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Io(R sin8')d cos8'=2 Io(R sin8) sin8d8

= (2tr/R) ) Ii)c(R)

follows: Expand exp(x cos8') and Io(y sin8') separately
in Legendre series with the aid of Secs. 3.9 and 3.13.5 of
Ref. 5, integrate term by term, and note that the result
coincides with (A2) when the latter is expanded accord-
ing to the formula"

sinh[2s(o'+o "+2(ro' cos8r ) '"g
=28 SlnhR=2

2s(o'+o"+2o0' cos8r ~)
"'

(A2)

The same result can also obtained by brute force as

I ) (R) 2
2 (—1)"(~+o)

gR xy

&& (cos8)I +i)o(&)I~i(o(y) (A3)

"Reference 5, Sec. 3.9.
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Superconvergence conditions and 6nite-energy sum rules in the cross-duality model are veri6ed and
discussed. Exotic channels give exchange degeneracies among branch-point trajectories, which induce
degeneracies on their generating pole trajectories. The Pomeranchuk singularity is also briefly considered.

I. INTRODUCTION

ECENTLV,"explicit constructions were given for
two amplitudes, with narrow resonances and cuts,

~ ~

~

satisfying closslng symmetry and asymptotic behavior.
The method of construction is explained in Ref. 1.

One of these amplitudes, called in Ref. 1 the direct-
duality model, consists of the Veneziano amplitude'
plus a term that behaves asymptotically like a Regge
cut while it contains an infinite number of square-root
branch points in the direct channel starting at the
lowest normal threshold. Explicitly the amplitude
M(s, t,u) for a two-particle-+ two-particle equal-mass
spinless process is given as

slight difference in the integrand of the second term in
(1.2), was f(rst suggested by Matveev, Stoyanov, and
Tavkhelidze. 4

The other amplitude, called the cross-duality model,
is given by

i y
—a, (t)—i(1 y)

—a(c)—i

A(s, t)=D dy+(s~t), (1.3)
(1—lny) ') '

where D is an arbitrary constant. In the physical region
of s-channel scattering (s)4m', t&0) the first term in
(1.3) may be written as

M(s, t,g) =A (s,t)+A (N, t)+A (s,m)

where, for the direct-duality construction,
a=o ot(s) I— (1.4)

A (s t) =Ci y
—(')-'(1—y)

— (')—'dy

i
y
—ac(t)—1(1 y)

—ac(c)—i

(1.2)
Ll —ln(1 —y)g')'

with Ci and Co being arbitrary constants, t)t(t) the
leading Regge trajectory, and ts, (t) the branch point
of the leading Regge cut. This amplitude, except for a

*On leave of absence from Department of Physics, University
of Khartoum, Khartoum, Sudan.

'M. O. Taha, Phys. Rev. D 3, 498 (1970).
~ M. O. Taha, Nuovo Cimento Letters 3, 861 (1970).' G. Veneziano, Nuovo Cimento 57'A, 1395 (1968).

where the coefficients g„(t) are polynomials of order I
in t. This term behaves like a Regge cut as s —&~. The
second term in (1.3) has a cut for s)4' and behaves
like a Regge pole as s —+co.

Both amplitudes (1.2) and (1.3) give expressions for
the discontinuities of the partial-wave amplitude across
the Regge cut that vanish at the branch point, ' in
agreement with the general result of Bronzan and. Jones. '
Away from the branch point the discontinuities decay
exponentially. Our method of construction imposes, in

4 V. A. Matveev, D. T. Stoyanov, and A. N. Tavkhelidze, Phys.
Letters 328, 61 (1970).' J. B. Bronzan and C. E. Jones, Phys. Rev. 160, 1494 (1967).
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both cases, the equations

(1.5)

In Eq. (2.3), D is a constant while n(s) and n, (s) are
the leading Regge-pole and branch-point trajectories.
These are linear functions given by

(1.6)

where t=tr) is the lowest resonance (assumed narrow
and spinless), t=tp is the lowest normal threshoM, and
a, b are arbitrary constants. Equation (1.6) is discussed
in Ref. 1 when coupled to the assumption that the
leading Regge cut is generated by the exchange of two
Regge-pole trajectories.

