly, taking advantage of the Lorentz-trans-
formation properties of individual-particle momentum-
space volume elements.

We first of all consider particle (1) "off the mass
shell, " and interpret momentum component Pi, 0 as an
independent energy variable,

dpi/2p, :.= d' pi b(pi' 3333'—)a(pl:0) . (CS)

p* =~ (p».,p.)p', (C15)

where the operator 8(P,P2,P3) is defined by Eq. (95).
All components p+;,„of the transformed momenta

p+; are Poincarh scalars. To see this we note from the
defining equation (C15) that, after a homogeneous
Lorentz transformation A., the transformed momentum
p*' is given by

P*,'= I '( P) P2, P—3)AH(P, P2)P3)P*i. (C16)

From the definition (95) of the boost function H(P, P„P3),
and Eq. (A11), we find

(C17)p+.I —p+.We may then replace variables pi, „by the total four-
momentum variables p„and obtain the expression

The non~anifestly covariant nature of c.m. momenta
p, , p, , and p*, arises because the homogeneous Lorentz
transformations which relate them to manifestly
covariant four-momenta p; are themselves frame
dependent.

We shall now derive explicit formulas relating the
Poincare scalar components p*;,„ to the particle four-
momenta p, „.

We define two spacelike momenta q2 and r3 by

(C6)dV„=5(Pi2—mi2)8(P3 0)d'PdV ',

where

(C7)Pi=P EP'—
s=2

n gP
dV '=g

s 2 2 p

(C8) (C18)

(C19)

q2= P2 P2 PP/P'—
r3= q3 —q3 q2q2/q2',

(C20)q
= P PPP/P'. —

The magnitudes of these four-momenta are given by

The differential volume elements dp, /2p;, 0 are Poincare
scalars. We may compute them in various Lorentz where
frames. We have already defined c.m. momenta p» and
P3 by Eqs. (100) and (104). We now define momenta
P*' by

P*'= & '(P )& '( p)L=-'(P)P'-, —

and examine the volume element

(C9)

and

~(q.)= ~(p,p.)/~(p) (C21)

dp2 dp3 ~ dp
dV '=—

2p2:0 2P3:0 4 4 2p*;:o

O'= I- '(P)P' (C11)

The components of momentum p2 are equal to those
of momentum p2 in a special c.m. frame. Similarly, the
components of momentum P3 are equal to those of
momentum p3 in a special c.m. frame in which momen-
tum —g2 lies in the 3-direction. Components of mo-
menta p;* are equal to those of the momenta p, in a
c.m. frame in which momentum —g2 lies in the 3-direc-
tion and momentum p3 has zero component in the
2-direction. We may then define for all i corresponding
c.m. momenta by

~(r3) ~(p p2 P3)/&(p, p2) . (C22)

Using the general definitions (C11), (C12), and (C15)
of the c.m. -frame momenta, 'we find

P ~ ~(P) (1;0,0,0)

~(P,P2)
q2~ (0;0, 0, —1),

~(p)

~(P,P2,P3)r*3~ (0 1,0,0)
~(p,p )

(C23)

(C24)

(C25)

by construction. We now use these expressions to
obtain explicit formulas for momentum components
p*
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From Eq. (C23) we find

P*':o=p':o= p':o=P P'/~(p) = P P'/~(p) (C26)

From the mass-shell relations, we can obtain the
magnitudes of the c.m. three-mornenta

I P;I,

I O'I = ~(p P~)/~(p) (C27)

We use Eq. (C24) to determine the E'oincare scalar

components p, s,

P' its P'—PPs'P P P"Ps
p*':s=p':s =-

~(8s) ~(p)~(P Ps)

and from Eq. (C25) we obtain an expression for the
scalar components P+, l,

(p pi 'ps ps'ppip) (p ps'ps ps'pps'p)++ (pyps) (p pi' ps ps'ppi' p)
P**: = P*" /—~( )= — — (C29)

p'~(p, p.,p )~(p,p.)

Finally we note that the second component p*;,s is
given by

constraint to obtain the equation

(C39)and up to a sign we have

«1 fp I'
pl& p~p p p p. — Q(p)Q(its)Q(rs)p. s (C30) = — d

f ps f
dpd cos8= —-',

f ps I dps:0«old cos8.
2:0 ' 2:0

P*':s=~(p,ps Ps P')/~(p Ps Ps) .

