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In a Regge theory of spinless elastic scattering, subtraction constants in physical partial waves are not
always free parameters. In a partial wave where there is no Castillejo-Dalitz-Dyson (CDD) pole, the
subtraction constant A;(so), so<4m2, is uniquely determined when the left-cut term and the elasticity
m are specified. If there are CDD poles, all at finite points, then the subtraction constant is again fixed
uniquely, but its value depends on the CDD parameters. If there is a CDD pole at infinity, the subtraction
constant is unconstrained. These results are proved assuming that high-energy behavior is determined
by a moving Pomeranchuk pole, with or without associated branch points. The analysis, although model
independent, has implications for a dynamical model based on Reggeon exchange—namely, a model in
which the input to the inelastic N/D equation (left- and right-cut parts) is constructed from crossed-
channel Regge terms. In such a model the N/D equation is a regular Fredholm equation without high-
energy truncation. In general, the phase shift obtained as output from the N/D equation has the high-energy
behavior required by Regge theory if, and only if, the subtraction-constant constraint is satisfied. It is
argued that new calculations are needed to test the Reggeon-exchange model. Earlier calculations in the
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Chew-Jones scheme are not conclusive for the formulation given here.

I. INTRODUCTION

N this paper we are interested in certain relations
between the low- and the high-energy behavior of
physical partial waves. For simplicity, we treat elastic
scattering of spinless mesons. The high-energy scatter-
ing is determined, we suppose, by a moving Pomeran-
chuk pole with «(0)=1. There may be branch points
which accompany the pole. The high-energy behavior
of partial waves may be deduced in such a Regge
theory, under reasonable technical assumptions about
the behavior of the amplitude at large momentum
transfers.! One finds the following asymptotes® for the
real phase shift § and the elasticity »:

8(s)/m~n—3%yIn~%s,

(1.1)
1.2)

n(s)~1—=2yIn7ls, s—c0 .
Here # is an integer, and v is a positive constant.
We shall use the N/D method to show that Egs.
(1.1) and (1.2) have direct implications for the low-
energy behavior of partial waves. We emphasize that
the results will be true in any Regge-Pomeranchuk
theory, whether or not the N/D method is used in
construction of the theory.
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1 R. L. Warnock, in Lectures in Theoretical High-Energy Physics,
edited by H. H. Aly (Interscience, New York, 1968), Chap. 10.

2 We use the symbols ~, O, o in the standard way. When «
tends to some limit, f(x)~g(x) means that f(x)/g(x) — 1, f(&)
=0(g(x)) means that |f(x)|<M|g(x)|, and f(x)=0(g(x))
means that f(x)/g(x) — 0.

3

The high-energy behavior of the force function B(s)
of the N/D equation may be derived from Egs. (1.1)
and (1.2). In fact, B(s) may be expressed in terms of 7
and ¢ as follows:

B()—B<>+S_S°Pf° e as
AP ORI
n(s) sin25(s)
=———¢
2p(s)
s—so  [® n(s’) sin2s(s")ds’
2 / . (1.4)
T s (5=s0)(s"—s)

where s7 is the threshold for inelastic processes. The
contribution of the left-hand cut is B (s), and a=A4(so)
is the value of the partial-wave amplitude at so<4.
The N/D equation employed is that of Refs. 1 and 3,
in which Bp(s) and 5(s) are regarded as given data.
With appropriate bounds on the derivatives of ¢ and »,
it follows from (1.1), (1.2), and (1.4) that B has the
asymptotic form

B(s)=B()—3my In2%54+0(In"%) . (1.5)

The purpose of this analysis is to determine the value
of the constant @, supposing that functions B and 7,
which satisfy (1.2) and (1.5), are given. We find that
a is uniquely fixed by a linear equation [Eq. (3.11)]
when there is no Castillejo-Dalitz-Dyson (CDD) pole.
When there are CDD poles at finite points only, we

8 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).
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1430 G. R.
again find a linear equation for ¢ [Eq. (3.35)], but the
equation depends on the residues and locations of the
CDD poles. Finally, if there is a CDD pole at infinity,
the value of @ is undetermined.

These results imply that the total number of free
parameters (CDD parameters and subtraction con-
stants) is always twice the number of CDD poles.
This is a new result of some academic interest. There is
also a more practical aspect of our analysis, however,
since the determination of ¢ is an issue in dynamical
models, as well as in a “‘correct Regge theory.” In the
simplest model to which our analysis applies, the left-
cut term By, (s) would be constructed from the left-hand
singularities of a small number of crossed-channel
Regge terms, including the Pomeranchuk term,
projected onto s-channel partial waves. At high energy,
the elasticity n would also be obtained from the partial-
wave projection of the Regge terms. In such a model,
B has the behavior (1.5), and there are also certain
bounds on the derivatives B’ and B”. The bounds imply
that the N/D equation is a regular Fredholm equation
in L2, so that we obtain a convergent Reggeon exchange
model without high-energy truncations. [We note in
passing that our equation!?® is more convenient in
this respect than the N/D equation of Chew and
Mandelstam,? in which inelasticity is parametrized by
a function R(s), the quotient of total and elastic
partial-wave cross sections. The latter equation is
marginally singular® under conditions (1.1) and (1.2).]
The value of the constant B(») given by the model is
not likely to be correct, however, since B(« ) represents
short-range forces depending on effects more com-
plicated than Reggeon exchange. We should then
regard B(«) as a parameter which is yet to be deter-
mined. Our constraint equations [(3.11) and (3.35)]
actually determine the sum B(« )+¢, when there is no
CDD pole at infinity.