The construction and general analytic properties of
both amplitudes (1.2) and (1.3) are discussed in Ref. 1.
It is our purpose in this paper to investigate further
the cross-duality model because of its novel features
and because it does not appear to possess any obvious
disadvantage relative to the direct-duality model. In
particular, we discuss superconvergence, 6nite-energy
sum rules (FESR), exchange degeneracy, and the
Pomeranchuk pole.

In Sec. II expressions for the discontinuities Dq(s, t)
and Dp(s, t) of the two terms in (1.3), across the t cut,
are obtained. The way in which the superconvergence
conditions and FESR are satisfied is then expjicitly
checked. It is found that the identities obtained are
similar to those of the Veneziano model. This section is
then concluded with a brief discussion related to
duality, double-counting, and. bootstrap conditions.
A continuous-parameter version of the FESR on D~ is
also given.

In Sec. III we discuss exotic channels under cross-
duality, without using the specif)c amplitude (1.3).
The presence of an exotic channel implies exchange-
degeneracy relations among the trajectories of the
leading branch points. These are then seen to impose
exchange degeneracies among the Regge-pole trajec-
tories that generate the leading cuts. This discussion
leads us to some considerations on the Pomeranchuk
singularity in Sec. IV. In the presence of an exotic
channel our picture seems to be consistent with the
part of the Freund-Harari6 conjecture that associates
the background with the Pomeranchukon contribution.

II. SUPERCONVERGENCE SUM RULES

In the cross-duality model, ' the scattering amplitude
M(s, t,u) for an equal-mass spinless two-particle ~ two-
particle process is given by

n(s) =b(s s~)—,

n, (s) =a(s—sp),

(2 4)

(2.5)

where s)t is the position of the lowest-lying (spinless)
resonance and sp(=4m') is the lowest threshold.

De6ne the functions Dq(s, t) and Dp(s, t) by

D)(s,t) = (1/2ni) t),T(s,t), (2.6)

Dp(s, t) = (1/2sri) t),T(t,s), (2.I)

where 5& denotes the discontinuity across the t cut.
The asymptotic behavior in the t channel is then
given by'

(2.8)

D(n(t))
Dp(s)t)-— It ~GO ~

r(n, (s)y 1)(int)

Thus each of the two terms on the right-hand side of
(2.2) is independently superconvergent. The general
superconvergence sum rules take the form

t"D)(s,t)dt=0, n(s)( —u —1 (2.10)

t"Dp(s, t)dt =0, n, (s)( u 1(2.11)——

A. Superconvergence of T(s, tl

We start by calculating the discontinuity D&(s,t) of
the function T(s,t). From Eqs. (2.3) and (2.5), T(s,t)
can be written in the form

T(s, t) = e"F(s,x)dx, Ret(tp (2.12)

where e is any non-negative integer. It is our purpose
to check in detail that the model satis6es these sum
rules and to analyze the content of their FESR versions.
For simplicity, we consider the case m=0 only; the
results easily generalize to all positive moments. For
u=0 the functions D~(s,t) and Dp(s, t) will be discussed
separately.

where

M(s, t,u) =A (s,t)+A (u, t,)+A (s,u),

A (s,t) = T(s,t)+ T(t,s),

(2 1) where

(2.2)

D (1 e
—a/a) —a(s)—)

F (s,x) = —e—'o"', x)0. (2.13)
a (1+x/a)"'

)
y
—a~(t)—)(1 y)

—a(s)—)

T(s, t) =D — —dy.
(1—lny) ') '

F(s,x) is then the inverse Laplace transform of T(s, t)—
(2.3) with respect to t, so that

c+iX

'P. G. O. I'reund, Phys. Rev. Letters 20, 235 (1968); H.
Harari, ibid. 20, 1395 (1968).

