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We consider systems of noninteracting particles. We define, in terms of standard on-mass-shell states and
direct-product helicity states, three complete classes of multiparticle states with spin-independent Poincaré
transformation properties. No auxiliary spin group is used, and the new “scalar spin” state labels, which
are eigenvalues of generalized covariant helicity operators, have a direct physical interpretation in terms of
single-particle quantum numbers. In the two-particle case we compare our states with Jacob and Wick’s

c.m. angular momentum states.

I. INTRODUCTION

HEN theories of particles with spin have been
developed, it has been common practice to
introduce spinors and finite-dimensional nonunitary
representations of the homogeneous Lorentz group. In
S-matrix theory, M-functions! are defined in terms of
finite-dimensional representations Dy»°(L(p)) of single-
particle velocity transformations L(p). One expresses
the physical scattering amplitude as a series of D-func-
tion products with M-function coefficients. These
D-functions form a complete set in which to expand
S-matrix elements. However, there is no physical inter-
pretation of the M-function “spin” labels in terms of
single-particle quantum numbers.

The same criticisms apply in the case of field theory,
where one constructs fields with simple homogeneous
Lorentz group transformation properties. The charac-
teristic field labels are related to eigenvalues of functions
of auxiliary-spin-group generators, and not to single-
particle quantum numbers alone.

Recently, in extensions of S-matrix theory in par-
ticular, one has encountered inconsistencies leading to
the concept of families of particles.?:® The purpose of
our investigation is to determine to what extent these
inconsistencies arise from the use of auxiliary spin
groups, and to what extent they are determined by the
Poincaré invariance of the theory. In particular, we
shall show that it is possible to derive a new partial-
wave decomposition formula in terms of which the
physical arguments for the introduction of “daughter”
and “conspirator” trajectories in conventional Regge
theory become more transparent. With the introduction
of extended spin groups, in both S-matrix theory and
field theory one obtains a simplification of the formal
mathematical structure at the expense of clarity of
physical interpretation. For this reason, we wish to
construct analogous theories without auxiliary spin
groups. Although this will initially involve us with
more complicated mathematical structures, the physi-
cal significance of all parameters appearing in the equa-
tions will be unambiguous.
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As a first step, we indicate how one may construct
several special kinds of multiparticle state. These
states will be labeled by eigenvalues of operators which
are closely related to the covariant helicity operators of
Feldman and Matthews.® We shall show in another
paper® that by using these states one can expand scat-
tering amplitudes in a complete set of functions with
invariant-amplitude coefficients. The invariant ampli-
tudes will be parametrized only by eigenvalues of
physically meaningful single-particle observables. It
will then be possible to compare our amplitudes
with those obtained wusing auxiliary-spin-group
decompositions.

In this paper we shall be concerned exclusively with
on-mass-shell states of noninteracting particles. We
neglect altogether the trivial though tedious compli-
cations of parity, time reversal, and charge conjugation.

In Sec. II we define basic single-particle states, and
introduce our notation. We then proceed in Sec. III to
define, in terms of direct products of basic single-
particle states, complete sets of multiparticle state
which have spin-independent Poincaré transformation
properties. These ‘“‘scalar-spin-component” states en-
able us to treat systems of particles with spin as if all
particles had spin zero.

In Sec. IV we change the independent single-particle
momentum variables, labeling the scalar-spin-com-
ponent states to include a maximum number of Poincaré
scalar momentum products. We then define a class of
multiparticle states which have only four frame-
dependent labels: a total momentum p and a spin
component N\. These states have the same transforma-
tion properties as single-particle states.

In Sec. V we examine several exceptional types of
state. We first of all construct two-particle states and
compare them with those of Jacob and Wick.%” We
then define an interesting set of three-particle states
in which each particle is treated in an identical way.

In Sec. VI we summarize the results of the previous
three sections.

In Appendix A we derive some properties of Wigner

4G. Feldman and P. T. Mattheéws, Phys. Rev. 168, 1589
(1968).

5 G. L. Tindle (unpublished).

6 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

7G. C. Wick, Ann. Phys. (N Y.) 18, 65 (1962).
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3 MULTIPARTICLE STATES WITH SPIN-INDEPENDENT. .

rotation functions. In Appendix B we give a derivation
of our formula for the construction of scalar-spin-
component states. In Appendix C we determine the
Jacobian of a momentum-space transformation. This
is associated with the replacement of single-particle
momentum variables with a set of parameters including
a maximum number of Poincaré scalar momentum
products.

Note that some of our transformation formulas
will not hold for systems of particles with half-integral
spins because we have for simplicity neglected factors

of the form (—1)?, where ¢ denotes the particle spin. .

We shall discuss elsewhere® the complications intro-
duced by these phases.

II. SINGLE-PARTICLE STATES

In a quantum-mechanical system the states of a
single particle are in one-to-one correspondence with
the eigenvalues of a complete commuting set of par-
ticle observables. We shall first of all introduce complete
sets of single-particle operators. We shall then construct
eigenstates with specified relative phases. The results
are well known. We wish, however, to aquaint the
reader with the notation which we shall need when we
come to construct multiparticle states in the next
section.

A. Single-Particle Observables

The principle of relativity suggests that by changing
our frame of reference we may infer how a free particle
appears under space-time translation, rotation, or
constant-velocity transformation. We introduce, as
observables, Hermitian operators which generate these
transformations: energy po, momentum P, and relativ-
istic angular momentum J,, respectively. These
single-particle operators have the following commuta-
tion relations:

—'i[jnwjpvjz gupjvu+gvvjup ""guajvp'_g"pjw , (1)

_il:juwﬁpjz gupﬁv—'g"nﬁn ’ (2)
and
—i[PmPh] =0 ) (3)
where
0w, w=0
v= (4)
8 {—a,w, u=1,2,3.

The three-vector observables P, j', and K which
generate spatial translations, rotations, and boosts are
given in terms of the operators pu and J,, by

Jo Ji=—tendi, (6)
and A . ‘
K(—)K¢= —‘joi- (7)

They have the following commutation relations im-
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plied by Egs. (1)-(3):
—i[ji,jj]= fijkjk ) —i[[’i:Kj]= +5w‘fﬁ0’
—ilJopil=einbr, —ilK,Kl=—enr, (8)
—i[J, K= enKr, —ilpipi]=0.

In order to enumerate thestates of a particle, we
must choose a complete set of commuting operators
from the universal enveloping algebra of the ten
operators p, and J,,. All other operators which com-
mute with these are associated with internal degrees of
freedom, and we shall not be concerned with them here.

The universal enveloping algebra of §, and J,, has
two invariant elements, the square p? of the four-
momentum $, and the square 772 of the Pauli-Lubanski
spin 17, where

W= —Lewsop, ], . )

In terms of rotational tensors we have
Wie>W=pxK—5J, (10)
Wwe=p-J.. (11)

We shall label single-particle states by the eigen-
values of a complete commuting set of operators. Each
set must include the two invariant operators % and W2,
or two independent functions of them.

If we wish our single-particle states to behave simply
under homogeneous Lorentz transformations, we must
first of all choose a complete set of operators from the
universal enveloping algebra of the homogeneous
Lorentz group generators J,,. One could take the com-
plete commuting set of operators: K2 J-K, J?, and jz
A complete commuting set with respect to the Poincaré
algebra. generated by J,, and p, is obtained by adding
the two Poincaré invariants 52 and 172 Eigenstates of
these six operators are the relativistic equivalent of
total angular momentum states. They have rather
complicated transformation properties under space-
time translations.

If we wish our single-particle states to behave simply
under spatial translations, we choose a cornplete set of
operators from the translation generators p, namely,
the momentum triplet P itself. To obtain a complete
set with respect to the full Poincaré algebra, we add
the invariants 52 and 772, and the helicity operator h,
where

= |p|-°=1p|"J-p (12)
The Pauli-Lubanski spin component #° has been

defined in Eq. (11) and the operator || corresponds to
the magnitude of the three-momentum P,

|p| =[] (13)

In order to understand the significance of helicity in
this context, we shall examine the part played by the
intrinsic spin of the particle S. We recall® that the total

8 F. Giirsey, in High Energy Physics, edited by C. de Witt and
M. Jacob (Gordon and Breach, New York, 1966).
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angular momentum operator j may be expressed in
terms of the intrinsic spin 8§ and a particle position
operator X,

j=8+%xp, (14)
where the spin S is given by
L A7 p-Jb
s——|pd-pxk-"22] a9
mi mPo

The helicity is seen to be equal to the component of
spin S in the direction of motion,

§p=8.

The spin S is simply related to the Pauli-Lubanski
spin Wk,

(17)

(16)

S Sim —mL(—p)i I,
where the matrix L(p)”, is defined by
po/m —p/m

’ ] (18)
—p/m  1+pp/m(m-+po)

Using Eq. (17), we can obtain the spin commutation
relations

L(p) H=L<—p>m[

—i[S:,S;1= €15k (19)
from those of the Pauli-Lubanski spin operators,
—i[We W)= ewoop W, (20)

These follow from the fundamental equations (1)-(3).
We note that the spin S commutes with each momentum
component operator

I:S,P i] =0 ’
and by construction its magnitude is a Poincaré
scalar,

21

S:=1p2. (22)
Equation (21) implies that we can choose any com-
ponent of the spin S to take the place of the helicity
operator A in constructing a set of single-particle states.