The Reggeon-exchange model described is, of course,
similar to the old V/D models based on single-particle
exchange. It is quite different in detail, however, since
it is convergent without cutoffs, and it includes Pomer-
anchukon exchange. Could it possibly overcome some
of the defects of the old models? It is difficult to answer
this question from information currently available in
the literature. Some new calculations will be required.
Among previous attempts, the closest to our proposal
is that of Chew and Jones.® In a scheme called the
“new strip approximation,” Chew and Jones suggested
unitarizing Regge terms by means of an N/D equation
referring to a finite interval of energy. The Chew-Jones
procedure for w-m scattering was carried out by Collins
and Teplitz.”-® They encountered several difficulties,

4G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

5 D3 Atkinson and A. P. Contogouris, J. Math. Phys. 9, 1489
(1968).

6 G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and
C. E. Jones, bid. 135, B208 (1964).

7P. D. B. Collins and V. L. Teplitz, Phys. Rev. 140, B663
(1965). .

8 P. D. B. Collins, Phys. Rev. 142, 1163 (1966).
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a principal one being that the /=0 (Pomeranchuk)
trajectory in the crossed channels produced an over-
whelming repulsive force in the direct channel. The
attractive effect of the /=1 exchange was insufficient
to overcome this repulsion, so that no p resonance was
produced in the 7=1 direct channel. It is not certain
that the situation will be the same in the model we
have described. When account is taken of our constraint,
or of CDD poles, the outcome might be quite different.
Even the difference between the truncated N/D equa-
tion of Chew and Jones and our untruncated equation
could be quite significant. In fact, high-energy contribu-
tions are demonstrably important in our equation.
The norm of the kernel exists only by virtue of logarith-
mic factors, and if it were not for a delicate cancellation
between the left- and right-cut parts of the force
function at high energy, the equation would be singular,
and the Regge behavior (1.1) and (1.2) would probably
not be obtained.

In any case, we believe that CDD poles will be
needed in a realistic model with a manageable number
of channels. In 77 scattering, for instance, a CDD pole
in the p channel is indicated by the outcome of several
attempts to make bootstrap theories of the p in which
all channels contain two pseudoscalar mesons.®~*2 In
such models the width of the p is habitually too large
by a factor of 2 or more, whether the whole pseudo-
scalar octet with physical masses is included,? or just
the = mesons. Additional channels, such as P-V and
V-V (P=pseudoscalar meson, ¥V =vector meson) seem
capable of reducing the width.%!3 It is known that a
CDD pole can reduce the width, and that coupled
channels can induce CDD poles in the single-channel
description.* Thus, the attitude toward CDD poles
should be positive rather than negative as it has been
in the past. In appropriate circumstances, they offer
a remarkably economical way of accounting for many-
channel effects in a one-channel or few-channel formal-
ism. At the present stage of theory, we shall probably
have to make a semiempirical determination of the
CDD parameters. In principle, however, these param-
eters may be sharply restricted by the powerful con-
dition that CDD poles not generate Kronecker §
singularities in the / plane.’®1¢ This is certainly a subtle

9 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).

10 Chan Hong-Mo, P. C. Decelles, and J. E. Paton, Nuovo
Cimento 33, 70 (1964).

( “61.) Fulco, G. Shaw, and D. Wong, Phys. Rev. 137, B1242
1965).

12 The effects of mass difference in the pseudoscalar octet on the
vector-meson bootstrap were studied by S. K. Gupta, Ph.D.
Dissertation, Illinois Institute of Technology, 1967 (unpublished).
(1‘36C>han Hong-Mo and C. Wilkin, Ann. Phys. (N. Y.) 39, 300

966).

1 D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N.Y.)
37,77 (1966) ; J. B. Hartle and C. E. Jones, 7bid. 38, 348 (1966).

15 S, Mandelstam, Phys. Rev. 137, B949 (1965).

16 In the situation of small coupling constants and small CDD
pole residues, one necessarily gets Kronecker é’s from CDD poles;
see D. Atkinson and R. L. Warnock, Phys. Rev. 188, 2098 (1969).
At larger couplings there could be “inelastic” CDD poles with
parameters depending on / in such a way that Kronecker &’s are
not implied; see Hartle and Jones (Ref. 14).
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condition, and suitable means to enforce it have not
been invented. At a more practical level, we can at
least require that the CDD poles do not induce ghost
zeros of the D function.

The matter of ghosts, by the way, is another area in
which Reggeon-exchange models should be reexamined.
It is not clear to us that adequate checks for ghosts
were carried out in earlier work. Sometimes a CDD pole
may be needed to avoid a ghost.