F(s,x) =lim e "T(s,t)dt, c(tp (2.14).
2WZ c—i),
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The contour of integration in (2.14) may be trans- Equation (2.19) therefore becomes
formed into one around the t cut, together with a
semicircle at infinity. For n(s)+1(0 the semicircle D (s t)dt
gives a vanishing contribution, so that (2.14) becomes

F(s,x) = e *'D,—(s,t)dt, x)0. (2.15)

2D tt+n(s)
7(2, n. (R) —tt) (2 22)

agtr 0« .(» n(s)

(t) tt]1/2en —a, (t)

Using this expression, one explicitly 6nds

(2.17)

Di(s, t)dt

2D e+n(s)
e (' -&-() -~)»'0() ~)d)

ttQtr =o n(s)

2D tt+n(s) Q)r—=0 for n(s)+1(0, (2.18)
aQtr =o n(s) 2

where we have used the known result

From this equation, one sees that Di(s, t) is the inverse
Laplace transform of the function F(s,x) in (2.13):

Di(s, t) =2—'(F(s,x)) . (2.16)

Inserting (2.13) into (2.16) and using inverse Laplace
transform tables, ~ we obtain the following expression
for Di(s,t):

2D —n(s) —1
Di(s, t) = — 2 (—1)"

ir 0& n& ac(t) B

It is interesting to compare results (2.18) and (2.22)
to the corresponding ones that obtain in the Veneziano
model. The superconvergence condition in (2.18),
namely, the identity

I+n)
i
=0 for n+1(0,

~=0

is exactly the same in both cases. ' Further, if in (2.22)
E is so large that

,(-;, ,(R) —~)=r(-;)=-;g,
then the sum on the right-hand side of (2.22) looks like
the sum over the t-channel pole residues of the
Ueneziano amplitude. In the present model, Di(s, t) is
the absorptive part over the two-particle cut. This is
not surprising, however, since large E takes one into
the asymptotic region where both give Regge-pole
behavior.

From the asymptotic behavior (2.8), we see that the
zero-moment FESR for Di(s, t) takes the form

8 D/ (Rn)]a('+'
Di(s, t)dt (2.23)

ul'( n( )s+2)

This sum rule is then satisfied to the extent within
which the approximation

(c+
) (

+1+tc) tc +'
as E—+~. ~+n(s) V(0, n. (R) —~)

0&a&ac(B) n(S)
En.(R)] '"'

Equation (2.18) is a direct verification of the super-
convergence relation (2.10) for n=0. For the FESR
version, we obtain from (2.17)

(2.24)
I'(n(s)+2)

D,(s,t)dt =-

where

is maintained. For large E the asymptotic expansion

2D e+n(s) of the incomplete gamma function, '
y(-'0, n.(R) tt) —[n, (R) —I]"'eI.(R), (2 19)

=1—
I'(0) r(-;)

l (R) = e ' "' "'(n (t) tt)'"0(n (t)——tt)dt. (2.20)
+ c ~ ~

2Ln, (R) —~] 4Ln. (R)—~]0

shows that (2.24) is essehtially the relation
This integral may be evaluated to give

tt+n(s) fn (R)] "+'
).(tt) n(s) r(n(s)+2)

I (R) = (1/a)y(0, n, (R) N)0(n, (R—) —tt), (2.21)

I'(n (s) +n, (R)+2)—=Ln. (R)] "+'. (2 25)
I'(n, (R)+1)

This relation is asymptotically satisfied, as one expects.

' H. Bateman, Tables of Integra/ Transfornzs (McGraw-Hill,
New York, 1954), Vol. I.' H. Bateman, Higher TrunscendentaI Functions (McGraw-Hill,
pe~ York, 1953)

&

Vol. I,

where p (a,x) is the incomplete gamma function. ' i.e.,
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hibiting the required asymptotic behavior. What the
cross-duality model specifically excludes is the approxi-
mation of the left-hand. side of (2.33) entirely by
direct-channel resonances.