Equations for the eigenvectors of a suitable complete
set of commuting operators determine the single-
particle states up to a complex normalization factor.
Relative phases are chosen by convention. We now
consider two specific examples.

B. Standard States

We shall refer to eigenstates of the single-particle
operators $2, 82, p, and S; with eigenvalues m?, a(s+41),
p, and A, as standard states. In defining the relative
phases of these states we first of all consider rest states
| m,0: 0,\). For a rotation R(¢,0,4) defined by

R(¢,09)= exp(—iJsp) exp(—iJab) exp(—iTsp), (23)
we have

(m,: ON | R(p,00)|m,o: O\)y=Dyn(¢,0,4). (24)
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The function Dy»?(¢,0,¢) is a representation of the
covering group of the rotation group SU(2).

Let us now proceed to construct a state with arbitrary
momentum p. We first of all define a number of homo-
geneous Lorentz group elements associated with a four-
momentum p, of the form

Pu> m(coshd; sinhd sinf cose, sinhé sind sing,
sinhé cosf), (25)
with
0<6<»o, 0<0<T, 0<< 2r. (26)
We define a boost Z(p), rotations Rs(p) and R(p), and
a group element L(p) by

R(p)=R(¢, 0, —¢), Ri(p)=exp(ifsp), (27)

Z(p)=exp(—iK33), (28)
and . L

L(p)=R(pP)Z(P)R(p) .- (29)

With every element of the homogeneous Lorentz
group A, we associate a self- representatlon 4X 4 matrix,
which we shall denote by A. For example, in the case of
the transormation L(p), we have the associated self-
representation matrix L(p) of Eq. (18).

We now define a single-particle state |m;o: p\)in
terms of a rest state |m,o: O,\) by the unitary trans-
formation .

|m,a: p,N)=L(p)|m,o: 0\). (30)

Let us verify that the new state is an eigenstate of
the momentum p with eigenvalue p and of the spin
operator S; with eigenvalue \. We have already
noted that, in the self- representatlon, the operator L(p)
takes the form L(p) defined in Eq. (18). We have the
momentum eigenvalue equation,

PuL(p) |ma: ONy=L(p)L(p) By m,o: ON)
= puL(p) |m,o: O\), 31)

and our state is indeed an eigenstate of the momentum
operator p. For the spin component S; we have, using
Eq. (17),

SsL(p) | m,o: ON)= —m'L(—P)3,WEL(p) | m,o: ON)
= —mL(p)W?3|m,a:0,\). (32)

We see from Eq. (10) for the Pauli-Lubanski operator
W that, when operating on rest states, the third
component W; is equivalent to the spin operator mSs,
and

S3lm)6: p,>\>=>\|m,o: p7>‘> (33)

as required. This completes the proof that the states
defined by Eq. (30) are standard states.
Under translations ¢ defined by
d=exp(ip-a), (34)
and general homogeneous Lorentz transformations A
defined by

A@ 0580 ¢") =R 0 ¥)ZERO" "), (35)
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the standard states behave in the following way:

d|m,a: p,\)=e?e|m: p,\), (36)
A|m,o: pA)=Don(W(A,p) |me: p' Ny, (37)
where
p'=Ap, (38)
and the Wigner rotation W(A,p) is defined by
W(A,p)= L~ (Ap)AL(p). (39)

C. Helicity States -

We shall refer to eigenstates of the single-particle
operators 52, S%, p, and h, with eigenvalues m?, ¢(c+1),
p, and ), as helicity states. We introduce a homogeneous
Lorentz transformation H(p) associated with the four-
momentum vector p, of Eq. (25),

AP)=Lp)R(p), (40)

where the operators L(p) and R(p) are defined by Egs.
(29) and (27). We define single-particle helicity states
in terms of unitary transformations of standard rest
states,

|m,o: pAa=H(p)|m,c: O\). (41)

Let us verify that these states are indeed eigenstates
of the helicity operator . We have, from the defining
equation (12),

hm; o pa=|B|7WH(p)|m,a: ON)

= |p|" AP H (D)W o|ma: 0)). (42)

Now we recall that the operator W, behaves like (0; mS)
when acting on a rest state and the momentum |p| is
related to the boost angle § of Z(p) by

| p| =m sinhs. (43)
Equation (42) then takes the form
i)‘lmyo': p;)\>h=ﬁ(j7)»§3lm,dl 0,)\>
=\ m,0: P\ (44)

as required.

Note that the limit of the helicity matrix H(p) as
p—0 is not in general well defined. This ambiguity
corresponds to the rotational degree of freedom in
taking the zero-momentum limit of expression (12) for
h. For this reason we prefer to take as our standard
states eigenstates of the spin-component operator Ss.

The helicity states behave in the following way under
translation and homogeneous Lorentz transformations:

dlme: pA=e"%ma: P\ (45)
and

Almﬂ-: p)7\>h=Da)\’)\(Wh(A)P))1m;0: pl7)‘l>h ) (46)

where the transformed momentum p’ is given by Eq.
(38) and the Wigner rotation is

W, p)= H-YAPAH (). (47)
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These expressions closely resemble Egs. (36) and
(37) for standard states. One can show from the de-
fining equations (30) and (41) that helicity states are
simple linear combinations of standard states,

|mo: p, M= N[ M| m,o: pN), (48)
where the overlap coefficient is
N [Ma=Doa(R(p))- (49)

We conclude this section with the observation that
our helicity states |m,o: p,\) differ by a phase from
those of Wick.” The Wick boost operator A% (p) is of

the form R )
A7 (p)=H(p)Rs(p), (50)
and helicity states are given by
[m,0: pNYw=e"2¢D) [ m.a: p Ay, (51)

These states satisfy transformation equations similar
to those for the states |m,0: p,\)». Under homogeneous
Lorentz transformations A, we find

Alm,o: p\yw= D (WY (A,p)) | mo: D' N)w, (52)
where
WY (A,p)=LHY (Ap)T'AHY (). (53)

Our choice of helicity operator H(p) coincides with
that of Jacob and Wick. The boost operator H%(p) is
not well defined if the vector  has zero first and second
components. On the other hand, the operator H(p) is
well defined if the momentum p is in the positive
3-direction.

Note that the definitions of all the single-particle
states which we have considered are consistent with the
Poincaré invariant normalization

(mo: p' N [m,o: p,N)=2podrnd(p—D’).

III. SCALAR-SPIN-COMPONENT
MULTIPARTICLE STATES

In Sec. IV we shall construct states labeled by a set
of single-particle quantum numbers, and a maximum
number of Poincaré scalar “internal variable” parame-
ters. The first step in such a program is to replace the
spin-component labels of direct-product states by
eigenvalues of a complete set of Poincaré scalar spin
operators. This we do in this section. We define a new
class of states in terms of direct-product multiparticle
states, and examine some of their properties in detail.

(54)

A. Multiparticle Observables

We consider a system of #n free particles (). We
introduce, for each, space-time observables J;.,, and
Pi:u satisfying the commutation relations (1)—(3). Since
the particles are independent, observables of different
particles commute,

l:f’i:)\;jj:uv]= [ﬁi:%yﬁj:u]= [ji:w,jj:pvj= 0,

i#451, j=1,2, ...,m. (55)
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We form the universal envelopmg algebra of the
Poincaré group generators J;.,, and pi.,. The states of
the multiparticle system are then characterized by the
eigenvalues of a complete commuting set. The 27
operators of the form $,2 and W2, which correspond to
the masses m; and spins o; of the » partlcles, commute
with all Poincaré generators Ji.u and Py Thus, all
multiparticle states will have 2z mass and spin labels
m; and ;. For simplicity of notation alone we shall
suppress these parameters in the following sections.

B. Direct-Product States

The simplest n-particle states are those formed by
taking the direct product of # single-particle states. We
define standard multiparticle states | p;,\:) by

[pis\s) =_Ile {|mioi:pihi)}. (56)

They are eigenstates of the momentum operators p; and
spin-component operators Si:s, with eigenvalues p; and
\i, respectively.

We define multiparticle helicity states |p:,\i)s by

lph)\i>h=£Il {|msoi D i)} . (87)

These are eigenstates of the momentum operators p;
and helicity operators h; with eigenvalues p; and ;.

The Poincaré-invariant normalization of these states
follows from that of the single-particle states |m,0: p,\)
of: Eq. (54),

n
<Pi',)\i'lpi,>\i>=Hl {20500 \8(@—D)} . (S8)
=
In order to determine the space-time transformation
properties of our multiparticle states, we observe that
the generators of translations and homogeneous Lorentz
transformations of the n-particle system are p, and
respectively, where

ﬁu=z ﬁi:u: (59)

=1

jﬁ,,=2n Tiiuve (60)

=1
We now use the single-particle equations (36) and (37)
and the commutation relations (55) to derive the multi-
particle-state transformation formulas

dl p'i:)‘i>= eip-al pi))‘i> ) (61)

“Alpiha) =H1 {Don (W (A0} [P N),  (62)
where

P=Z P,‘ and P,"—‘AP, (63)

i=1
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The Wigner rotation function W(A,p) has been defined
in Eq. (39).