An apparent exception to the rule that elastic models
give too large a value for the p width is to be found in
the work of Collins and Johnson.!” Collins® argued that
the Regge terms alone could not make a suitable N/D
force function. He suggested that a better force function
could be obtained by including a part of the elastic
double-spectral function. Collins and Johnson calculated
this double-spectral function in the strip approximation
by the Mandelstam iteration, beginning with Regge
terms as the zeroth iterate. The results of the Collins-
Johnson calculation appeared to be relatively satis-
factory. They claimed to have a bootstrap solution with
reasonable P and p trajectories, good values of the p
width and s-wave phase shifts, etc. Recently, Webber!®
has attempted to reproduce the Collins-Johnson
calculation. Webber uses only the Mandelstam iteration
in the strip approximation, rather than the combination
of Mandelstam iteration and N/D equations employed
by Collins and Johnson. Webber’s technique is better
in principle (if more difficult numerically) since, if he
finds a solution, it is bound to be crossing symmetric
and free of ghosts. In the Collins-Johnson approach,
exact crossing symmetry is not ensured, and there
could be ghosts. Webber is unable to find a solution of
the type claimed by Collins and Johnson. In fact, in
his nearest approach to a solution, the p width is again
much too large, and there are other unsatisfactory
features. It might be that the narrow p width in the
Collins-Johnson calculation is an artifact arising from
a ghost.!8:19

It is probably true, as Collins argues, that Regge
terms alone will not make an entirely adequate input
for the N/D equation. There must be some violation
of crossing symmetry, at least, in such a scheme.
Perhaps the Mandelstam ‘iteration offers the best hope
of improving the model, but it should be a Mandelstam
iteration with CDD poles, similar to that formulated
by Atkinson and Warnock.’* This implies a rather
complicated program, but it does offer a way of phras-
ing the requirement of no Kronecker &’s in the !
plane. This requirement appears as the vanishing of
single spectral functions, which are expressed as the
difference between N/D absorptive parts and the

17 P. D. B. Collins and R. C. Johnson, Phys. Rev. 177, 2472
(1969) ; 182, 1755 (1969); R. C. Johnson and P. D. B. Collins,
tbid. 185, 2020 (1969).

18 B. Webber, LRL Report No. UCRL-20134 (unpublished).

¥ This explanation is advanced tentatively by G. F. Chew
(private communication).
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corresponding partial-wave absorptive parts obtained
from the double-spectral terms of the total amplitude.

We have noted that Regge branch points (at least
those of the class considered in Ref. 1) do not affect the
results of this paper. The solution of the N/D equation
in the Reggeon exchange model almost certainly
entails Regge branch points, however. The effects of
branch points appear first in terms of order In=3s in
the phase shift of the direct channel. Since our asymp-
totic analysis is concerned only with the leading
terms of order In~%s, we do not meet the branch-point
terms face to face. The N/D equation with Reggeon
input could be regarded as a means of generating Regge
branch points, analogous to but different from the
eikonal or multiperipheral models. We have not yet
obtained any clear idea of the character of the branch
points, but it may be possible to do so by carrying the
asymptotic analysis to higher terms.

The background for this paper is to be found in
Ref. 1. In Sec. IT we define notation and summarize
results of Ref. 1 which are needed in the following.
Section III contains the proof of the constraint equa-
tions. The calculational method of imposing the
constraints is explained at the end of Sec. ITI. A useful
theorem on asymptotic behavior of principal-value
integrals is proved in Appendix A.

II. PRELIMINARIES

Let 4,(z) be the partial-wave amplitude for elastic
scattering of spinless mesons of unit mass. Henceforth,
the subscript 7 is dropped. We assume that 4 is analytic
in some neighborhood € of the physical cut 4<s< 0 2
where s is the square of the energy in the c.m. frame.
This neighborhood can be an arbitrarily thin sliver,
with a width tending to zero at s=- . The physical
amplitude is the boundary value

A1(s) =A(s+10) =[n(s)e*®© —1]/2ip(s) ,

ool

The elasticity 5 and the real phase shift § are assumed
to be Holder-continuous on any finite interval, and 7
is assumed to have no zeros; therefore, 0<p<1.2
By Cauchy’s integral theorem, the amplitude may be
represented in Q as follows:

s>4 (2.1)

© ImA,(s)ds

——t—————} . (2.2
(s—s0)(s—32)

Here so<4 is a real point at which 4 (s¢) =¢ is defined.

A(2) =a+(z—so)[A u(2)+ ;r [1

20 Such analyticity has been proved in Lehmann-Symanzik-
Zimmermann field theory by J. Bros, H. Epstein, and V. Glaser,
Nuovo Cimento 31, 1265 (1964).

2 If 5 has a zero, the N/D equation becomes a so-called “Fred-
holm equation of the third kind,” which we intend to discuss
elsewhere. Zeros of # do not, in fact, spoil the results of the present

paper.
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The “unphysical” term Ay consists of the stable-
particle poles (if there are any) plus an integral around
some path in @ which closes the Cauchy contour.

For application of the N/D method it is not necessary
to have a partial-wave dispersion relation in the cus-
tomary sense, where Ay is an integral over a left-hand
cut, and the contribution of the Cauchy contour at
infinity is zero. The representation (2.2) in Qis sufficient
as far as analyticity is concerned. It is important to
require that the phase shift be bounded, however.
Otherwise, the standard N/D theory does not go
through, since the function D(z) (notation of Ref. 1)
acquires an essential singularity. The phase shift ap-
pears to be bounded, fortunately, in all current models
of high-energy behavior.