We are now in a position to transform the volume
element dV„' of Eq. (C7). For i & 4 we use expressions
(C26), (C28), (C29), and (C31) for the momentum
components p+, ,„ to change from variables p; to
variables Sp;, s2, , and $3;. Up to a sign we have

We now use relations (C26) and (C27) to derive the
equation

«ps ~(p,ps)
dsP2lgd cos8.

2Ps:o 4~'(P)
(C40)

The volume element equation (C6) then takes the
form'0

2p*i:2

dp*, dp*;, pdp+. ..dp+;, s

2p*.

d$0;(/S2idSdi

165(p,ps, ps, p,)
(C32) ds dp

d V =a8(pl. p)8(pl' —ll.:l')——
32$ 2Pp

ps;l= p coslp, ps.s= p sinlp. (C33)

The first two components of momentum p3 are of the
form dsP: id$2:id$3:i

Xdspsdspsdsss~d cos8«lP P . (C41)
166(p,ps, ps, p;)

We shall now consider separately the transformationKe make successive variable transformations and use
f f 3 ]the mass shell constraint for particle (3) to obtain the
systems with n&~ 4.equation

For a two-particle system, Eq. (C41) is of the form

dps P*«P*«Ps:s
is«ps:odps:sd4. -

2ps:o 2p::o

We then express momentum components p, :, and ps's
as functions of Poincarh scalars Spa and $23. Up to a
sign, we fjnd Pl'= (P—Ps)'= sos

(C34, ~.(pl~Ps)
d Vs =8(Pl:p)8(Pl' —ml') ds dgd cos8dsos,

4$ 2Pp
(C42)

(C43)

«Ps/2Ps;o= dspsdsssdlP/86(P, Ps) . (C35) Thus the required volume element is

—Ps, l——I lJsI sin8 cosP,

Ps:s= IPsl sln8sln@,

—Ps:s= Ipsl cos8.

(C36)

(C37)

( C38)

We change to polar coordinates and use the mass-shell

We now consider the c.m. phase space for particle (2).
Angles 8 and @ are defined by

dp d@d cosO
«Vs=sr A(PlPs)—

s 2Pp 4~

4sr 8(pl)ps) + (Ply P1s)
(C45)

2Pl, o2Ps, o8(P»g, cos8) s

'0 When one determines the range of integration of scalar vari-
ables, one must take into account the multivalued nature of the
moment@. ~-spy. qc. gag, pping.
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For a three-particle system we have and from Eqs. (C29) and (99) we 6nd

80*4:I ~(p P.)
8$44 25(p,ps, ps)

Pl —(P—Ps —Ps)'=$ss+$ss+$ss —$—ms' —ms'. (C47)

.%fter removing the variable $ge we 6nd
d$ dp de cos8d|p

dV =m~--—
32$2Pp 16srs

d$ dp
d Vs=8{PI.o)8(PI —ssss ) — —dQd cos8dljM$ssd$ssd$ss, (C53)

32$2 p

(C46)
Up to a sign this leads to the volume element relation

d$ dp de cos8dlp
d V3 =X— — — — d$02d$pg &

2$2Ps 16srs

8(pl,p»ps)16m2 g2
J W

2pl, s2ps. s2ps s 8(PN&p& cos8&lp; $ssi$ss) 2$

where
PI =

g
—2g ps+ps, (C50)

For a system with four or more particles we consider
' Eq. (C41) wl'tll lllolllelltlllll pl glvell by

d$02d$03d$048$g3d$24
X

~(P,ps) (9. 4:Ip*4:s P*4:19—.*4:s)

'@ d$0'd$2 d$3q
Xg . (C54)

16~(p Ps Ps P')

The function J„is given by

32$ n

~- '= — ~(p Ps) IZ {P*4:tsp*':s P*4:sP*'—:I)
s~s

P Ps Ps Z P4.
& 5

(C51)
P*4:sp*s:I

I II (166(p P»ps P')) (C55)
s~.5

8{pl ). 2(g 4:lp*4:s Q 4:sp*4:1)

Bp pk
(C52)

In the special c.m. frame the vector g+ is independent
of the components of momentum p*4,„. We wish to
eliminate the variable $44 from Eq. (C41). We use the
mass-shell constraint for particle (4) to obtain the
relation IP I

=~( )=~(p,p.,p)l~(p, p.),
and, J4 is given by

J4= xs/32$6(p, ps, ps, p4) .

(C56)

where momenta p*;,s and p*;,I are given by Eqs. (C29)
and (C31), repsectively. In the case where Is=4, we
sllllply ollllt tile suIIllllatloll Q aIld proclllct g occul"I'lllg
in this formula. %'e note that