These transformation formulas are rather compli-
cated. If the operators, the eigenvalues of which label
multiparticle states, had had simple transformation
properties under homogeneous Lorentz transformations,
formula (62) would have been correspondingly simple.
For this reason we wish to construct multiparticle
states in such a way that the labels correspond to a
maximum number of Poincaré scalar operators. We
construct such states in three stages:

(1) We replace the spin-component operators S;.s
by a complete set of Poincaré scalar-spin-component
operators .S;¢, where

S0 Wi/L@ep*—0253T. (o)
We shall refer to such states as ‘“‘states of type I,”
“g-spin states,” or “scalar-spin-component states.”

(2) We replace 37 momentum operators ; by 3n—6
scalar-product operators of the form p;-p;, three
momentum operators p, and three additional nonscalar
angle operators 6, ¢, and . We shall refer to these
states as ‘‘states of type I1.”

(3) We replace the three angle operators 8, ¢, and
by a scalar spin S¢, the magnitude of the spin §2, and
one spin component S or &. We shall call these states

“states of type ITL.”

In the rest of this section we shall only be concerned

with states of type I.

C. Scalar-Spin-Component States

We define a function A(pi---p,) of the = four-

momenta pi- - - p, by
A(pr- - - pu)= | det(pi- ) |12, (65)
This function vanishes if the momenta py, ps, ..., P

are not linearly independent. For one and two momenta,
respectively, we have

A(p)=m(p)=|p2| 112
A(p1,p2)= | (p1- p2)>— pr2pa?| 12

Consider any set of four vector-momentum operators
§¢i: defined by

(66)
and

(67)

Qiu=223@iiDiw, (68)
where the a;; are constants, chosen so that (a) the eigen-
values of §;., are timelike four-vectors in the space of
standard states and (b) for all 7 we have the relation .

A(q“Pt) #0. (69)

For each particle (i) we can then define a g-spin
operator S;7 by Eq. (64). We note that for a single-
particle system no operator .S¢ exists since condition
(b) cannot be satisfied; we have only one independent
momentum p,.
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The operators S;¢ commute with all momentum-com-
ponent operators $;., but not with the spin-component
operators Si.3 or h;. It is thus possible to construct a
complete set of multlpartlcle states which are eigen-
states of the scalar- spm component operators Si¢ and
momentum operators P; alone. We shall give here a
definition of a class of scalar-spin-component states
| Pt Ni)q and verify that they are indeed eigenstates of
g-spin operators S 2 with correpsonding eigenvalues \;.
In Appendix B we show how such states may be con-
structed directly using the momentum and spin-
eigenvalue equations.

We introduce a boost operator 17 (g;) associated with
each momentum ¢;, where

M(g)=Li(g)Rs, (70)

and the rotation R; is arbitrary. We then define ¢-spin
states |pi:Ni)q in terms of standard multiparticle
direct-product states in the following way:

lpz-=M>q=I__i (@) (g5)p)} |0Ms) . (71)

Let us now verify that these states are ¢-spin eigen-
states, For particle (k) we have

Qk'WkIPﬁ)\i>q=ﬁl {M;(g)H (M(g:)p)}

XLgx- M (q)HM(g)p)Wil|ON:).  (72)

We now use the definitions of H(p) and M (q), (40) and
(70), respectively, to simplify the expression in square
brackets,

e M (g) H(M=(gi) pr) W .
= M=) g HQU- (g p0 1V
= A(gr) [ Z(M(qx) p) W Jo- (73)

Now the four-vector M~*(gx)px has 0-component of the
form

LM~*(g)pxJo= A(px) coshs, (74)
where 8 is the angle associated with the boost

Z(M~(gx)px). Moreover, the four-vector M~ (gx)qs is
by definition (70) of the form

[M(gi)qr Ju= uolr(gn) - (75)
Thus the Poincaré scalar boost angle § is given by
pi- gi=A(pr)A(ge) coshd, (76)
and \
sinhé= A(pr,qe)/A(pr) Age) - (77)

The spin W, is equivalent to the operator (0; A(p)g)
when operating on a rest state, and Eq. (73) takes the
form

A(ge)(ZLM (g pxTW1)o|ONs)

= A(pr,gi)Sk:slON) . (78)
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We now substitute this expression into Eq..(72) and
rearrange terms to obtain the g-spin eigenvalue equation

Ske| it Midg=Ne| Pt Aige (79)

The construction of ¢-spin eigenstates in the case
where the four-vector operators §;., have spacelike
eigenvalues is in general more complicated. We shall
only consider a specific example in Sec. V.

It is interesting to note that, if we formally take
@i:u to be of the form

g (1;0) (80)

in all Lorentz frames and set R;= I, Eq. (71) defines the
helicity states (41). The nonmanifestly covariant nature
of the 4-tuples ¢;., in this case is reflected in the non-
manifestly covariant nature of helicity under Lorentz
transformations. 7

We now consider the behavior of these states under
translations @ and homogeneous Lorentz transforma-
tions A. They have the following properties derivable
from the defining equation (71):

a| it NiYg=€P"%| p;: Ni)g, (81)
Al piM)e= ™| D/ \o)q, (82)
where p/=Ap; and the phases ¢/ are given by
e—id 3¢ — Wh(Wm(A’QJ'):M _I(Qf)pj) ’ (83)
where
Wm(A,q) =M~ (Ag;)AM (g;) . (84)

These phases are rather complicated in general. We
recall that in Eq. (70) the operator M (g;) was not de-
fined uniquely. We now take advantage of the degree
of freedom in the choice of the operators R, to eliminate
the phases ¢/ altogether.

For each particle () we introduce a four-momentum
74:4y Where

n
Pizu =Z biipju,

7=1

(85)

and the constants b;; are chosen so that (a’) the oper-
ators 7;., have timelike eigenvalues and (b’) the eigen-
values 7; satisfy the equation

A(piyqirrs) #0. (86)

Condition (86) ensures that the vectors ¢; and 7; are
not collinear. We may thus define uniquely operators
M(gir:) which are not trivially dependent on the
four-vectors 7;,

M(qi:r’i) = z(ql)R( —l',") ’ (87)

where . .
R@!)=R(r!)=RIL(gs)r?), (88)

and operators L(p) and R(p) have been defined by
Eqgs. (29) and (27), respectlvely We now express the
rotations R(L~(¢:)r:) in terms of boost functions alone.
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We find that up to a 3-axis rotation on the right,
R(—1)=L9L(nAL()g). (89)

In order to see this, it is sufficient to note that the right-
hand side is a rotation which leaves invariant a four-
vector of the form (1;0,0,0), and inverse takes the
object L7Y(g)r to a 4-tuple with “spacelike” component
in the negative 3-direction alone.

If we replace the matrix M(g.,rs) by M(gs,r:)ei’** in
Eq. (83) the phases ¢7 do not change. We may thus
substitute expressions (89) and (87) into Eq. (71) for
the ¢-spin states | ps: \i)q. At the same time we replace
the operator H(M~'(¢,)p;) of Eq. (71) by the Wick
helicity operator A% (M—(g;)p;). This has the effect of
multiplying states by a phase.

We may now examine the modified expression (83)
for the phases ¢7 which are associated with homogene-
ous Lorentz transformations of these states,

eI =WW(WHW (A,7;),L7(r)gi)05),  (90)
where the momenta Q; are given by
Qi=[H (L~ r)g) ' L™(7,) p;- (1)

We show in Appendix A that the Wigner rotation
W"(R,q) of a rotation R is a rotation about the 3-axis,
provided the 3-vector q does not lie in the negative
3-direction. Moreover, the Wigner rotation WV (R;,Q)
of a 3-axis rotation Rj; is the identity, provided either
the first or second component of the momentum Q is
nonzero.

By construction the momenta L~Y(r;)q; have at least
one nonvanishing “space” component. We may re-
write expression (91) for momentum Q; in the form

Qi= R (L (r)g)Z (LN rg)R™ML™(r;)g5)
XRL M r) pDZL ) pDL ™ (p2)pis  (92)
which has nonvanishing first or second components
provided
R(Lr;)gi) # R(L™X(r;)p5) - (93)
This condition is satisfied provided the vector g; is
not a linear cobmination of vectors p; and 7;. This is in
turn ensured by the constraint equation (86). We then
learn from Egs. (90) and (A11) that by construction all
phases ¢’ are zero.

One should note that, for a two-particle system with
only two independent four-momenta, condition (86)
cannot be satisfied. We shall examine this important
exceptional case in Sec. V.

We have shown that for systems of at least three
particles, it is possible to construct a set of scalar-spin-
component states |p;: i) according to the equation

|p:: M)q:I_i {H;(piqi7)} 1O, (94)

where the boost functions A j(pj,qj,)'j) are given by

H(pjqir)) =L)AL (r;)g5)
XHY(HN L) gL r)p).  (95)
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These states behave in the following way under space-
time translations ¢ and homogeneous Lorentz trans-
formations A:

a]pit Ni)g=€"7"%| p: N},

Alpiz Ndg=[DS: Nd,

where p;' = Ap..