We define the force function B(s) as

B(s) =(s—s0)

1 2 [1—y(s")]ds’
4 —P , (2.3
X': v+ 2 Js; p(s’)(s’—so)(s’—-s):l @3)

where sy is the threshold for inelastic processes; s;=16
in - scattering. Any amplitude of the class we have
described may be represented as!

A@)=N{)/D@), Di(s)=|Di(s)[e?®,
D(z) =1+(Z—So)

x[c—f G _1/4” p(8)<p(3)ds:l . @9

i=1§,—% T $—z

¢(s) =—ImDy(s)/[p(s)(s—s0) ].

The numerator function N (z) is analytic in a neighbor-
hood . of the line segment 4<s<s;. In general, the D
function has a finite number # of CDD poles at the
distinct finite energies s;>4, as well as a CDD pole at
infinity [the term ¢z in (2.5)7]. The real constants c,
¢i, and s; depend on the particular amplitude 4, and
they are not always uniquely specified for a given 4.
A mnecessary condition on ¢, which follows without
further assumptions on asymptotic behavior, etc., is
the following N/D integral equation, derived in Ref. 1:

B B(s;)—B
IO B AT 2

S—3So A

1 /‘” B(s)—a(s,s")B(s")

(2.4)

n(s) o(s) =

S;i—S

p(s") p(s)ds".  (2.6)

m™ S—S

The constant A(e) is defined in Ref. 1, and «(s,s")=1
unless the following integral diverges, in which case

a(s,s’)=(s—s0)/(s'—s0):
1 /“” o(s)B(s)p(s)ds ‘ @

™ S§—2

Conversely, if ¢ is a Holder-continuous solution of
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(2.6) such that D as defined in (2.5) exists and is free
of zeros in the cut plane, then we can construct from
¢ a solution of (2.1) and (2.2) by means of the following
formula:

z—so @ B(s:)
A(z)=B(z)+ [ +A(°0)+Zc,~
D(z)Lz—s, i S§i—3
1 = a(z,s)p(s) o(s)B(s)ds
- . 8
L e

Notice that with the assumptions made up to now,
we do not know that (2.6) is a regular Fredholm equa-
tion (i.e., that it has a completely continuous kernel in
some Banach space, with the inhomogeneous term in
that space). We do know that (2.6) has a Holder-
continuous solution, however, for any amplitude 4
and some choice of the constants A(®), ¢, ¢;, and s;.

We now consider the implications of the Regge
model for the asymptotic behavior of B(s). Equation
(1.4), which follows directly from (2.1)-(2.3), shows
that the asymptotic behavior of B may be deduced
from that of 7 and 6. To derive the behavior of  and 4,
we consider the contribution of the Pomeranchuk pole
to the amplitude 4 (s,f) at large s, viz.,
1+e——i1ra(u)
—ga(u)

sinme(u)

1_'_6--i1ra(t)

®(t) 52 4B ()
sinma(z)

2.9

The partial-wave amplitude is
1 0 2t
Ay(s)=—— A(S,t)Pz<1+ —‘—>dt. (2.10)
S '—4 4—s S'—4:

The region of integration expands as s increases, so
the contribution of a Regge-pole term cannot be
ascertained without an assumption on the behavior of
trajectories and residues at large negative . Even if
we make such an assumption, there is still the question
of uniformity with respect to ¢ of the approximation of
the amplitude by Regge poles at a given s. We sweep
these questions under the rug by simply assuming that
the leading contribution to the partial wave is obtained
by integration over fixed but arbitrary regions of the
two momentum transfers: —7<i<0, —ULu#<0.
This restriction to forward and backward peaks seems
plausible, since it is suggested by experiment, as well as
by our intuitive notions of peripheralism. The problem
is then to find the large-s behavior of the following
integral:

0 1 _’__e—hra(t) 215
CB(t)———s“(”Pl(l—i— ———)dt

s—4J ¢ sinmra(f) s—4
(___1)1 0 _ 1+e—i1ra(u)
+ / ®B(w) —saw
s—4 J_y sinmo(u)

2u
XP1<1+ —~—~>du. (2.11)
s—4
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Following most authors, we suppose that

d(H20, —T<i<0 (2.12)
a'(0)>0, (2.13)
a(0)=1. (2.14)

We suppose also that a(f), ®(f), and &(¢) have continu-
ous second derivatives for —T<t<0. If a(r)=0, —2,
—4, ... for —T<7<0, we naturally demand that
®(7) =0, since there can be no singularity of the scat-
tering amplitude in the physical region. Now itis a tedi-
ous exercise, spelled out in Ref. 1, to show that (2.11)
is asymptotic to the following function:

! ®(0 D@0 T : 2.15
O+ >](21n23—g). (2.15)

Secondary trajectories a;(f) of either signature, which
satisfy (2.12) and (2.13), contribute a term to the
partial wave which is O(s*©®—1In=2%). This does not
count in comparison with (2.17), since «;(0)<1 by
definition. Also, we estimate that Regge branch points
associated with the Pomeranchuk pole give a term
which is down by at least a factor In~%s in comparison
to (2.15); see Ref. 1. From (2.15) we then have

8i(s)~mni—myi/2 In2s, (2.16)
ni(s)~1—2v,/1ns, (2.17)
n;=integer, (2.18)

1
yi=— _/(T)[(B(O)—H_l)l@(o)jzo' (2.19)

The non-negative property of v, comes from unitarity:
m<1. We assume that the leading terms in the deriva-
tives of A; are obtained correctly from the derivatives
of (2.11). One then finds that differentiation of (2.16)
and (2.17) leads to valid asymptotic relations. Hence,

n

—0(s)=0(s""In"3s),
ds™

n

—(s)=0(s""In"%), (2.20)
ds™

n=1,2,3.