One may further observe that complete resonance
saturation cannot, alone, lead. to direct duality of
resonances and Regge poles. To see this, consider the
resonance-saturated FESR

ImA„,dh Q P,(s)R '(&)+

paso (a)+1

+2 tt"(s), (2 34)
(lnR)"*

where the second sum on the right-hand side is over
the leading cut contributions. For simplicity take the
pole trajectories to be parallel. Since the branch-point
trajectories are of smaller slope, they will overtake the
pole trajectories at some s=s~. We may then write
for (2.34)

When the high-energy contribution is approximated by
(2.8), one obtains

e—*'Dg(s&t) dh

Du (')

I'(u(s)+ 1)

D/x —&'&-'
&l&h&&&(s)dh~

a(a

The second integral on the left-hand side gives the in-
complete gamma function y, plus a contribution that
cancels with the term on the right-hand side leaving

D(x/a) — &'—'
e
—*'D)(s,t)dh — y(n(s)+1, xR),

al'(n(s)+ 1)

x ~+0, R —+i» . (2.38)

of the exponential type. ' For small x it gives

D/x —
& &-'

e *&D((s,t)dt~ —
~

—,x small. +(2.3'7)
aha

P P ($)R ( )yl $))s (2 35) Writing xR=&), where &) is an arbitrary Positive Param-
eter, we obtain for large R the FESR

B P~c($)Raf&(s)+1
1m A„„dt P, s«s). (2.36)

o i (ln R)&i

When (2.36) holds, resonance-Regge-pole duality can-
not be maintained. This argument makes plausible an
expectation that the direct- and cross-duality construc-
tions are alternatively good approximations to the
amplitude A (s,t) in different regions of the st plane.

(b) It is evident that there is no question of double
-counting, since the resonant and nonresonant parts of
the amplitude are separately superconvergent. Further,
the sum rule

ImA, „,dt =0,

ascribed. by Schmid' to generalized interference models,
does not hold in this case, and there is, consequently,
no immediate cordiict with empirical results.

(c) Since different parameters appear on the left-
and right-hand. sides of the sum rules (2.23) and (2.31),
one does not have bootstrap conditions from these
FESR. Whether or not effective bootstrap restrictions
obtain on supplementing the model with assumptions
on the relation of cuts to Regge poles and direct-
channel resonances is a matter that requires further
investigation.

(d) Equation (2.15), with F(s,x) given by (2.13),
may be considered as a continuous-parameter sum rule

e ~') "D((s&t)dt—

D
=~*(~()+1,n)b. ( )J '"' ( 9)

III. EXCHANGE DEGENERACY

In this section we give a general discussion, i.e.,
without using the specific form of the amplitude given
in (2.1)—(2.3), of some consequences of cross-duality in
the presence of an exotic channel. We consider a spin-
less process in which the I channel is exotic. Since there
are no direct-channel resonances in I, the discontinuity
of the amplitude M&"&(s,t,u) consists of a term corre-
sponding to Dz, which we denote by h„M(")(s,t,u),
while B2 is absent. If the asymptotic behavior of the
amplitude satisfies cross-duality, i.e., if Regge-pole
exchange dualizes the direct-channel unitarity cut con-
tribution while Regge-cut exchange is dual to the
direct-channel resonances, then one has for large I at
fixed t

A„M(~) Q o,P;(~)(t) sinatra, (t)u '&'&, (3.1)

0 P o y;(")(t) sin&rn, '(t)u "&'& (3.2)

where y*(a,x) is the single-valued. analytic function re-
lated to the incomplete gamma function. ' For q=0,
y*(a+1, 0) =1/I'(n+2) and (2.39) reduces to the sum
rule (2.23).

' C. Schmid, CERN Report No. TH. 1128, 1969 (unpublished). 'o M. 0. Taha, Nucl. Phys. 810, 656 (1969).
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nip'(t) =ni3'(t),

vi2'")(t) =vw" (&),

(3.3)

(3 4)

(3.5)

where (3.5) is reaction dependent.
Under the general assumption that Regge cuts are

generated by the exchange of Regge poles, one further
expects such relations to impose constraints on the ex-
changed Regge poles. This is not difFicult to show.
Suppose that the branch points +12' and 0.13' are
generated by the exchange of the Regge-pole trajec-
tories a1, o.2 and e1, n3, respectively. The signatures and
trajectories are then related by

O 12 &1&2 1 (3.6)

~ '(&)=max L~ (&)+~ (&)—Ijl ~(-i.)+~(-~.)=~(-~),
(gI, g2)

(3.7)

with similar equations for oi&' and n)3'. Equations (3.4)
and (3.6) then give

02= O3 ) (3.8)

so that the pole trajectories 0.2 and o,3 are of opposite
signature. To see the constraint on the trajectories
themselves, let us write Eq. (3.7) in the form

where o-; and cr are the signatures of the contributing
poles and cuts; the usual gamma and logarithmic factors
are absorbed in the definition of the residue functions
p;& & andy, &"&.