From the defining equations (94), (56), and (30), we
see that the ¢g-spin states |p;: \;)q may be expressed as
linear combinations of standard direct-product states

|pi’>‘i> ) , ,
[p:: M)F% A [X)alPoAd), (98)

(96)
97

where the overlap coefficients are given by
(N Ao =TI ADvn LL (P H (pogisrd Ty (99)

In general each choice of vectors ¢; and 7; satisfying
Eq. (86) defines uniquely a class of multiparticle states
with spin-independent Poincaré transformation proper-
ties. As the number # of particles, increases the number
of classes of n-particle states increases very rapidly
indeed. For each particle (i) in a system of 7 particles
we have at least #—1 degrees of freedom in the choice
of a vector ¢;, and at least »—2 degrees of freedom in
the choice of a vector 7;. The true number of degrees of
freedom is actually greater because we may contract
any three four-momenta with the tensor e** to form a
new four-vector, in terms of which we may define vec-
tors g;, and 7;. Altogether this suggests that for #>2,
we have at least n(2n—3) degrees of freedom in the con-
struction of scalar-spin-component states.

IV. MULTIPARTICLE STATES WITH
SINGLE-PARTICLE LABELS

In forming states of type I, we replace the frame-
dependent operators S;.;, the eigenvalues of which
labeled multiparticle direct-product states |pi\;), by
Poincaré scalar-component operators S;2. We shall now
replace the 3z momentum-state labels p; by single-
particle labels p, o, and A, and a set of (3% —35) Poincaré
scalar parameters. This we do in two stages.

A. States of Type II

We replace the momenta p; by a maximum number of
Poincaré scalar momentum operators of the form s;;,
where

si=(pitp1)?,
and
So;= (P—Pj)z, i, j= 1, 2, R (B (100)
Since all momentum operators $;., commute, the prob-
lem is essentially one of changing independent momen-
tum variables p;.
We define a c.m. momentum $, by

b2=L7'(p)pe, (101)
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and define angles 6 and ¢ by

We then tentatively introduce another c.m. momentum
ps*, where

ps* =R (—p2)L7(p)ps. (103)
Using arguments similar to those following Eq. (89),

we can show that the components of vector p3* coincide
with those of the vector ps, where

Ps=H (L (p2) p)L™'(p2) ps. (104)
We define an angle ¢ by
Ry(ps)=Ra(¥). (105)

For systems of at least three particles, we label our
states by the complete set of # scalar spin components
N\i, and 37z momentum parameters® s, p, ¢, 8, ¥, Soz,
$03, S04, S23, S24 and Sox, S2x, S3x for Sk n, where

s=A%p)=p*. (106)

We shall examine the two-particle case separately in
Sec. V.
We define the new states of type II by

lS: p’¢’0>¢: sik;)‘i>q=Jn“2lpi: >\i>q,
j=0,k=2,3,...,n
1=1,2,...,m<7=2,k=3,4,...,n (107)
i=3,k=5,6,....n

where the function J, is a suitable normalization fac-
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tor. If we choose this function to be equal to the modulus
of the Jacobian of the momentum-variable transfor-
mation,

n a(py)
.= |Et6e/IT (2pro e Tl
=1 5 @, cost:s;
Pu ik (108)
the new states will have the normalization
q<sl: p,; ¢,70l:‘/’,: Sjk’,)\£,155 p; ¢”0"p: sjky>‘i>q
=8(s—s")2p08(p—p’) 16728(¢p — ¢') §(cosf—cosb’)
X oW —¥)o(sie—si Yorny . (109)

In Appendix C we obtain closed-form expressions for
these functions J,,

]3=7r2/23,
Ji=72/325A(p,pa,ps, ps)

(110)

(111)
and

32
Jut=—sA(p1,p2)
7r2
X| i (P* 40P  s:a— P*a:0p™ 1) — P* 0:0P™ 51
=5

XIT 16A(p,popssp), 7325 (112)
i=5

where Poincaré scalar momentum components p*;.1
and p*;., are given by

(P*pi- pa—p2- ppi- p) (P°p2: ps—pa- pps p)+AXp,p2) (P*pi- ps—p3- ppi P)

ﬁ*. = —

, (113)

SA(P:PZ)A(P>P2’P3)

A(P’P2,P3)

In order to determine the space-time transformation
properties of states of type II, we must first of all know
how c.m. momenta p; and $; change under homogene-
ous Lorentz transformations A. From the defining
equation (101), we see that momentum pH, undergoes
Wigner rotation,

p2— P =W(A,p)Po. (115)
From Eq. (104) for the c.m. momentum $3, we find
Ps— by’ =WHW(A,ps), L= (pa)p)Ps.  (116)

Our states |s: p; ¢,0,¢: sjx,\:)q thus behave in the follow-
ing way under space-time translations ¢ and homogene-
ous Lorentz transformations A:

ﬁ[S: P; ¢;0;‘P: Sjk,)\i>q= eipwzlsz P; ¢>0:¢: sik,>‘1'>27
R|s:p; 6,00 siphiye=|5: D5 &' ,0' W 2 sipNi)a,

(117)
(118)

9 In the case where # <4 see Eqs. (186) and (193).

= puspia AP prpsp)
Apprps)

(114)

where p’= Ap and angles ¢’, ¢, ¢’ are defined by

R(d),y 0,; _¢,)= W(A)P)R(¢;97¢H) (119)
for some angle ¢/, and
Rs(y")=Ry(Bs)=WHW (A, p2), L (p2)p)Rs¥) .  (120)

We note that the overlap of states of type II and
states of type I is proportional to the square root of the
function J,, defined by Egs. (110)-(112),

P Nil s p; 0,0, sikNi)q
=TT {2p:06(p’—ps)} . (121)

B. States of Type III

We now construct a complete set of multiparticle
states labeled by eigenvalues p and A of the momentum
operator P and spin-component operator Ss, respec-
tively, a number of Poincaré scalar momentum products
sij, and scalar spin components A;. We define these
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states of type I1I by

[5,0 DA 15 SikNe) g

o
- / [ / Dy (R (8,0, —+9)

X|s:p; .00 Sik\i)q sinbdedody (122)

= (20+1)L () / D (R($,00)R (6,040)

X [5:0;0,0,0: s;0M) gdu(R), (123)

where the invariant measure of the rotation group
[SU(2)] is of the form

du(R) = (1/162) sinbdpdfdy ,

0<¢<2r, 0<06<m, 0<y<dr. (124)

The constants preceding the integral signs have been
chosen so that these multiparticle states have a ‘“‘single-
particle” normalization

4<sl)o',: p/;)\,: Sjklrkills)a': p’)\: s]'k)xi>q
=58(s—5")800 2008 (P—P') Srn (55— 5t ) dxpnsr -
From the defining equation (123) we may determine

the behavior of these states under translations ¢ and
homogeneous Lorentz transformations A:

(125)

] 5,0 PN 5 Sikhi)g= €% 5,01 DI p; Siphide  (126)
and

Aisyo': p;)‘: 'Y Sjk,>\i>q
=D WA | 5,00 PN s Siphide.  (127)

The latter equation implies that our states are eigen-
states of total spin operators S? and S; with eigenvalues
a(oc+1) and M, respectively.

We now wish to determine the physical meaning of
the parameter u. Consider the effect of the transform-
ation ¢ on the state_defined by Eq. (123). The
Poincaré scalar operator Sr2 commutes with the homo-
geneous Lorentz group operators Z(p) and R(¢ 0y),
and has the same effect as operators S; and J; when
acting on the states |s; 0; 0,0,0: sjx,\i)q. This leads to
the relation

exp (iS‘WX) [ 5,0 1PNt 1 Sikshi) g
— Qo+ 1)L(p) / Do (RGIH)R(, 05 4—)

X ]S: 0; 0,0,02 Sjk>\i> qd,u(R) . (128)

We now use the invariance of the measure du(R) to
replace the angle ¢ by ¢+X and so obtain the eigenvalue

equation

e"gp*xls,o: DN i ik Neye= €% | 8,00 DNt Sin,NiYg. (129)
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We thus identify u with the eigenvalue of the Poincaré
scalar-spin-component operator S72.

We may express these states of type III as linear
combinations of states of type II. From the defining
equation (122), we see directly that

IS,WP,)\:#; sjk,>\i>q=/<¢',0,¢|0': )\:/">

X [ s:p;d,0¢: Sjk))\i> P (R) ) (13())
where the overlap coefficient is given by
<¢70;¢IU: A #)z (2U+1)”2D#)\‘7(¢_¢) -—0) ——d’) . (131)

Alternatively we may express states of type II as linear
combination of states of type III,

‘S:p; ¢70)¢: sjk7>\i>q
=Zv,)‘,lt <0: At ui¢,0,l/l>[$,0’2p,7\!/4; sfk;)"i>Q;

where

(132)

(o: Nl 08)=({$,0¢]0: N u))*.  (133)

These formulas will prove useful when we come to
consider partial-wave decompositions of scattering
amplitudes.

By analogy with the single-particle states | m,0: p,\)s
we may construct multiparticle helicity states
|$,0: P,\: w; Sikhi)qn Which are eigenstates of the
operator h. Such states are related to the standard
multiparticle states |s,0: p,\: g Sjk,Ai)q by

[s,a: DAiu; Sjk,5\i>qh
=Z)\r <>\’} )\>h]3,0': p,}\,: M5 sjk))\i>q7
where the overlap coefficient (\'|\);, is given in Eq. (49).