We can now employ (2.16), (2.17), and (2.20) with
formula (1.4) to find the high-energy behavior of B.
For that we need the following theorem on asymptotic
behavior of principal-value integrals, which is proved
in Appendix A.

Theorem 4 : Let

© f()dt
4()=P / 1o

o S—I

so> 1 (2.21)
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where f is a differentiable function such that f(s)
=0(s"*Inbs), f'(s)=0(st<InFs), s>so. Then for
s> 5o, we have

1 s
g(s)= —/ f(®)dt4+0(s~'InFs), a=1, 3>0
S J s (2.22)
g2(s)=0(In'"5s), a=0, g>1.
With the help of this result, one proves that the limit
B(®) exists, and that!

B(s)=B()—my/2In%4+0(n"3s) .  (2.23)

Furthermore, B’ and B” exist at large s (say, s>.5) and®
B'(s)=0(s"In"3), B"(s)=0(s"%In"%), s>S5. (2.24)

We expect that in most problems of interest B’ and
B will exist and be continuous for all s>4, which
means that the bounds (2.24) will hold for all s>4.
We shall, in fact, assume (2.24) for s>4. In a contrary
case where B, say, fails to be bounded at a low
threshold, the proofs can be modified easily by treating
the low-energy parts of integrals separately. These low-
energy parts inevitably have whatever behavior is
required, irrespective of the bounds (2.24) which are
needed essentially at high energy only.

The quantities A() and a in (2.6) may be evaluated
using (2.23) and (2.24). We find!

A(0)=—cB(»), a(ss)=1. (2.25)

One may now demonstrate,! under conditions (2.23),
(2.24), and (2.17), that the N/D integral equation (2.6)
is a regular Fredholm equation in LY 4,»). If ¢=0,
the unknown L2 function is ¢, while if ¢>£0, one must
multiply through by s7/2 In(s—s) so that the unknown
in L2is¢(s) =s"2In(s—so) ¢(s). The latter redefinition
of the unknown is to make the inhomogeneous term a
member of L2

III. ASYMPTOTIC ANALYSIS OF N/D EQUATION,
AND CONSTRAINT ON B(x)4a

We now make an asymptotic analysis of the N/D
equation under conditions (2.23) and (2.24) on the
force function, and condition (2.17) on the elasticity.
We take first the case where no CDD poles are present,
so that the integral equation is

a+B(»)+C(s)

S—35o

n(s) o(s) =

1 = C(s)—C(s")

p(s") e(sNds", (3.1)

’

m™Jy4 S—S

2G. R. Bart, Ph.D. Dissertation, Illinois Institute of Tech-
nology, 1970 (unpublished); see Egs. (2.45) ff.
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where
C(s)=B(s)—B(=)
=—(7/2)y In"2%4+0(In"3s) .

We suppose that (3.1) has a unique solution in L2
i.e., that the corresponding homogeneous equation has
no nontrivial solution in L2 There is no physical
reason to expect the contrary. We are interested in the
phase shift § constructed from the solution ¢ of (3.1
according to the formula

(3.2)

ImD;  (s—so)o(s)e
tang= — = , 3.3
RCD+ ReD+
where D is obtained from (2.5), with ¢=¢;=0. We are

looking for the conditions under which ¢ satisfies (2.16).
To get a start, let us suppose that ¢’ exists and that

e(5)=0(7", ¢'()=0(7). (3.4)

(Later, we shall indeed establish these conditions.)
Then the following integral exists:

1 0
n=1Lel=== [ COnes. 63
Moreover, T
C(s)—C(s’
K¢(s)~— ~—(f— ¢ )p(S')<P(S')dS
m™Ja S—'S
=[/s+0( 1 In"Ls), (3.6)
since
Ko(s)=Ko(s)—I1/s
1 [=sC(s)—s'Cs’
- O e, @)
wJa s(s—s")

and (3.7) is seen to be O(s'In~%s) by Theorem A.
By (3.1) we then have

e(s)~[a+B(x)+I1]/s, 3.8)
ImD, (s)~ImD, (o) =—[a+B(o)+I1]. (3.9)

If ImD, ()0, then Theorem A yields ReD,(s)
~ (const) Ins, or tand~ (const) In~'s, contrary to the
desired behavior

tand~ —%7 v/In%. (3.10)

Thus, we have the following necessary condition for
the asymptotic form (3.10):

a+B(»)+1,=0.

This condition, our principal result, will prove to be
also sufficient. Notice that ¢, and hence 7y, is a linear
function of a+B(x»); ie.,
linear operator. Equation (3.11) is a linear equation
for a+B().

(3.11)
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Toward the goal of proving the bounds (3.4), we now

consider the Fredholm equation

y=f+Ky.

Suppose that 1 is not an eigenvalue of K, and let H
be the resolvent, 14+H = (1—K)™. Then

(3.12)

=+1]
= f+Kf+KHf. (3.13)
By the Schwarz inequality,
[y| <|fI+|KSfI+E|HS, (3.14)
where
kz(s)=/w | K(s,s") | %ds’, (3.15)
and the double bars denote the L? norm.
To make use of the bound (3.14), we put
y(s) =n(s)s*¢(s)/In(s—s0), (3.16)
st/2 l‘a—}—B(oo)—i—C(s)
= 3.17
76 ln(s—so)l_ s—So ] ’ (3.17)
C C 7 1/21 ! o /
K(s,s') = —[ ) —Cls )J<~> (=50 o) 2 1g)
T s—s' s’/ In(s—so) n(s")

so that (3.12) is identical to (3.1). With the aid of
(2.23), (2.24), and Theorem A, one easily finds that the
first two terms on the right-hand side of (3.14) are
O(s™2In%s5). Appendix B contains a proof that
k(s)=0(s2In"%s). [This shows, incidentally, that
(3.1) is a regular Fredholm equation in L2, as we have
claimed.] Thus, any L? solution ¢ of (3.1) is auto-
matically O(s™), since y(s) =0(s72 In"%s).

To investigate ¢/, we first notice that ¢ certainly has
a continuous derivative. This follows from the fact
that the right-hand side of (3.1) has a continuous
derivative, which may be evaluated by differentiating
under the integral sign. The derivative of the first term
on the right of (3.1) is O (z7?%), while the derivative of the
integral term has the absolute value

/wp(s’)w(s’)ds’/ uC”(s'+uls—s"])du

© ds’ udu
suf )
o ' Jo [Huls—s) P Indls +uls—s")]
x—i

M > dt 1
=— / dx
s2 Just(l=02 S a2 1n3(sx)

/ —— . (3.19)
4/st(1—t) ¢ x1n3sx

The integral over ¢ is bounded as s increases. This is



3 ASYMPTOTICS OF PARTIAL WAVES. ..

obvious except, perhaps, for the part of the integral
near =0, which is handled as follows:

/‘ di 1 dx
i/st(l—t) t x Indsx

1 prediy 11
< < ——)=0(1). (3.20)

2(1 —_ 6) 4/5 In2s¢ In2s

It follows that ¢’(s) =0(s7?), s —>.

We have used the bounds (3.4) to show that Eq.
(3.11) is a necessary condition for the Regge behavior
of the phase shift (3.10). We are now concerned with
showing that (3.11) is also sufficient for (3.10). We
assume that (3.11) holds, then, and write the integral
equation in the form

a+B(»)+C(s) I

+—+Ke(s), (3.21)
S

ne=
S—3So

where K is defined in (3.7). We have observed above
that Ko(s)=0(s'In"%s), so it follows from (3.21)
that ¢(s)=0(s1n"%s). This improved bound on ¢
enables us to get an improved bound on K ¢, which will
lead to ¢(s)=0(s"1In"2%s). We have

|K o(s)]

1 e 1
=’;/4 d.s‘p(s’)qo(s’)/o Aul2C (@) ] | smsrruts—sn

—A o Ins’ / Ins"+u(s—s)]

M [ dt s du
=—/ ——= | — (3.22)
yst(l—2t) Inst s J 5, In%

To bound the # integral, we need the following lemma,
in which # is a positive integer:

du s s
—_— = +O<————> , so>1,s— . (3.23)

soIln®x  In~s In"+1s

To prove (3.23), note that

s s/ ou \' So
[ )t
In™s so \In"z% In~s,
s 701 n So
= / < - )du—i— .
so \In"2  Inntly In~s,

(3.24)
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Now apply ’Hospital’s rule as follows:

s du s s du So
— ” -
wln™ In"s s In"tly  In”sg

lim =lim:
s ns s> ns
In»+1s Inntis
n
Inntis
=lim—————— =1. (3.25)
LR 7} n(n-+1)
lnn+ 1 s ln‘n+2 s

Result (3.23) follows; in fact, the second term on
the right-hand side of (3.23) is actually asymptotic to
ns In~""Ls. To majorize the integral on the right-hand
side of (3.22), we first look at the part near =0, using
(3.23). With 4/s<e<1, we have

¢ dt s du

Ji= / I

s t(1—1) Inst s JsIn2u
_/‘ln%/;/8 (l—e)ilnst

1 1
< [ +0<———>:|————[ln Inse—In In4 ]
In2s In3s/ 11 —e

=0(In"2%s Inlns). (3.26)

The part of the integral near =1 is

1+e dlf 1 dx
7= J
e t(1—t)1nstJ, In%(sx)
1 1+e dl

< / —— =0(In"3). (3.27)

In%se ). ¢lnst

The piece with ¢ large is
© dt du
Ji= / Sl s
1el(1—1) Inst s J 5; In2n
® dt 1 ¢ 14 1
L)
wel(1—8) InsiLin2s  In2st In3st In3s

© g 1
< / —_— +O<—> =0(In"%). (3.28)
1+et In3st In3s

Thus, K¢(s)=0(s"!In~2s In Ins), and it follows from
(3.21) that also ¢(s)=0(s1In2s In Ins). Now if this
bound on ¢ is used in a repetition of the above estimates
of Ko, we find that Ko(s)=0(sIn"%). Hence,
¢(s)=0(s7*In~%), which was to be proved.
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We also need ¢’(s)=0(s2In"2) which is proved in
much the same way. On differentiating (3.21), it is
seen that all terms on the right-hand side are clearly
O(s~2In™2s), except possibly (9/8s)K ¢, which is treated
in the manner of Eq. (3.19). We find

d _ M e dt 1 r¢ du
Y .
ds s?2 Jasst(1—1) In2%st s J 4, In®u

4+0(s2In"%).