From Eq. (3.2) we are immediately led to exchange
degeneracy relations among the trajectories of /he leading
Regge branch points Wi.thin this scheme one therefore
expects the leadirig branch-point trajectories to occur
in degenerate pairs of opposite signature. Thus if the
dominant contributions to the right-hand side of (3.2)
come from only two branch points n»'(t) and n»'(i),
then the equation reads

o&2'y)2 t
"& (t) sin~ni2'(t) u»" &'&

+o )3'pig'~) (i) sinmn)3'(t)u»'~'& 0

so that one has the degeneracy relations

From (3.8) and (3.13) it is seen that we have obtained
the exchange degeneracy of the Regge po-le trajectories a2
and o.& collaborating with the trajectory n1 to produce
the exchange-degenerate branch points o.12' and n13'.
It should be noted that we have not used the assumption
of the linearity of the trajectories, in which case (3.13)
immediately follows from (3.3). We also note that this
discussion applies to the case when the branch points
are generated by two poles only, i.e., for branch points
o,»', o.»' generated by n1-o.1 and o.1-o,2 exchanges, re-
spectively. This is clearly seen on replacing the index
3 by 1 in the above argument.

The emergence of Regge-pole exchange degeneracy,
in the absence of exotic resonances, from a scheme in
which resonances are dual to Regge cuts and. not to
Regge poles is a most interesting feature for at least
two reasons:

(i) Direct duality of the Veneziano type has been
closely associated with Regge-pole exchange degeneracy
and it is generally believed that such a connection is
absent in the case of interference-type models.

(ii) Exchange degeneracy of Regge poles is rather
well established experimentally and it is therefore not
satisfactory merely to replace it by the degeneracy of
branch-point trajectories about which almost nothing
is known.

Now that exchange degeneracy of branch-point tra-
jectories is suggested by cross duality in the presence
of exotic channels, we observe that such degeneracy
should in fact have been expected quite generally and
independent1y of cross duaHty. For, the converse of the
above argument is also valid, i.e., exchange degeneracy
of pole trajectories imposes the same on the branch
points which they generate. "It is clear that (3.8) and
(3.13) imply (3.3) and (3.4). Further, if p2t" & (t)
=pa&" & (i), then it follows —see (4.3) below —that
7)z&"&(t)=&i, i"&(/); hence, exchange degeneracy among
branch-point trajectories without assuming cross du-
ality. This observation that the experimental de-
generacy of pole trajectories impose branch-point
degeneracy may be used to reduce the number of
unknown parameters in phenomenological fits with cuts.

u)2'(t) =max
1 ni(x)+n2(Z(x, t)) —1j,

(x)
(3.9) IV. POMERANCHUK SINGULARITY

where
Z( t) = —Lv'( —t) —v'( —x)1' (3 1o)

If the point of maximum value is x=x (t), Eq. (3.9)
gives

o))2'(t) =o.i(x (&))+o'~(Z(x„,&)) —1. (3.11)

When this is substituted in (3.3), one obtains

o,(Z(x, t)) =n, (Z(x,&)). (3.12)

But Z(x (t),t) is a general variable so that (3.12)
implies

n, (t) =u, (t). (3.13)

So far we have not mentioned the Pomeranchuk
singularity in this scheme. An interesting possibility,
however, arises from our discussion on branch-point
degeneracy in Sec. III, which we now present.