(134)

V. TWO- AND THREE-PARTICLE STATES

The formalism which we have developed in Secs. III
and IV applies in general to systems of at least three
particles. We replaced sp1n~component—state labels by
eigenvalues of scalar ¢-spin operators S4, defined in
terms of momenta ¢, which were timelike in the physi-
cal region. We now examine two classes of state to
which the foregoing theory does not apply. We first
of all consider two-particle states of types I-III, and
compare them with the Jacob-Wick®7? helicity states.
We then construct a class of three-partlcle states
labeled by eigenvalues of scalar ¢- spln operators 9,
where the momentum ¢ is spacelike in the physical
region.

A. Two-Particle States

We have seen in Sec. III that in the case of a two-
particle system, where we only have two independent
four-momenta p1 and ps, the general formalism breaks
down. In this case alone the scalar-spin- -component
operators S? are uniquely determined up to a sign. For
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a momentum ¢ of the form

q=vip1tvaps, (135)
where »1 and v, are nonzero constants, we find
sgn(v2)S17=S17=[A(P1,P2) I e boprof 1.0,  (136)
sgn(v1)S22=So?=[A(p1,p2) T e * PrypoinTv:po. (137)

These scalar p-spin component operators have been
called “covariant helicity operators” by Matthews and
Feldman.*

We define p-spin eigenstates using a modified form of
Eq. (71):

| P1,P2: Myho)p=L()H1(P1)H(52)0,0; M,\e), (138)

where the c.m. momenta $; and p; are defined by

P1=L7Yp)pr and po=L7Y(p)ps. (139)

The operators H(5,) and H(f1) are not well defined if
the vectors ps or Pi, respectively, lie in the negative
3-direction. Thus, our two-particle states | pi,Pz: A,A2)q
are not well defined if the first and second components
of the c.m. momentum p; are both zero.

From Egs. (81) and (82) we see that, under homoge-
nous Lorentz transformations A, the states | p1,pa: A,A2)p
behave in the following way:

A[py,pa: Myho)p= e @ MHe™) [ py/ po/: Ny Na),,  (140)
where
pi'=Ap1 and p'=Ap, (141)
and the phase ¢° is determined by
eI =WHW (A,p), L7 (p)pi) - (142)

Each of these two-particle states may be expressed
as a sum of direct-product helicity states. From the
defining equations (44), (57), and (138) we have

[ P1,D2; MAo)p= A N2 [ A, N2) 5] P, P2 A N Dny  (143)
where the overlap coefficient is given by
h<)‘1,’)\2/ I )‘17)‘2>P= D)\l')\lﬂ(Wh(L(p):ﬁl))

X Dagn"*WHL(p),p2)). (144)

In the c.m. frame, the p-spin states |P1,Pa: Mi,\2), and
helicity states | P1,P2,A1,\2)n coincide.

Let us now construct states of type II. We change
momentum variables from p; and p. to the total
momentum parameters p and s, and the c.m. angles
0 and ¢ associated with the c.m. momentum —ps. The
Jacobian of this transformation is well known, and is
given by Eq. (C45).

The new states defined by

lS! p; ¢:0: >‘17>‘2>p= [WA(P17P2)/S]”2| P1,P2; )‘11)\2>P (145)
have the simple normalization
P(s: p; ¢’0: )\1,)\2|S: p; @,0: )‘17)‘2>ﬂ

=08(s—5")2pod(p—p")4ré (6 —¢")

X 6(0050—coso')émlfa)\,x,: . (146)
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They behave in the following way under homogene-
ous Lorentz transformations:

Als: p; 6,6: Moy
= —i(¢1)\1+¢2)\2)|S: p/; ¢l’0/: )\19)‘2>P7 (147)
where the phase angle ¢! is defined by Eq. (142), the
transformed momentum is p’=Ap, and angles ¢’, ¢’ are
determined by Eq. (119).
We may also construct two-particle states with
single-particle labels:

|$,0: DA AL\

(20'—]-1)”2
ot / /Dx ™ (R (3, 6, —¢))

Xe 290 s:p; ¢,0: Miy\2)p sinfdfdp  (148)
= (20+1)12L(p) / Dru"*(R(9,6:%))

X[R(¢,04) exp(3miJs)]

X !S: 0? 0)%7: A1))\2>11d/" (R) ) (149)

where the invariant measure on the covering group
SU(2) of the rotation group du(R) has been defined
in Eq. (124). We recall from the discussion preceding
Eq (129) that u denotes the eigenvalue of the scalar-
spin-component operator S», Now this operator is
related to .Sy? and Sgl’ by

Sp2= Sy —Sy», (150)
and this implies the condition
p=A1—\s. (151)

One can alternatively show, using invariance of the
rotation-group measure du(R), that the integral in
Eq. (149) vanishes unless this constraint (151) is
satisfied.

From the defining Eq. (149) one can show that under
homogeneous Lorentz transformations these two-
particle states behave in the same way as the single-
particle states of Eq. (37),

AI 5,0 p:>\: )\1’)\2>p= D)")\U(W(A)P))

X|s;0: DN Aphe)p.  (152)

This implies that parameter \ is the eigenvalue of the
spin operator S; and o(c+1) is the eigenvalue of the
effective spin operator Sz,

One may also construct hehc1ty states. We replace
the operator L(p) in Eq. (149) by the helicity operator
H(p) of Eq. (40). The relation between such helicity
states |sa P,M: AMyhe)pn and the standard eigenstates
of Ss is given by Egs. (48) and (49):

IS,O'Z p:>\: >\17)\2>ph=D)\’)\”(R(p))]S;U: p;>‘/: >‘1:)‘2>ZJ' (153)

They transform in a similar way to single-particle
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helicity states

[5,0: DA Ay ho)pn= D" (WH(A,p))
X iS,o’: p,)\,: >\1)\2>ph. (154)

We did not consider helicity states of a single particle
(41) to be well defined when the momentum p was in
the negative 3-direction. Similarly we do not consider
c.m. helicity states, or two-particle states of the form
(153), in which the total momentum p lies in the
negative 3-direction, to be well defined.

We can also define Wick-type helicity states
[5,0: PA: M,he)pw if we replace the operator L(p) in
Eq. (149) by the helicity operator” A% (p). These states
differ from the helicity states |s,0: p,A: A,\2)pn by a
phase

IS,UZ p)>‘: >‘17)‘2>PW= —iAé(2) lS,U': p))‘: )‘17>‘2>ph7 (155}

and are not well defined if the first and second com-
ponents of the total momentum p are both zero.

One may compare our states with those of Jacob
and Wick.® In the c.m. frame the total momentum p
is of the form

pur A(P)(1; 0,0,0). (156)

The operators S;» and Szl’ are then equivalent to
helicity operators %1 and ke when acting on c.m. frame
states |s:0; ¢,0: Ay,\s),. Apart from a momentum-
dependent normalization function 97, we find that the
Jacob-Wick helicity states ||Pi],0,A; Ay\o)sw are
simply related to our c.m. frame p-spin standard states
of type I1I,

[1P1],07; A, Ne)sw
= g{(_l)(n-—)\z)ls. o0\ )\1,>\2>p (157)

The Jacob-Wick parameter \ is the eigenvalue of the
spin-component operators Ss or J3 or (1/m)Ws, etc.
The ambiguity arises because the states are defined
only in the case of zero total momentum. Similarly the
Jacob-Wick parameters A and Mg are the elgenvalues of
helicity operators ﬁl and hy or scalar-spin-component
operators Sy and S;?, etc. We shall see later that the
real meaning of these parameters critically affects
the crossing properties of associated partial-wave
amplitudes.?

In a more recent paper,” Wick defines a class of
helicity states |p; o,M: Ay,\s)w for two-particle systems
with nonzero total momentum p, by

A(prp) P 201N
fﬁ;(r,)\:?u)\?)w [ i 2:' ( ? > W(P)
4s 47

X / Dt R$0,0)R(6,0,0)
X | D1, P2: M,\2)pd cosbdgp, (158)

where the momentum Py lies in the positive 3-direction.
These states coincide with our p-spin helicity states

[ p; o At MAyw= 5,01 DA Ayhe)pw.  (159)
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We should like to emphasize the point that in these
states the parameter N is the eigenvalue of the total
helicity operator A, and the parameters A; ; and \. are
eigenvalues of the scalar p-spin operators Sy? and Sy?
and not of the helicity operators h; and As.

B. Three-Particle States

Three-particle states of type I may be constructed
in which each particle is treated in an identical way.
We can in this case alone define two independent four-
momenta p and Q, with

Quz ép""”Pl :vPZ:pPii:a )

which remain the same, up to a sign, on the inter-
change of any two single-particle momenta.

We have primarily been concerned with scalar spin
components S7 associated with timelike momenta gq.
We now wish to show how to construct eigenstates of
the spin- component operators Si@, 5,0, and S;@ when
the momentum Q is spacelike.

Let the momentum Q, be of the form

(160)

Qu <> (sinhg, —coshd sind cose,

—coshé sinf sing, —coshd cosf)A(Q). (161)

We associate with it homogeneous Lorentz trans-
formations R(Q), Rs(Q), and H(Q), where

R(Q)=exp(—iJ:p) exp(—iJ20) exp(iJsp), (162)
Ry(Q)=exp(—iJse), (163)
A(0)=R(Q) exp(—iK ). (164)

For timelike momenta p of the form (25) we also
introduce the operator

N(p)=L(p)Ra(p).
We may then define Q-spin component eigenstates by

(165)

[P1,P2,Ps: AM,Az,h8)0

=I'i1 {ZJ(PJ,QyP>} |070a07 >\1:>\27>‘3> ’ (166)
where the operator L(p;0,p) is of the form
L(p;0.0)=L(p)AL(p)Q)

XNHMLHPQL M (p)p). (167)

This expression is similar to that for a timelike mo-
mentum Q which we gave in Eq. (95).

We now verify that the state defined by Eq. (166) is
an eigenstate of operators 519, 5:¢, and 559 with eigen-
values \j, A2, and A3, respectively. From the defining
equation (166) we have the relation

Wi Q|P1,P2,Ps; MA2,Ms)g

=TT (L300 (00 W

X I0,0,0; >\1;)\2,>\3>- (168)
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We wish to determine the form of the momentum
LY (p1,Q,0)Q. From the defining equations (164) and
(167) of H(Q) and L(p+,0,p), we see that it is given by

L7 (pr,Q,p)= N"MHYLT'(P)QL(p)p)Q°, (169)
where Q° lies in the 3-direction,
QMO(—)A(Q)(OJ 0) 0’ _1) (170)

Now the c.m. momentum H-YL™'(p)Q)L1(p)pr has
zero 3-component because vectors Q and p; are orthog-
onal. The associated boost function must be of the form

N(H “(L*‘(P)Q)L“(P)Pk)

—1J3¢ 1J21r/2e—zK3661121rl2

(171)

which is an element of the little group of momentum Q°.
We now recall that, on a rest state, operators Wi.,
and (0; A(pk)sk) have the same eigenvalues. After
substituting the new expressions for L™'(p+,Q, £)Q and
W: into Eq. (168), we obtain the -eigenvalue equation

Wi- Q| p1,D2Ds: MAahs)e
=A(Q)A(PK)Ne| P1,P2,Ps: M2, Ns)e  (172)
as required.
Under homogeneous Lorentz transformations A and
translations @, we see from the defining equation that
these states behave in the following way:

@[P1,P2,Ps: AiAs\s)e
=¢i!(rrtrrtre) o[y popsi MAs,As)e,  (173)
Ap1paps: Mo Ns)e
3
=II {75} [pr/,p2',ps" s AAehs)g, (174)
=1
where p;/= Ap;. The phases ¢’ are given by
eI =W (WHW (8,9),L7Hp)Q),
XH LY P)QL(p)ps), (175)
and the Wigner rotation W»(A,p) is of the form
Wn(A,p)=N"(Ap)AN(p). (176)

We show in Appendix A that the multiple Wigner
rotation (175) is equal to the identity, and all phases
¢’ are zero by construction.

We may express our three-particle states as linear
combinations of direct-product standard states in the
following way:

|P1,P2,Ps: A2 h5)0
= Z <)\1,7)\2,7>\3/[>\17>\2))\3>Q

A/ N2/ N3/

X|p1,pe,ps: A NN, (177)

where the overlap coefficients are given by

3
NS [N Nsy o =TT {Drr, 7 (L7 (p) L (p5,0,0))} -
=1
(178)
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VI. SUMMARY AND CONCLUSIONS

We have characterized a system of noninteracting
particles by the eigenvalues of complete sets of com-
muting-operator observables. Each state of the system
is a function of individual particle masses m;, spins g,
and a number of frame-dependent parameters. We
took as standard states |p;\;), eigenstates of momen-
tum operators P;, and spin-component operators S;:s.
Our aim has been to construct a class of states labeled
by a maximum number of frame-independent eigen-
values of Poincaré scalar observables.

In Secs. ITI and IV we have shown how, for systems
of at least three particles, multiparticle states trans-
forming like single-particle states may be constructed.
They were labeled by four frame-dependent parameters
p and \ corresponding to the total momentum p and a
component of the total effective spin S;. In order to
do this, we first of all replaced the eigenvalues of
spin-component operators S;.s, labeling standard direct-
product states by eigenvalues of scalar-spin-component
operators S;? of the form:

Su=W:4i/MQs,$)- (179)

In these new states of type I denoted by |p:: N,
we measure components of spins S, for each particle
(7), relative to frames fixed by four-momenta p;, ¢,

and 7;. Such states are related to standard direct-
product states |pi,\:;) by

[Pihi)a=20e (N[N ol Do),

where the coefficients (\/'|\i), are given by Eq. (99).
Under homogeneous Lorentz transformations A, the
scalar-spin-component state labels A; do not change,

(180)

Alpis M= 193 No)o, (181)
and the transformed momenta p;’ are given by
pi=Ap;. (182)

The construction of these ¢-spin eigenstates with spin-
independent Poincaré transformation properties should
prove useful in the generalization of spinless particle
theories or models to include external particles with
spin.

In Sec. IV we proceeded to construct scalar-spin-
component states of type II. We replaced the frame-
dependent three-momenta p; by the square of the total
momentum s, the total three-momentum p, a number
of scalar momentum products s;;, where

si= (Pt P2 sio=(p—p)% (183)

and three angle variables ¢, 6, and ¢. These angles may
be defined in terms of the c.m. momenta 5, and p; of
Egs. (102) and (103),

R(d’: 0, _d’) = R( —I-)2) I}
R3(¥)=Rs(Ps).

ii=1,2,...,n

(184)
(185)
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The new states of type II, |s:p; ¢,0,¢: sjkhi)g, are
simply related to the states | p;: A\;)q of type I,

Is: D5 6,00 SikNi)q= Tl 2| Pit Ni)g,

where the range of parameters ¢, 7, and & is given in
Eq. (193), and the coefficients J,, are defined by Egs.
(110)—(112).

Neither the momentum parameters s;; nor the spin
parameters A\; change under homogeneous Lorentz
transformations A,

(186)

AIS: p; ¢)0)¢: Sjk,)\i>q= lS: p,; ¢,:0,)‘/’/: Sjk:)‘i>Q' (187)
The new angles ¢’, ¢, and ¢/ are defined by Egs. (119)
and (120) and the transformed momentum p’ is given
by p'=Ap.

Using the Poincaré-invariant nature of a scattering
operator § one can show that matrix elements between
these states are invariant amplitudes, functions of
Poincaré scalars alone.?

Finally in Sec. IV we introduced states of type III
labeled by a minimum number of frame-dependent
parameters. They could be defined in terms of the

PN [Pi M) g =I_]1: {20500 (Pi—Pi ) Orani'}

Q<S,: pI) ¢l70/7‘// : sﬂc,7>\i, [ $ip; ¢707¢: sjk7)\i>q
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scalar-spin-component states of type II, and overlap
coefficients (¢,04|a: \: u) of Eq. (131), by

ISJU: p>>\: M5 Sjlc,)\i>q

1 4 T 2T
= / / / @0¢lo: N )
167? 0 0 0

X|s:p; 0,00 : Sik\i) o SinOddhdy .

(188)

The new state parameters o(o+1), A, and u are the
eigenvalues of effective spin operators 32, S;, and Sz,
respectively. Under homogeneous Lorentz trans-
formations A these states transform like single-particle
states,

A|S:U: PN 15 Sik;)‘i>q
=D\ (W(A,p) 5,05 BN 15 SiwNida,

and parameters ¢ and u do not change. Matrix elements
of a scattering operators § between these states are
partial-wave amplitudes.’

The multiparticle states of types I-III have the
following normalizations:

(189)

(190)

=08(s—s")2pod (p—p")167°5(¢ —¢")8(cosf —cost)d ¥ —¢") IT {8 (sj—sx")oranwr},  (191)
ijk

o0 DN s i N 8,0 i DN 1 SikNe) = 8(5—5")800 2908 (D —D")Onn O TT {8(sin—si Yoransr},  (192)

where the ranges of the indices 7, 7, and % are

7=0,k=23, ..
1=1,2, ...,m;97=2,k=3,4, ..
7=3,k=5,6, ...

In the two-particle case the procedure for construct-
ing states of type III was no more complicated. How
ever, states of types I and II did not have simple
homogeneous Lorentz-group transformation proper-
ties. We could define a class of two-particle states of
type I in terms of direct-product helicity states | pi,\ia
and overlap coefficients (M, N2’ | A,\2), of Eq. (144) by

[PL,P2: Ahe)p= 2 aA A [ A he)p

A1’ Ag!

X Ipl,p2)}‘lli}‘2,>h' (194)
Under homogeneous Lorentz transformations A the
scalar spin components A; and \; do not change, but
the state is multiplied by a function of the phase ¢!
defined by Eq. (142),

K| py,pa: Miyho)p= €73 @ N6 [ p)/ po/ s My Ns) . (195)

N {j=0,k=2,3,4;
" 7=2,k=3,4, n=4, (193)
,m,n25; §=0,k=2,3 n=3.

States of type II were defined by
[5:D; 6,00 Myho)p=[TA(P1,02) /s ]3| P1,P2: M,ha)p . (196)
They also transformed with a frame-dependent phase,

Als: p; d’ye: >\1))‘2>P

=g i@ |51 p’s @0 Nyhe)p, (197)

and angles ¢’ and ¢’ were given by Eq. (119).
Finally we defined states of type III in terms of
states of type IT and an overlap coefficient {(¢,6|a: \),

1 T 2m
|S,‘T: p)>\: >‘17)‘2>p="—/ / <¢,0| o: )‘>e_2i¢)\2
drto Jo

X|s:p; ¢,0: My\e)p sinddeds, (198)

where

<¢701 g )‘>= (20'+ 1)1/2D)\v)‘1—)\27*(R(¢: 0: —¢)) . (199)
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Under translations and homogeneous Lorentz trans-
formations these states transform in the same way as
the multiparticle states of Eq. (188). We have shown
in Sec. V that they are closely related to the helicity
states of Wick,” and in the c.m. frame coincide, up to a
normalization factor with the Jacob-Wick helicity
states.®

The two-particle states of types I-III have the
following normalizations:

2(P1,P2 s M N [ P1, P2t Aihe)s

= 2P1:05(P1—Pl')2P2:05(P2—P2') 5’\1%1’5)\2)\2’ ’ (200)
208" "5 8,0 M N[5 p; 6,0: M)y
=06(s—5")2pod(p—D")4md(d—¢")
X 8(cosf—cos8)dapyOngngr,  (201)
20,0 N M N 8,00 DA Aphe)p
=08(s—5")8502000(P—D") SanBapnyOrgng - - (202)

All these states were labeled by eigenvalues of g-spin
operators .5;¢ defined in terms of momentum operators
4 with timelike eigenvalues ¢ in the physical region.
In Sec. V B we gave an example to show that such a
restriction is not really necessary. We constructed a
special class of three-particle eigenstates of operators
S:@, where the four-momentum () was spacelike in the
physical region. Such states had similar transformation
properties and normalizations to those of the three-
particle states of Eq. (180).

In another paper® we shall construct and analyze de-
compositions of general multiparticle scattering ampli-
tudes using these states, without introducing auxi-
liary spin groups. The techniques developed will also
enable us to generalize dynamical theories and models
involving spinless particles to include external particles
with spin.
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APPENDIX A: PROPERTIES OF SOME
GENERALIZED WIGNER ROTATION
FUNCTIONS

We shall examine two generalized Wigner rotation
functions which are related to the phase changes of our
scalar-spin-component states under homogeneous Lor-
entz transformations A.

We first of all consider the triple Wigner rotation
function W1(A; p,q,r), where

Wl(A; P:qﬂ’) = WW(W"(W(A:P):Q):”) . (Al)
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The ordinary Wigner function W(A,p), defined by Eq.
(39), is a rotation and, like the operator L(p), is well
defined for all values of the momentum p.

The function W*(R,q) of a rotation R and four-
momentum ¢ defined by Eq. (47) is of the form

WHR,q)=H"(Rq)RH(q). (A2)

From the defining equation (40) for the boost function
H(qg), we see that it is given by

ﬁ(?) =R(¢7 0, _¢)Z(9) ) (AS)

and it is well defined provided the vector ¢ is nonzero
and does not lie in the negative 3-direction. Now,
since the product of two rotations is again a rotation,
we may express the homogeneous Lorentz-group ele-
ment R(e,8,y)H(g) in the form

R(euB8,v)H (9)=R(e/ 8',v)Z(q) (A4)

where angles o/, 8, and v’ are functions of parameters
a, B, v, 0, and ¢. The boost function H(Rgq) is then
given by

H(R(a,8,7)9)=R(, ', —a")Z(g) - (AS)

The Wigner rotation W*(R,q) is obtained by substitut-

ing expressions (A4) and (AS) into Eq. (A2) and by

making use of the zero commutator of operators J; and
3

WHR(a,8,7),9)=Ra(o/+v") . (A6)

We have shown that the Wigner rotation W*(R,q) of an
arbitrary rotation R and four-vector ¢ is a rotation
about the 3-axis.

Let us now examine the Wigner function W% (Rs,r)
of a 3-axis rotation Rs(y) and a four-vector r defined by
Eq. (53),

WY (Rs)=[H" (Rs(v)r) I 'Ra(y)H7 (r).  (AT)
Like the operator H%(7), it is well defined unless both
the first and second components of the vector 7 vanish.

Now, if the boost function H7(r) defined by Eq. (50)
is of the form

HW(r)=R(¢',0',0)Z(r), (A8)
the transformation H% (Rr) will be given by
HY(Ry(v)r)=R(y+¢', 0, 0)Z(r). (A9)

On substituting these expressions into Eq. (A7), we
discover that this Wigner rotation is equal to the
identity

WVW(Rsr)=1. (A10)

We now combine Egs. (A6) and (A10) to obtain an
expression for the triple Wigner rotation Wi(A,p,q,7),

WY W (A,p),9),m)=1. (A11)
Wigner

We now examine the triple rotation

Wa(A: p,q,r) of Eq. (175),
Wa(A; p,gir)=Wr(WHW (A,0),9),7), (A12)
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where
(A13)
(A14)

g=L7(p)0Q,
r=H" (L7 p)DLT(p) 1.
The Wigner function W(A,p) defined by Eq. (39)

is a pure rotation. The function W*(R,q) of a rotation
and spacelike four-vector ¢ is given by Eq. (47),

W"(R,g)=H"(Rg)RH(q). (A15)
By definition the vector Q is orthogonal to the vector
p. Consequently the vector L=1(p)Q has zero timelike
component and the operator H(L7Y(p)Q) is a pure
rotation of the form

H(L_I(P)Q):: R(d); 07 _¢) .

Since the product of two rotations is again a rotation
we find

(A16)

R(a8)HIL(p)Q)=R(,8'") (A17)

for some angles o/, 8, and v’ which are functions of the
parameters a, 8, v, 6, and ¢. The function H(R(e,8,v)q)
is thus given by

H(R(aﬂﬂ’)q):R(a', 6,s _a/) )
and on substituting this into Eq. (A15), we find
Wh(R(a,lng),(I)= R3(‘x,+7,) .

We have shown that the Wigner rotation function
W"(R,q) of a rotation R and spacelike vector ¢ is a
rotation about the 3-axis.

We finally consider the function W™(Rs(y),r) of a
3-axis rotation Rjs(y) and the four-vector r of Eq.
(A14),

(A18)

(A19)

W™(Rs(y),r)=N"Rs(v)NRs(v)N(r).  (A20)

Since the vector p; is orthogonal to the vector Q, the
vector » must have zero third component. The boost
function N(7) is then given by Eq. (171),

N(r)= e "73d¢g—iK1d (A21)
and the function N(Rs(v)r) is of the form
N(Rs(’y)f) = g1 3(¢t7) g—iK18 (A22)

On substituting these expressions into Eq. (A20), we
we find that the Wigner rotation W*(Rs(y),r) is equal
to the identity

W(Rs(y),r)=1. (A23)

We now combine Egs. (A23) and (A19) to obtain an
expression for the Wigner rotation Wa(A; p,g,7),
W(WHW (A,p),9),r)=1. (A24)

This formula holds provided the boost functions H(g)
and N(7) are well defined. This is the case if the vector
q does not vanish, or lie along the negative 3-axis.
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APPENDIX B: SCALAR-SPIN-COMPONENT
EIGENSTATES

We wish to construct states |pi:\;), which are
eigenstates of momentum operators p: and scalar-spin-
component operators S;¢, with eigenvalues p; and \;,
respectively.

We construct eigenstates of the momentum operators
pi by boosting standard direct-product rest states. The
most general form for such a state is

n
[ph)\1>T=III {HJ(PJ)RJ—-I} ’OJ\?) ’ (Bl)
i
where R; is an arbitrary rotation. The eigenvalue
equation takes the form

ﬁleW)FIi (A (p)R ™Y H (p1)RiDr|ONs)

= pr|Pi\i)s- (B2)

We wish to determine the constraint we must impose
on the rotations R; if we are to obtain ¢-spin eigenstates.

Consider the effect of the operator - on the new
states, where the momentum ¢ has timelike eigenvlaues,

Wi-g |Pi,>\i>r=nl (A (p) R RH(p1)g- Wil O\
i
(B3)

On the rest state the eigenvalues of operators Wy, and
(0; miSy) coincide. Since the parameter \; is the eigen-
value of the operator S;.; we shall have constructed
g-spin eigenstates if the first and second components of
the momentum R.H'(pr)q are zero. In order to achieve
this we choose Ry, to be of the form of a Wigner rotation,

Ri=WH"M~(q),p), (B4)

where the operator M(g) is defined in Eq. (70). This
evidently produces a momentum R H~'(p.)q with the
required properties. We now substitute this expression
(B4) for R; into Eq. (B3) and use arguments similar
to those following Eq. (73) to show that

Wi-@| pit Mo)a=NeA(P1,0) | P M) (BS) -

On substituting from Eq. (B4) into Eq. (B1) we obtain
an expression for the g-spin eigenstate |p;: Ni)q,

Ipe: M>q=li[1 UL (@)p)} 0. (B6)

APPENDIX C: MOMENTUM SPACE
TRANSFORMATION FUNCTIONS J,

We wish to compare the phase-space volume elements

et [, -
=1 (2p;:0
dp ded(cosh)dy
dU,=ds— —————dsjx, (C2)
2?0 1671’2
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where the range of parameters j and % is given by Eq.
(193). The function J, is defined by

with

ul a(p:)
To=|[167%/TT {2ps:0} ] det[ ]' .
| =1 a(?#) %, C050,¢2 Sjk)
(C4)

Direct computation of the Jacobian of the transforma-
tion is mathematically too tedious. We shall determine
it indirectly, taking advantage of the Lorentz-trans-
formation properties of individual-particle momentum-
space volume elements.

We first of all consider particle (1) “off the mass
shell,” and interpret momentum component pj.o as an
independent energy variable,

dp1/2p1.0= A*p18(p12—m1%)0(p1.0) . (C5)

We may then replace variables p;., by the total four-
momentum variables p, and obtain the expression

AV = 8(p12—m1?)0(p1.0)d*pd V. , (Co)
where
P1=P-_Z_:2 i, (C7)
n dpz
av.' =11 { } (C8)
=2 2Pi:0

The differential volume elements dp;/2p;.o are Poincaré
scalars. We may compute them in various Lorentz
frames. We have already defined c.m. momenta p, and
ps by Egs. (100) and (104). We now define momenta
p*i by

P*i= R (Bs) R (—P2) L7 () ps, (C9)
and examine the volume element
dpy A » ( dp*i
AV = ‘3Hl~ } (C10)
2pa.0 2P3.0 i=4 \2p% ;0

The components of momentum p, are equal to those
of momentum p; in a special c.m. frame. Similarly, the
components of momentum p; are equal to those of
momentum p; in a special c.m. frame in which momen-
tum —p. lies in the 3-direction. Components of mo-
menta $;* are equal to those of the momenta p; in a
c.m. frame in which momentum —p, lies in the 3-direc-
tion and momentum p; has zero component in the
2-direction. We may then define for all ¢ corresponding
c.m. momenta by

pi=L7'(p)ps, (C11)
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pi=R(—P2)p:, (C12)
P*i=RsY(ps)p:. (C13)

Using arguments similar to those following Eq. (89),
we may express the c.m. momenta in terms of single-
particle momenta alone,

pi=H (L Y p) )L~ (p2)p, (C14)
ﬁi*=H—1(P,P2,P3)Pi, (ClS)

where the operator H(p,ps,ps) is defined by Eq. (95).

All components p*;., of the transformed momenta
p*; are Poincaré scalars. To see this we note from the
defining equation (C15) that, after a homogeneous
Lorentz transformation A, the transformed momentum
p*' is given by

p*i=H"'(Ap,Ap2, Aps)AH (p,po,p3)p*:.  (C16)

From the definition (95) of the boost function H (p,ps,ps),
and Eq. (A11), we find

P =p*.. (C17)

The nonmanifestly covariant nature of c.m. momenta
Ps, Pi, and p*; arises because the homogeneous Lorentz
transformations which relate them to manifestly
covariant four-momenta p; are themselves frame
dependent.

We shall now derive explicit formulas relating the
Poincaré scalar components $*;., to the particle four-
momenta p;.,.

We define two spacelike momenta ¢; and 7; by

ge= p2—p2- pp/P*, (C18)

3= q3—q3- q2qa/ q2?, (C19)
where

gs= ps—ps- pp/ p*. (C20)

The magnitudes of these four-momenta are given by
A(g2)= A(p,p2)/A(p) (C21)
and
A(rs)= A(p,p2,03)/ A(p,p2) - (C22)

Using the general definitions (C11), (C12), and (C15)
of the c.m.-frame momenta, we find

P A(p)(1;0,0,0), (C23)
A(p,pe
2o 0002,
A(p)
A 2,03
Pr3 e M(O; 1,0,0) (C25)
A(P’P2)

by construction. We now use these expressions to
obtain explicit formulas for momentum components

ﬁ*
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From Eq. (C23) we find
P*i0=Di:0=Pi0=PPi/Alp)=p- pi/ A(P).

From the mass-shell relations, we can obtain the
magnitudes of the c.m. three-momenta |p|,

|D:| = A(p,p:)/A(p). (C27)

We use Eq. (C24) to determine the Poincaré scalar

(C26)

(P*bi pa—1p2- ppib) (P2 ps— b2 pps- p)+A2(p,p2) (9*pi- ps—ps- phi- p)
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components $;:s,

pirqe —pipprptppi pe

= - ’ (CZS)
A(gs) A(P)A(p,p2)

P*iz=pis

and from Eq. (C25) we obtain an expression for the
scalar components $*;.1,

(C29)

Prii=—pirs/A(rs)=—

Finally we note that the second component p*;., is
given by

"2 pupasps:,pize= —A(p)A(q2) A(rs)Pii, (C30)
and up to a sign we have
P* o= A(D,p2,p3,00) /[ A(p, s ) - (C31)

We are now in a position to transform the volume
element dV,’ of Eq. (C7). For 1> 4 we use expressions
(C26), (C28), (C29), and (C31) for the momentum
components p*;., to change from wvariables p; to
variables so;, 21, and s3. Up to a sign we have

Iiﬁ*-; dﬁ*i; o(lﬁ*i: 1(15*1': 3 dsoidsoidssy;
250 25% o 16A(p,pa,ps,p)

The first two components of momentum p; are of the
form

(C32)

Ps1=p* cosy, Pz.e=p* siny. (C33)
We make successive variable transformations and use
the mass shell constraint for particle (3) to obtain the
equation

dps  prdp*dps.s

= = Ay =%dps.odpssdy.  (C34)
2ps:0 2Ds:0

We then express momentum components p3.o and $3.3
as functions of Poincaré scalars so3 and sq3. Up to a
sign, we find

dﬁs/zfs:o= dSoadszsd\P/SA(P:h) .

We now consider the c.m. phase space for particle (2).
Angles 6 and ¢ are defined by

(C35)

—P2:1=|P2| sinb cose, (C36)
—p2.2=|P2| sinf sing, (C37)
—ps.3= | P2 cosh. (C38)

We change to polar coordinates and use the mass-shell

DPA(D,p203)A(p,12)

constraint to obtain the equation

daps |Pa|?

d| P2 dopd cosh= —3|Pa| dP2.odepd cosh.
(C39)

2p2.0 D2.0

We now use relations (C26) and (C27) to derive the
equation
df)2 A(P7P2)

—= (C40)
2ps.0  4A%(p)

dsoedpd cosf.

The volume element equation (C6) then takes the
form10

ds dp
an =ﬂ:0(?1;0)5(]512—7}712)3—

25 2pg
dSo:idSZ:idsZi:i

»~—*~——~} . (C41)
164 (p:P%P??)Pi)

X(iS()Q(lS();;dSzgd(ﬁd COSO(ZII/ H {

1=4

‘We shall now consider separately the transformation

formulas for 2-particle, 3-particle, and #-particle

systems with 7> 4.
For a two-particle system, Eq. (C41) is of the form

A (PI;PZ) dp
dV2=0(p1;0)6(p12—m12) 4 d52—~d¢d COSﬂ(iSoz y
s b4
» ' (C42)
where
piP= (p—p2)*=s02. (C43)
Thus the required volume element is
ds dp de¢d cosf
AVe=m—A(p1p2)— , (C44)
S 2170 4
4 ad »D?2 A( y )
Jo= i P12 = Pupe . (C45)
2p1:02p2.0 0 (pu; @, cosb) s

10 When one determines the range of integration of scalar vari-
ables, one must take into account the multivalued nature of the

momentum-space mapping.
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For a three-particle system we have

ds dp
d V3 =0(P1;0)6 (plz—mf)———— ‘—-dtﬁd COSleI/dSozdSost% y
323 2?0
(C46)
Pi2=(p—po—ps)?=su+sortss—s—mP—mg®. (C47)
After removing the variable so3 we find
ds dp ded cosfdy
dV3 =1r2—— —_— ’—-‘—‘—‘_dSozdS()g 5 (C48)
25 2py 16w
; 167 9(p1,p2,ps) L
3= =
291:02p2:02P3:0 0 (Ppy®, COSOY ; S02,503)1 25 (C19)

For a system with four or more particles we consider
Eq. (C41) with momentum p; given by

prP=q"—2q patps, (C50)
where
q'—'P—Pz-—Ps—-ZE bi. (C51)

In the special c.m. frame the vector §* is independent
of the components of momentum $*,.,. We wish to
eliminate the variable s34 from Eq. (C41). We use the
mass-shell constraint for particle (4) to obtain the
relation

A(p1?) _2 (% a1P* s2—F* 4:2P* 4:1)
9p* 41 P*u

) (Cs2)
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and from Egs. (C29) and (99) we find
P*i1 Alp,pa)
dss 28(p,pops)
Up to a sign this leads to the volume element relation
ds dp d¢d cosbdy

av,=r——
32s2py 16w

(C53)

dSozdSostMdSzadqu

X
A(p,p2) (@*4:1P* 00— P* 1:10% 1:2)

n dSo,'dS 2id33i
[ St
=5 L16A(p,p2,p3,0:)

The function J, is given by

} . (C54)

32s n
It =—2_A (5,02) | 22 (P*a:xP*s:0— P> 0:0p* 1)
T i=5

—F*usB*sa|TT (16A(p,pop5p2)}, (CSS)

=5

where momenta p*;.» and $*;.1 are given by Egs. (C29)
and (C31), repsectively. In the case where n=4, we
simply omit the summation 3 and product ] occurring
in this formula. We note that

|B*s:1] = Alrs) = A(p,02,03)/ A, ) 5
and J, is given by

Ji=m2/325A(p, P2, p3,04) -

(Cs6)

(Cs7)