(3.29)

After an analysis like that following (3.22), it turns out
that (8/0s)K ¢ =0(s"2In"2s) ; hence, ¢’(s) =0 (s2 In"%s).
Knowing that ¢=0(s!In"%), we may define

1
l2=—/ o(s) p(s)ds. (3.30)

™

From the bounds on ¢ and ¢’ and Theorem A, it is
easy to deduce from Eq. (3.21) that

—my 141,

+0(s!In~3s). (3.31)

s In?%s

Introducing this result in (2.5), we use Theorem A
again to obtain

s
ReD,(s)=1—

s'—s

S, /°° p(s") o(s")ds’
™ 4
=1+4+71,+0(n"%).

According to (3.3), (3.31), and (3.32), our theorem is
now proved, provided 14+7,7%0:

(3.32)

(s—s0)n(s) (s) ™
ReD.(s) 2 In2s

tans(s) = +0(n35). (3.33)

In the singular case 14-7,=0, we could still have

tand(s) =0 (In"%) , (3.34)

provided that ReD, (s) is asymptotic to const In~?s.

When » CDD poles are included at finite energies
s; in (2.5), keeping ¢=0, the preceding analysis goes
through with little change. The reason is that the CDD
terms appear only in the inhomogeneous term of the
integral equation, so that the various estimates of
integrals are not affected. The condition (3.11) takes
the modified form

a+B(w)+é 6[B(s)—B()]+11=0. (3.35)

If Eq. (3.35) holds, then 147, is replaced by 147,43 ¢;
in (3.31) and (3.32) and, provided the latter sum is
not zero, result (3.33) follows.

In (2.16) and (2.19), it is seen that the phase shift
in Regge theory always approaches #m from below. As
is explained in Ref. 1 and Ref. 3, this means that

G. R. BART AND R. L. WARNOCK 3

when CDD poles are needed, one of them may be put
at infinity. We shall show presently that whenever
there is a CDD pole at infinity [¢50 in (2.5)] then the
Regge phase-shift asymptote (3.10) is obtained from
the solution of the N/D equation automatically, without
the constraint (3.35). In this connection, it is interesting
to count the number of parameters. The number #. of
CDD poles (counting the possible pole at infinity) is
determined by Levinson’s relation, as follows!:

8(0)/m=n,—mns. (3.36)
The number of stable-particle poles is #5, and §(4) =0.
The behavior of the phase shift may be such that it is
possible! to take all CDD poles at finite energies .s;;
[i.e., at points s; such that sind(s;)=07]. In that case,
we have 2n,+1 parameters, viz., the n. positions s;,
the n, residues c¢;, and the subtraction constant a.
We must impose Eq. (3.35), however, which reduces
the number of parameters to 2%#,. On the other hand,
it may happen that one of the CDD poles may be or
must be placed at infinity. It must be there in the case
when the number of finite zeros of sind is less than #,,
as in the instance where the phase rises monotonically
from zero to approach w from below at infinity. With
one pole at infinity, we have 2(n,—1) residues and
finite positions, the residue ¢ of the infinite pole, and
the subtraction constant. Since Eq. (3.35) is now
irrelevant, there are again 2x. parameters. This clears
up an old puzzle which was noticed when Ref. 3 was
written: Why are there two parameters associated
with finite CDD poles, while only one with a pole at
infinity? This seemed strange since, with certain
phase-shift behaviors, one has the option of placing a
pole at infinity or not; i.e., if the number of finite zeros
of sind is at least equal to #., and the phase tends to
nw from below, then one has this option. We now
know (in Regge theory, at least) that the subtraction
constant is determined when all poles are at finite
positions, but undetermined when one is at infinity, so
that the total number of parameters is always 2#..

In order to analyze the case ¢#0, we must redefine
the unknown function in the integral equation, as was
remarked following Eq. (2.25). The integral equation
then reads

B ln(s—so)ra+B(oo)+C(s)
T si(s) L

¥(s)

S—3So
C(s) —C(s.;):|

$—38;

1 r®o(s") /s"\Y2 In(s —so)
o=
wJa q(s) \s/ In(s"—so)
C(s)—C(s’

x[ © —(s—)]x&(s’)ds’,

s—s'

+cC(s) +Z ci

(3.37)
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where
In(s—s0) ¢(s)

31/2

Y(s)= (3.38)

It is known! that if M (s,s’) is the kernelin (3.37), then
m?(s) = / M?2(s,s")ds'=0(s"1In"%). (3.39)
4

By the methods following (3.13) one finds that ¥(s)
=0(s72In7%s). One can also verify, by techniques
similar to those already used, that My =0(s"12In"%),
(My)'=0(s~%21n"%). Consequently, the inhomoge-
neous term in (3.37) determines the high-energy be-
havior of both ¥ and ¥’. We find then

o(s)=cC(s)+0(In=3), (3.40)
¢'(s)=0(s"11In"3), (3.41)
from which we deduce via (2.5) and Theorem A that

ReD,(s)=c¢s+O0(s In7%s). (3.42)
e (s=s0)p(5)0(s)
S—3S0)p\S) oS
tand(s) = —W ~C(s)
—my
= 0Qns), (3.43)
2 In2s

which was to be proved.

The determination of the constant e¢+B(«) from
Eq. (3.11) or Eq. (3.35) requires very little computation
beyond that needed to solve the N/D equation. We
denote the integral operator in (3.1) by K, so that

(3.1) reads ) )
+B(x)4C
1(s)els) = “_Ls ©)
$—3So

+Ko(s). (3.44)

Instead of solving (3.44), we solve two auxiliary equa-
tions, namely,

+K¢’1(s) ) (345)

7(s) pa(s) =
S—So

C(s)
7(s) p2(s) = —— +K s(s) -
S—So

(3.46)

We can then make the solution of (3.44) as an explicit
linear function of ¢+B(x):

¢(s)=[a+B()]ei(s)+¢2(s) . (3.47)
When - this is substituted in (3.5), the constraint
equation (3.11) yields

00

1
- / C(s)p(s) ea(s)ds

a+B(w)=

(3.48)

1—- f CEls) er(s)ds

4
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A vanishing of the denominator in (3.48) would mean
that the input functions B(s) and 5(s) were inconsistent
with the Regge behavior (2.16) of the output phase
shift. That would be the only way out of a contradiction,
since the left-hand side of (3.48) is finite: a=A4;(so) is
finite by definition, and so is B(®) as a convergent
integral.
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APPENDIX A

To prove Theorem A, as stated at the end of Sec. IT,
we break up the integral as follows:

© f(H)d: 4
JOa 2.

gls)=P

L)
s0 S—i i=1

1 8 (14-€) 1 s (1—e) d
Il=—/ o, 12=—/ EACLN

$ Vs S Vs s—i
P pste ff(l)dt o f(t)dl

3= y I4= .
S Js-e) S s(l4e) S—1

We take 0< e<1 and so<s(1—e¢). Since
8 (1—e)
| I,] SMS—2/ e lnPidi=Ms"%T,, (A2)
S0

we may apply ’'Hospital’s rule to Ja/(s>*In"Bs) to
show that 7,=0(s~*In"#s). For I, we have

[ 1| <M In~#s(1+¢)]

X f F(—s)"de
8(1+¢)

a=1:

=0(s"!In"Fs), (A3)
a=0,8>1: |L|<M In=h¢ (t—s)~dt
s(1-te)
<M / In=bu u=1du
=0(In%s). (A4)
Now I3 may be written as
L () =s1(6)
3= - / —di, (AS5)
s s—t

s(1—e)



1438

since

s (1+€) dt
P / — =0. (A6)

(1—e) S—1

The mean-value theorem may be used to bound the

integrand of (AS). For some x such that s(1—e¢)

<x<s(1+e¢), we have '

tf(&)—sf(s)

’——/ =|(xf(x)) | <MxeIn~Ffx
t—s

SM[s(l—e) T *Inf[s(1—e)]=0(s"=1In"Bs). (A7)
Hence
I;=0(s"=In"5s). (A8)
Finally, we note that
1 8 1 s (1+e€)
I,= -/ f(t)dH——/ fde
$s s sJs
(A9)

1 s
= —/ f(Odi+0(s~=1nFs) ,
$ Vs

which completes the proof.

APPENDIX B

Our intention here is to majorize the function £%(s),
defined in Eqgs. (3.15) and (3.18). We prove that

k2 (s)=0(s1In"%),
For this purpose it is convenient to bound the difference
quotient of C(s) as follows, using (2.24):
C(s)—C(s')

s—s'

§—0 .,

(B1)

/ C'(s’"+uls—s"])du

M/l du B2)
= Jo [ Fuls—s) 1[5 +u(s—s)] (
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This gives

© 5 In2(s"—s0)
B()SM,| ———
4 8" In2(s—sq)

X[/ol [s'+u(s—s")] fzg[s,_i_u(s_s’)]]zdsf
>2. (B3)

M, /°° dtlnz(st—s(,)/ U dx
as t(1—1)2 \ ¢+ xlndsx
To show that the integral over ¢ in (B3) is bounded,
we consider three separate intervals of ¢: 4/s<t< e<1,
e<i<1+¢ and 1+e<t<». For the first interval,
we have

/“‘ dtln2(st~—so)/ U dx >Z
4

s t(1—8)? \ ¢ xlndsz.
1 € dt ln2st/——1
T
4(1—e)2 \In2s

To show that (B4) is bounded, the integration may be
performed explicitly. The interval near =1 contributes

/H‘dtlnz(sl—so)/ L dx >2
. t(1—1)2 \ . xIndsx
In2(s[ 14€]—s0)
<.—._.

- sIn2(s—so)

1 2
) =0(1). (B4)

4/s t lnzst

=0(n"%), (BS)
€® InSse (
while the tail of the integral yields
/“” dt ln2(st—so)/ 1 dx )2
e t(1—1)? \ ¢ xIn3sx
1 2 di[1+In(t—so/s) ] In¥%
_ =0(In"%). (BY)

In%s J 14 1(1—1)?