Suppose that the trajectory n1 which collaborates
with o.2 and e3 to generate the leading branch points is
the Pomeranchukon-pole trajectory o.&. Let us further

"V. Barger and R. J. N. Phillips, Phys. Letters 29B, 676
(1969), make a related observation on the "exchange degeneracy"
of the leading Pomeranchukon-induced cuts, in the sense that
they are continua of exchange-degenerate poles. We are specifi-
cally concerned with the exchange. degeneracy of the branch-
point trajectories.
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assume that 0,&, n2, and 0.& are the only dominant con-
tributions to the right-hand side of Eq. (3.1), on the
left-hand side of which we have the discontinuity over
the direct-channel unitarity cut, i.e., the imaginary part
of the "background. " Equation (3.1) may then be
written

h„M'"&~p~ &~~ (t) sinn n~(t) op~ &'&

+~Dt, &"&(t)—p, ~"&(t)] sin~n(t)u«'&, (4.1)

where o2 ———03——o. and a2 ——n3 ——n from (3.8) and (3.13).
Now in Sec. III we did not deduce the residue condi-

tion p&'"' ——p&&"& from the degeneracy of branch-point
trajectories. %e shall now argue that this relation may
also obtain. The contribution to the scattering ampli-
tude of a cut generated by two Regge poles is generally
given by a double-integral transform over the pole con-
tributions with a model-dependent kernel. " '6 The
equation relating the residues y~2, pq, and p2 is obtained
by keeping only the asymptotically dominant contri-
bution of the integral. In the case of the Glauber re-
scattering formulation, "for example, the contribution
f&a '(u, t) of the cut generated by nz and a2 is given by

f&2 '(u, t) = p~'"'( —
I e I

')p2'"'( —
I q —q~ I

')

au~i( —
I sit')+~u( —le—ail~) —

&d2q~ (4.2)

where q and q~ are two-dimensional momentum vectors
with lql = t. The dominan—t contribution to the in-
tegralcomesfromtheregionwhere lq&l+I q —

qual
=

I ql,
so that from (4.2) one obtains for the residue A/2 "&,

vu'"'(t) = pi'"'( —
I q~ I

')

xp2 '(—( I q I

—
I q ~ I ) ')d'qi (4 3)

'~ The exact form of this double-integral transform depends on
the model used for the generation of the cut. We refer to the ab-
sorptive, multiperipheral and rescattering models in Refs. 13—15,
respectively. General reviews are given in Ref. 16."J.D. Jackson, in High Energy Physics, edited by C. DeWitt
and M. Jacob (Gordon and Breach, New York, 1966).

'4L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25,
626 (1962); D. Amati, M. Stanghellini, and S. Fubini, ibid. 26,
6 (1962).

15 R. J. Glauber, High Energy Physics and SNcleur 5trgcture,
edited by G. Alexander (North-Holland, Amsterdam, 1967)."G.K. Mite, Rev. Mod. Phys. 41, 669 (1969);J. D. Jackson,
ibid. 42, 12 (1970); W. Drechsler, ICTP, Trieste, Report No.
IC/69/39, 1969 (unpublished).

Equation (3.5) then implies

This equation will then hold for all values of
I ql, and

it is not therefore unreasonable to expect it to be
simply satisfied by

p2'"&(t) =p3&"'(t) ~ (4 5)

: (a) In an exotic channel, cross-duality gives exchange
degeneracy among branch-point trajectories of oppo-
site signature. If a degenerate pair of branch points
is generated by exchange of the poles 0.&, 0.2 and o.&, 0,&,

then 0.2 and es are of opposite signature and are ex-
change degenerate.

(b) If nz, o.2, ando& are. the dominant poles in Eq. (3.1),
then the contributions of e2 and o,3 cancel leaving only
that of O.g.

(c) It is tempting to identify nq with the Pomeranchuk
pole as is often done in phenomenological generation
of cuts. We then have Eq. (4.6), which amounts to the
part of the Freund-Harari' conjecture that associates
the background contribution to FESR with that of the
Pomeranchuk trajectory. In our case this holds in the
presence of an exotic channel.
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We shall, in any case, take (4.5) to be the solution to
(4.4).

When Eq. (4.5) is substituted into (4.1), one obtains

h„M&~'~p~&"'(t) sinsn~(t)u ~"I, (4.6)

i.e., we are left with the contribution of the Pomeran-
chuk pole to the background term. This discussion may
be summarized as follows:


