
'P H YSI CAL REVIEW 0 VOLUME 3, NUMBER 6 15 MARCH 1971

Direct-Channel Reggeization of Strong-Interaction Scat'tering Amplitudes. III
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A class of representations is discussed which describe the direct-channel S-matrix partial-wave projection
in terms of direct-channel Regge poles (a I(s)), Regge zeros (a„ii(s)), and a convergence factor @(X},as
follows:

.I,
Mathematical methods, introduced in Paper II of this series, are expanded here to take advantage of the
particular representation of the function p() } which is shown to be required by proper behavior of the
amplitude near the closest cross-channel singularities. This paper discusses the ways in which more detailed
crossing-symmetry requirements specify p(X), given an approximate set of direct-channel poles and zeros.
It is shown that the representation for @(P}produces large families of infinitely rising crossed-channel
trajectories in a simple way. It is shown that these amplitudes automatically have the proper direct-channel
phase-shift threshold behavior, provided that the functions (a I(s},n„ii(s) ) have the threshold behavior
usually required. In addition, it is shown that this trajectory threshold behavior follows, for our amplitudes,
from imposition of proper behavior in the neighborhood of the nearest crossed-channel singularity; i.e.,
no recourse to results derived outside the context of this class of representations is necessary. A simple
bootstrap calculation is performed, for the purposes of illustration. It is shown that the zeros of the function
@(X) are closely related to the background integral in the conventional Sommerfeld-%atson summation
scheme.

I. INTRODUCTION

y(X)=0(1 '), as X-+co) Rek& -~
where QP) is used to represent the scattering amplitude
in terms of direct-channel Regge trajectories, as follows:

y(Z)(X —1)-'dX y(l) (2)

It will then be shown that some of these representations
have a greater number of desirable properties than one
might naively expect to follow from the imposition of
proper asymptotic behavior for large l. One such
representation is examined in fair detail, and a rough
"bootstrap" calculation is performed for illustrative
purposes. Some mathematical techniques are discussed
which should be useful in performing calculations with
such representations, and which shed some light on the
general problem of constructing approximate scattering
amplitudes which have a large number of desirable

*Present address: The Aerospace Corporation, Kl Segundo,
Calif.

'S. P. Creekmore, preceding papers, Phys. Rev. D 3, 1400
(1971)) 3, 1407 (1971).
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' 'N two previous papers' this author indicated that
~ - there exist a large class of direct-channel Reggeized
representations for InS~ which have the proper asymp-
totic behavior as l —+~, Ref& —~. In this paper, the
specification of these representations is reduced to the
choice of an entire function p(X) with the following
asymptotic properties:

ghee

qh(X) Xconst, as X~~, Reh) ——', ,
QX cosh) =I+M, '/2q, ' (I)

properties. In order to concentrate on the essential
features of.these techniques, we will suppress explicit
references to Regge cuts, regard our scattering ampli-
tudes as having only one crossed channel with a pole
being the nearest singularity, and consider only elastic
scattering.

II. GENERALIZED CHENG-LIKE REPRESENTA-
TIONS: CHOICE AND REPRESENTATION

OF FUNCTION

Consider the integral g, P(X) (X—l) ' lnSidX as the
contour is taken to inhnity. Earlier authors' derived
Reggeized representations by choosing @(X)=e"& and
postulating that e"& InSq-+0 as ~X~ ~~ suKciently
fast in all directions away from X= —

~ to allow the
contour integral to approach zero as the contour is
expanded to infinity, avoiding the singularities of ln5), .
In fact, this requirement can be modified somewhat
since it is known that

lnSi const e '&/Ql, -as l -+~, Rel& ——,
' (3a)

ln5g 2xil, as l -+~, Rel( ——', . (3b)

In potential theory, it has been shown' that ln5~
satisfies Eq. (3b) for a large class of potentials. Equation
(3a) follows from the well-known asymptotic behavior
of ag in that limit:

ai O(e-'&/gl),

Si——1+aif(s) .

(4a)

(4b)

'Hung Cheng, Phys. Rev. 144, 1237' (1966); W. J. Abbe, P.
Kaus, P. Nath, and Y. ¹ Strivastava, ibid. 140, 31595 (1965),
henceforth referred to as AKNS. A specific computational scheme
was investigated in W. J.Abbe et ul. , Phys. Rev. 141, 15D (1966),
and %.J.Abbe and G. A. Gary, ibid. 160, 1510 (1967).

3 Hung Cheng and Tai Tsun Wu, Phys. Rev. 144, 1232 (1966).
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An immediate consequence of the behavior in the right
half-plane is the correct behavior of the whole ampli-
tude (defined in terms of the partial-wave series) in
the neighborhood of the nearest crossed-channel
singularity. As we remarked in an earlier paper, 4 the
Cheng representation g(X) =e"& does not have this
behavior if the sum over Regge poles is approximated by
a 6nite number of terms. In order to avoid that dif-
ficulty, we will require P(X) O(e"&/Qli) in the right
half-plane.

The essential conclusions of this section are that,
with quite unrestrictive further assumptions about the
function g, one obtains the following representation:

O(l ) =expHI —~)(l +2)A(l ), (5)
where

& exp/(X+-,') w)h(w, a$)
~(l) = dvv .

t irv2(coshw —cosha$)'i'

Furthermore, p has an infinite number of zeros lying
close to the line Reh= —i. The line segment (—a$, u$)
is called the indicator diagram of P, and the coefficient
of the exponential in Eq. (6) is the Borel transform of
f, which for mathematical reasons is required to have
singularities at the endpoints of the indicator diagram.
Equation (6) itself is called a Polya representation.

The precise meaning of these statements is made more
clear in the following discussion and in the references
cited therein, but it is possible for a reader uninterested
in these details to proceed directly to Sec. III.

The asymptotic behavior of p(X) is less well specified
in the left half-plane than in the right. We will restrict
our consideration to functions having the following
asymptotic behavior in the left half-plane:

ln~y(X)
~

lim sup =t'(oo,
;RA(—,'

where the {ai) are the zeros of f(X). All the zeros of
such a function, except possibly those of a set of zero
density, lie inside rays passing through 'A= —

~ making
arbitrarily small angles with the line Reh= —2. The
zeros are spaced to allow the limit

lim aI, '
r~cC e (rI al

to exist. 6

We compute the indicator function of P(X) as follows:

»14(«"—2) I

h~(8) =lim sup — =a/
~
cos8~ . (10)

The indicator diagram, the convex set supported by the
function h~(8), is the line segment (—at, uP) which is
also the conjugate indicator diagram. ~ Recalling another
mathematical theorem, ' we use the fact that any entire
function of exponential type can be written in a Polya
representation:

a will appear as a parameter in our later formulas. We
could also obtain representations by integrating over
the variable a to obtain f(X).

It does not appear that these asymptotic conditions
are overly restrictive on the class of allowed p(X). In
mathematical terms, we have restricted our considera-
tion to those p{X) which are entire functions of ex-
ponential growth of order 1.' We require that

~
fP,) ~

be
bounded along the line Rek= —~.

There is a theorem to the eBect that any entire
function of exponential type which is bounded on the
line Rek= —

~ is a function of class A, of completely
regular growth, and its indicator diagram is an interval
on the real axis. In this case, being of class A means that

Z IRe(o.+2) 'I & ~,

where

ln in&, x, (P)
lim sup

~.(~)= .:.I~(I~I'') t

(8)

It is useful to replace p(X) by a function whose
asymptotic behavior is symmetric, as follows:

~P ) =-pE(1- )(~+-,')G~O),

»14(~) I

lim sup =aha, Re) & ——,
'

= —aha, Rely( ——', .
' S. P. . Creekmore, preceding paper, Phys. Rev, D 3, 1407 (1971).

where $' does not necessarily equal $. This behavior
allows flexibility in the behavior of lnS& in the left-half
plane, should this be required by relativistic generaliza-
tions of the potential-scattering result, Eq. (3b).

We also require
where C is a contour surrounding the conjugate indica-
tor diagram and F(w) is the Borel transform of P(X).
F(w) must have singularities at the points w =&a).' We
will assume, without further discussion, "that C can be
shrunk to the boundary segment {—aP, a$):

e$

l8(P) = — e&"+l&"f(w,a$)dw (12)

~ A very clear exposition of the theory of the functions we will
be using is contained in B. Ja. Levin, Distribution of Zeros of
Entire Functions (American Mathematical Society, Providence,
R. L, 1964); see also R. P. Boas, Entire Functions (Academic,
New York, 1954).

6 B. Ja. Levin (Ref. 5), Theorem ll, p. 251.
7 R. P. Boas (Ref. 5), Sec. 5.3, pp. 73—75.
8 R. P. Boas (Ref. 5), Theorem 5.3.5, p. 74.' R. P. Boas (Ref. 5), Theorem 5.3.12, p. 75.
' Actually, all we need is the conclusion of R, P. Boas (Ref. 5),

Theorem 6.8.14, p. 107.
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By an examination of the asymptotic properties of this
representation in the right half-plane, assuming f to
have reasonable behavior, it is seen that f(w) must
have a singularity of the following type near w=a$:

f(w) =const/(a$ —co)"'. (13)

Similarly, the behavior of f near w= —a$ determines
the precise asymptotic behavior in the left half-plane.
Since we want to retain some flexibility in the behavior
for Ret(—2, we will not make requirements for
w——aP, except that the representation converge.

We make the following replacement (our choice for
the argument of the square-root function will turn out
to have simplifying consequences in the discussion of
threshold behavior of these representations):

1 k(w, ag)
(w, ak) =—,(14)

V2 (cosha& —coshw) 'i'

where the asymptotic /-plane behavior requires that k
be finite at the point w=a$, although its behavior for
w= —a$ is less rigidly de6ned, and it could still have
singularities within the interval (—a$, a$). Evidently,
we have reduced the problem of specifying our repre-
sentation to the specification of the function k(w, at) on
the finite segment (—a$, a$).

III. CONSTRAINTS ON BEHAVIOR OP k(w, ag):
DIRECT-CHANNEL THRESHOLD BEHAVIOR

The asymptotic behavior of pP.) in the right half i
plane is

expL(l+-'s) (]k(a&, a$)~(1)-—
(2rr(i+-,s)sinhat 1"s

Suppose that the nearest crossed-channel singularity
is a pole at t= —2q. '(1—cosh/). The residue of the
crossed-channel pole is then

Residue = —lim Insi
~

—Qi(cosh)) ~, (16)
2', i 2q, '

where the limit is taken along positive real values of l.
Inserting our representation, and 1-eeping only one
Regge pole, we obtain

Residue —4g, (sinht sinhaP) '~'k '(a&,ap)
II

X — P(X)dX, (17)
2z

where we have used the asymptotic behavior "of
Qi(cosh)) to obtain this result.

On the other hand, quite unrestrictive assumptions
about k(w, a$) result in the following asymptotic be-

» Z. W. Hobson, Spherical and E/li psoida/ Harmonics (Chelsea,
New York, j.965), Eq. (22), p. 305.

2z'
@(X)(X—l) 'dl~/y(l), (19)

where for simplicity we consider a single trajectory
approximation. As q, —&0, e& M '/q, s, where M is the
mass of the nearest crossed-channel pole. Consequently
using the behavior of g(l) for large P and 6xed 1, we
obtain

(20)

As q, —+ 0, n' —+ n~', so that a mean-value approxima-
tion to the integral approaches the correct value:

b)~const Imn q, '&'-R'~'. (21)

This result is independent of u in the range 0(u(&
and it is also true for the original Cheng representation
and the AKNS modihcation. All of these representa-
tions have the property that, provided Immi has the
correct threshold behavior,

Imn —const g, 'R' +' (22)

the phase shift has the correct threshold behavior:

b~—const q
~'+'. (23)

We should not be satis6ed merely with this result,
however; it would be preferable to choose pP ) so that,
when we perform a practical calculation, in almost any
approximation we will obtain the threshold constraint
on Imrr(s) as an automatic feature of the solution. In a
practical calculation, the trajectory near threshold
should be determined by the constraints placed on the
amplitude by its required behavior near the closest
crossed-channel singularities. In potential theory, for
example, this statement reduces to some simple assump-
tions about the potential.

"Clearly, we are restricted to p(X) corresponding to amplitudes
whose nearest crossed-channel singularity is a pole, and therefore
whose asymptotic behavior in X is strictly e "&/gX. The generali-
zation to crossed-channel cuts, however, is straightforward.

havior for large at and 6xed i:

expL(t+s) ]1
y(l) — k(af, a$)f(l),

(sinhaP) '~'

where f(l) is a function of /only.
Since @P,) only appears in ratios of its values at dif-

ferent values of X, we will lose no generality in restricting
our consideration to k for which k(a$, a$) =1."There-
fore, we will suppress the factors k(ag, ag) appearing
in the asymptotic formulas.

Now let us investj. gate the threshold behavior of
amplitudes parametrized in terms of our functions
P(l~); this behavior is closely related to the asymptotic
behavior of P(X) in lt and a$.

The expression for the s-channel phase shifts is as
follows:
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Residue~const Ime q
('~'~+') (24)

Ke have already obtained an expression for the one-
trajectory approximation to the crossed-channel residue.
Inserting in Eq. (17) the calculated asymptotic be-
havior of il P) as q, ~ 0, and using the same kind of
mean-value argument as before, we obtain the s-channel
threshold behavior of the (approximate) l-channel pole
residue function:

oo

A(s,s) = P (2l+1)
2', ~=0

exp
B

y(i)(i i) —di) 'y(i) —i P iz)

integrodifferential equation. Briefly, if A(s,s) is the
scattering amplitude in our representation,

Now, even in the crudest approximation, the crossed-
channel residue should be required to remain 6nite as
q, —&0. This condition is equivalent (for this class of
representations) to the desired result:

and g(s, s) is a related function defined as follows:

(26)

Imn(s) —const il, 'a'~'. (25)

Again, we have obtained a threshold condition in-
dependent of u in the range 0&a& ~. Only a loose sort of
constraint on the behavior of the function k(w, af),
which was required to obtain our asymptotic formulas
in l and $, is necessary to ensure the connection between
the crossed-channel singularity and the direct-channel
Regge trajectory threshold behavior, which we know
from potential theory must exist. "

In this respect our representation is a distinct im-
provement over those of Cheng and AKNS. Such a
constraint on the threshold behavior of n(s) cannot
automatically hold for these older formulations, since
the 6rst of these representations does not allow a
reasonable crossed-channel singularity at all, and the
second specifies the residue of the Born term a priori,
as a parameter independent of the direct-channel Regge
trajectories.

g(s, s) = P(2l+1)
5=0

x (Z
~ II

y(X)(X—i) 'dt) i(l) i'(s), (27)

BAf(x,s,s) 1
=kg(s, s)+—

Ag(s, s")Af(x,s,s')
— —tk ds

K"'(s,s',s")
K)0

Z(s, s', s")=[(s's"—s)' —(s"—1)(s"'—1)],

with the boundary condition

Af(0, s,s) =0,
gives the discontinuity of the amplitude:

(28)

(29)

then the solution of the following equation,

IV. MATHEMATICAL TECHNIQUES RELATING
k TO CROSSED-CHANNEL DISCONTINUITY:

MECHANISM FOR IMPOSING
CROSSING SYMMETRY

'tA'e have developed a parametrization of the scatter-
ing amplitude in terms of direct-channel Regge tra-
jectories and an auxiliary function @(X), which we have
so far avoided specifying precisely, other than to state
asymptotic conditions which lead to a representation
in terms of the Sorel transform

k(w, af)n '[(cosha$ cosh—co) )&2j

Presumably, the disposition of the direct-channel Regge
trajectories provides most of the salient behavior in the
s channel, at least for low energies, since the sequence of
resonances will be correctly specified, in a way that is
fairly insensitive to the choice of p. On the other hand,

p is closely related to the behavior of the amplitude in
the crossed channel. In Paper II we discussed methods
of relating the analytic continuation of the amplitude to
the continuation of a simpler function, in terms of an

AA(s, s) = Af(1,s,s),
2'Eg g

(30)

1 "d g(s')ds'
g(s) =-

7K gp

The sum for g(s, s) still appears quite formidable, so
we will develop some methods for carrying out the
summation.

First, we decompose g(s,s) into a sum over the
various Regge-pole contributions:

where

g(s s) =P
re I

g(s, s,X)y(X)dX, (31)

where Ag(s) denotes the crossed-channel discontinuity
of the function g(s), defined in terms of a Cauchy-
integral representation:

I~ See, e.g., R. G. Newton, The Complex j-I'/ane (Benjamin,
New York, 1964), Chap. 9.

g(s, s,X) = Q(2l+1)(X—l) 'il) '(l)Ei(s).
0

(32)
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P e
—"&(P —l) 'P4(z)

L=O

Then we notice that, since tt (i)~O(e'&/gl) the series of the Legendre function, since'4
for g(s,z,X) has the same ellipse of convergence as the
following series:

h(s, z) = Q e "&4t(l)P4(z).
L=O

(33)

The leading singularity of h(z) is weaker, however.
Following a procedure used in Paper II, we observe

that

e("+» dx
e
—2x$ »(—z)+ — „, (33)

sink+ „t 2(cosh@—z)g"'

Combining the parts of g(z) associated with the various
Regge poles, we obtain an integral equation relating
g(z) to h(z):

g(»z' ~)h(z ) 1
*" -+(.=* »'"(*—" ~)""»4 dQ'

4x

1
g(s,z') h(z") dO' =Q

4m tb

y(X)1(l,z)dn (36)

=Q e 24&/ l) —'P4(z). (34)
L=O

The analytic properties of the right-hand side of this
equation are straightforwardly related to the properties

(as well as the corresponding equation for the dis-
continuities), where by I(X,z) we mean the right-hand
side of Eq. (34), which is a known function.

We now observe that h(z) can be expressed in terms
of the Borel transform of p(X) in a closed-form
expression";

a$ k(w, aP) e&dw

h(z) =-
,t L2(cosha) —coshw)]'t'{2t cosh(t(1+a) —w) —z])'"

(37)

This expression then allows us to write the equation
for the input equation, g(z), directly in terms of the
Regge trajectories and the function specifying the
representation, k(w, a,g), thereby avoiding explicit
reference to summations over /:

is determined by

g(s, z) = — f(s,z,t)dt,

where

(41)

1 & k(w, aP) e&

,; t 2(coshag —coshw)]"'

1 g(s,z')dQ'X— Ao
4r {2Lcosh(g(1+a) —w) —z"j)'~'

n
yP )S(~,z)d~. (3S)

B(s,z) = —2iq, A (s,z) = —P (2l+1) (S4—1)P~(z), (39)
0

then

g(s, z) =P (2l+1) lnS4 P4(z)
L=O

(40)

'4This function is simply related to the Khuri representation
fN. N. Khuri, Phys. Rev. 130, 429 (1963)g. In a sense, thus, our
representation is a "unitarization" of the Khuri representation.

I~ We have used the generating function for PL(s) to perform
this sum. See Ref. 11,p. 15.

This equation is the vehicle for imposing crossing
symmetry in a calculation involving these representa-
tions. In order to close the system of equations, we add
the equation, derived in Paper II, which determines
the input function g(z) in terms of the whole amplitude.
Given

f(s,z, t) =B(s,z)+ — f(s,z', t)B(s,z")dQ' (42)
4x

and the corresponding equations hold for the dis-
continuities. ' Finally, we impose crossing:

A, (s,t) =A, (s,t) ~,~„ (43)

i.e., requiring the t-channel discontinuity to be equal
to the s-channel discontinuity (with a suitable change
of variable) which itself is determined, in our approxi-
mation, by the s-channel Regge trajectories and the
function k(w, a(). Then one would cycle through the
integral equations to obtain a consistency check, adjust-
ing the trajectories and function(s) k to achieve

optimum agreement.
It is instructive to compare the present scheme with

other proposed Reggeized scattering calculations. As
an example, we consider the method of Abbe et al. ' In
their scheme, the scattering amplitude was parametrized
according to a modified Cheng representation and the
analytic continuation necessary to impose crossing was
carried out using the Sommerfeld-%atson transforma-
tion, applied to the amplitude in complex angular mo-
mentum space. In the present method, we avoid explicit
continuation in angular momentum space since all the

'6 ~ would have a 5-function part corresponding to the pole
term, but we will suppress explicit reference to this complication.
The modi6cations introduced in the formulas are quite trivial.
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partial-wave series involved in the integral equations
are exactly summable, before approximations are made.
(In Paper II an alternative method is detailed for
continuation of the partial-wave series, using only the
numerical values of the partial-wave amplitudes at
integer values of /. This method could be applied in
much the same way as the collocation procedure sug-
gested in Abbe et ul. , except that a strictly numerical
computation would be possible involving no unphysical
amplitudes. ) In our case, we obtain equations in terms
of the total scattering amplitude defined along the
unitarity cuts. Direct-channel Regge trajectories are
explicit, as in the Abbe scheme, but in contrast to the
older method, we have retained a great deal of generality
in the choice of representation. Thus, when approxima-
tions are made, for example, the neglecting of distant
trajectories, the functions k(w, at) are to be adjusted,
according to the integral equations, in such a way as to
minimize the damage done by the approximations. In
the following sections we explain more precisely what
is meant by this statement, how Regge trajectories
arise in the crossed channel, and how the function
k(w, a$) relates to the background integral in the
Sommerfeld-Watson continuation method.

Now we outline a technique useful for obtaining ap-
proximate solutions to Eq. (38), by describing a method
for obtaining g(z) "directly, " in terms of a convergent
infinite series. A reader uninterested in the computa-
tional details involved with these equations can proceed
directly to Sec. V.

The signihcance of this development is that an ap-
proximation to such a series would be useful as a start-
ing point in a numerical scheme for solving Eq. (38),
proceeding by successive approximations.

We consider the problem of continuing the sum in
Eq. (32) to all complex s. Consider the following
contour integral:

is zero, as can be demonstrated using the asymptotic
expansions of the functions g(l) and Q~(cosh)).

Finally, one obtains an expansion for Lg(l)(X —l)j '.
The summation over l required upon insertion of this
expression into Eq. (32) can be carried out explicitly. "
Summing these various terms, we arrive at the analytic
continuation of the input function g(s) in terms of a
convergent infinite series, which is also the solution to
the integral equation (38). The solution is given in
terms of the zeros of pP) and the function values and
derivatives at a sequence of points. In practical prob-
lems, it may be more scient to solve the integral
equation directly, but a few terms of the infinite-series
solution would be useful as a first step.

V. INTERPRETATION OF FUNCTION P(l);
LEFT HALF l PLANE AND
BACKGROUND INTEGRAL

If the positions of all the Regge zeros and poles were
known precisely, then the choice of any of a wide class of
possible functions p(X) would produce the same result,
upon summation over all trajectories. Approximating
the sum by a finite number of terms, or in some other
way misrepresenting some of the terms, however, we ob-
tain an expression whose usefulness is sensitive to the
choice of g(X). Since in general we do not expect to be
able to pinpoint the positions of trajectories below the
first few leading Reggeons, either from experiment or
from some kind of crossing calculation, we hope to use
information derived from crossing to specify the
amplitude, through the inhuence of crossing on the
function g(X) in our approximation.

For the sake of illustration, suppose that the nature of
our approximation consisted of the neglecting of all
trajectories to the left of the line Ref= —~. Then our
representation, which began as an identity, would
become

dX'( —lp)
(44)

Q (cosh&)(X' —l)@(X')P'—X)(V—lo) lnS =

First taking the contour to infinity in a sequence of
finite contours in the A. plane symmetric about the real
axis and passing between zeros of the function p(l) as
well as of zeros of the function Q~(cosh/), one obtains
an equation for the quantity

Lg(l)Q&(cosh')P, —l)$ '.
The zeros of the denominator of the integrand occur

at X'=X, I, Eo, at the zeros of the Qq (cosh/) function,
which lie along the negative real axis between integers
and half-integers'~: —n —

~ (A„&(t)( n, e = 1,—2,
3, . . . , and at the zeros of, the @(V) function, which, as
we remarked previously, lie close to the line Rek'= —~.
For any finite lo the contribution of the infinite contour

'~ E. Hille, Arkiv Mat. Astron. Fysik 13, No. 17 (1918-1919);
1/, No. 22 (1922-1923).

Reo.n) —k

y(X)(X—l)-&dr y(l), (45)

where the validity of the approximation is determined
by the extent to which one can neglect the terms

4p.) (X—l) 'dX p(l) (46)

in the partial-wave sum. The choice of p(X) will pre-
sumably be dictated by the behavior of the approximate
amplitude continued to the crossed channel. As we have
seen, the behavior of the function in the neighborhood

'8 S. P. Creekmore, Ph.D. thesis, California Institute of Tech-
nology, 1969, pp. 107—110 (unpublished).



DIRECT-CHANNEL REGGEIZATION. . . III. i425

of the nearest crossed-channel singularity is related to correctly, and in this way are related to the background
coefficients in the asymptotic expansion of the partial- integral of the Sommerfeld-Watson transformation.
wave amplitude

e
—'&

a&- —P b„l
l

(47)
VI. EXAMPLE OF ALLOWABLE k: ROUGH

"BOOTSTRAP" CALCULATION'

k(w, a$) e&"+'*&"dw

,t [2(cosha) —coshw) 7'"

For the purpose of illustration, we exhibit a possible
with bo proportional to the residue of the crossed- function p(l&). Recalling the Polya representation,
channel pole, and b„proportional to coeKcients of
singularities which become weaker as n increases. In- 4(l&) =e"PL(1 a)(l&+k)&
sisting that the coefficients of the first E singularities
be correctly specified by the sum over Reo. & —

~ would X
require

Re%~(—z

l& "PP&)dX =0

(n =0, 1, 2, . . . , X—1),

we set the integration density k(w, ag) = 1.In some sense,
this is the "simplest" possible form for gP.). In fact, it
reduces to the well-known Legendre function, since"

while the error term would be
e(

Pg(coshag) =— (51)
,r [2(coshag —coshw)7'~'

&N, l
Recss( s

(1 l Nf N 1)——

x(x—l)-'4 p)A y(t) (49).

so that p(X) =exp[(1—a)(X+—',)QPq(coshag). The be-
haviors of Pz(coshag) for large values of l& and $ imply

gP.) e&"+l&r[2l&s sinha)7 '~' (52a)
X~&e; Reh&—$

and

II

y(X)(X—I) 'dl&

a~

(50)

must have zeros in l at the same positions as the zeros
of the function p(l). If one truncates or otherwise ap-
proximates the sum over Regge poles, the approximate
expression for lnS& has an infinite number of poles lying
close to the line Rel= —

2 which is the location of the
background integral of the conventional Sommerfeld-
Watson representation. The existence and positions of
these poles is a consequence of the required asymptotic
behavior of p(l), which in turn was imposed by the re-
quirement that the representation converge and produce
the correct asymptotic behavior as l ~~, Rel& —

&,

regardless of the number of trajectories retained in an
approximation. Consequently, the poles along Rel——

~

represent the e6'ect of trajectories, in the left half l plane
for example, which have been neglected or treated in-

With a simple model for the distribution of the n, we
could obtain bounds for the error term. There is no
reason to assume it to diminish indefinitely as E —+~,
and in this sense our approximations are asymptotic.
More precise statements of the nature and behavior of
the error terms will have to await some experience in
estimating the bounds on the errors. It should be clear,
however, that a successful calculation will eventually
have to consider, in some fashion, the behavior of the
trajectories in the left half-plane in order to obtain
agreement with crossing to a high accuracy.

If one correctly specifies the positions of all the Regge
poles and zeros, then the sum

e &'&I'(l&+-,')
y(y) ~ e&&+k)r

rp, y1) r(-) ' (52b)

respectively, which conform to our earlier estimates.
As a consequence, we recover the same behavior for
the residue of the crossed-channel pole:

Residue =4q, (sinhg sinhat) '~'

~ II
xQ—

n 2'l a~1
exp[(1 —a) (l&+-', )&7Pq(cosha&) dl&, (53)

where, fort —M ',

A(s, t)—Residue/(t —M ')+(regular function).

The residue of a pole in the direct channel is

(2n+1) Imn
p

q, (dn/ds)

Q(X) dl&—1
g(n') X—n'

y(z)u.
+ p

~.r~ r „r p(l) (l& —u')

exp

(54)

All zeros of the function Pq(coshag) as a function of g
lie on the line Rek= —2, and are symmetrically dis-
tributed on each side of the real axis. '~

Since this representation allows a specification of both
direct-channel and crossed-channel behavior, one can

» Reference 11, Eq. (141),p. 270.
'0 The behavior for large l is given by Ref. 11, Eq. (24), p. 306.

The behavior for large $ is given by Ref. 11, Kq. (70), p. 234.
Note that for a=0, one recovers the Cheng representation.
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direct channel:

1 (u' —u") (2u'+1)
Pa——

2iq. (—du'/ds) 4l=mp 2 q.-(du/ds), ,„,

crossed channel:

p&Pi(COSH, ) I ~ ~,'; ~& 4q, Im—u—Pa, (coshag)

)&expLt(1 —a) (Reu+-', )j
X (sinhp sinhap) 't2 I,

where
Pi(cosH; )

A(s, t)=p,— + pi
s—m'

P

Pi(cosHi)

t —'fNP

We would obtain another equation if we were to write a
dispersion relation for u(s):

1 " Imu(s') ds'
u(s) =-

(s'-s)

In a more elaborate calculation, we would assume such a
relationship between Reu(s) and Imu(s), and investigate
our equations as functions of s. At this level, however,
we fix s at s=tt4~2; du/ds and Imu are undetermined.
Experimentally, " u(0) =0.57, so we can set du/ds
= (65m 2) '. By requiring equality between the direct-
channel and crossed-channel residues, we will obtain
a relation which determines 4N,

' in terms of du/ds.

"This value was taken from R. J. Eden, High-Energy Collisions
of Elementary Particles (Cambridge U. P., New York, 1967),
p. 245. For the purposes of this discussion, the precise value of
this constant is immaterial.

attempt a bootstrap calculation. The representation
has the same de.culties as the Cheng and AKNS repre-
sentations for large s (see Paper I); moreover, the
treatment of the crossed-channel cut will have to be
modified at high energies, since one expects difhculties
for high-spin exchanged systems unless the crossed-
channel intermediate states are Reggeized. As a con-
sequence, consideration is restricted for the moment to
a low-energy calculation.

We have in mind mm. scattering with a p resonance iri

both direct channel and crossed channel. We ignore the
sects of isospin and inelastic thresholds. We do not
intend this calculation to develop a reliable model of
the p meson; instead, we are simply investigating the
behavior of our representation, and we will be satis6ed
if we obtain dynamical quantities which are of the order
of magnitude characteristic of the strong interactions.

Recalling that we have formulas for determining the
residues of poles in the direct channel and crossed
channel, we obtain a pair of simplified equations by
dropping all but the smallest number of Regge tra-
jectories needed to approximate the quantities. The
highest Regge trajectory lies at Ren=1 at the energy
of the resonance:

Imo. factors out of the equation, so its value is irrelevant
at this level of approximation.

We still have a free parameter: a. In our approxima-
tion, this parameter has a straightforward physical
interpretation. It appears to be a measure of the
fundamental strength of the interactions. As u —+0
with Imu and du/ds held fixed, it can be shown that the
value of m, ' goes to in6nity while the residue goes to
zero. The minimum value of m„' and maximum value
of residue occur as u approaches —,. In accordance with
an intuitive feeling that the strong interactions should
be "as strong as possible" we set e =~, although it
should be pointed out" that the value of m, ' that we
obtain is still a function of, indeed perhaps very sensi-
tive to, the approximations we are making regarding
the neglecting of the lower Regge trajectories; the
choice of the value of a may have a bearing on this
problem, and in principle, should we possess an exact
knowledge of the disposition of all Regge poles andzeros,
the value of c should be irrelevant, as long as it is in
the range 0(a( ~. In this regard, we should recall once
again the spirit in which we have constructed this
representation. Speci6cally, we have arranged the
mathematics so that it is possible to compensate for our
ignorance of direct-channel trajectories to the left of
the background integral by introducing information
about the crossed-channel cut. In general, in order to
obtain more precise agreement between the behavior of
our approximate amplitude and the requirements of
crossing and unitarity, we will have to introduce an
integration over a and a nonconstant k(w, a)).

Our equation is

where

3 cosh&(du/ds) '
g

2

4 e'&'4 cosh —,
' $(sinhp sinh2 $) 't'

q, '=-,'(4tip' —4) .

(55)

The solution is ns,—8.2m or m,—1100 MeV.
Reviewing our approximations, we might have more

confidence in the direct-channel residue equation than
in the crossed-channel equations. Other investigations"
have indicated that the approximation Imu =q, (du/ds)P
may be quite good, in spite of the corrections one might
expect from lower trajectories. Inclusion of the lower
trajectories in the crossed-channel equation will lower
the value of nz, obtained in our "model. "To obtain a

"Evidently, for the case k= j., a may approach, but not
actually reach, the value a=q, because of the diQicuIties with
convergence in the left half-plane. This diQiculty is easily removed
by modification of k in the neighborhood of m= —aP, without
affecting the essential features of our argument."See, e.g., S.-Y. Chu, G. Epstein, P. Kaus, R. C. Slansky, and
F. Zachariasen, Phys. Rev. 175, 2098 (1968).

This equation can be solved by hand, using the method
of successive approximations, starting with

tt4 '= (du/~ds) '
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quantitative evaluation of this correction, we would
require an estimate of n„and Imn„/Imn for the lower
trajectories in question.

All known Regge particle trajectories have approxi-
mately the same slope at the origin. Taking the p
trajectory as representative, we have dn/ds —(65&n ') '.
The quantity (du/ds)-'&2 appears to fix a mass scale for
strong interactions in our model, at least in regions
where one of the Mandelstam variables assume a small
value, since we have m,—const (dn/ds)-'".

Even in this crude level of approximation, our boot-
strap theory possess an important feature in common
with observed scattering processes. As we increase the
mass of the external particles, holding dn/ds fixed, the
size of the self-consistent bound-state mass decreases

relative to the external mass. Thus, for example, a two-
"pion" system can bind a particle of mass 8.2m, but
if we allow the external particles to have the mass of the

E, the system binds a particle whose mass satisfies the
equation

65 cosh) nb ')
g

2
~ ~

4 e'r&' cosh-,'P(sinh$ sinh —,'P)'&' nbrr f

for which we obtain the solution "m,"—2.8m~.

and
kr(a&, a$) =k2(be)bg) =1) 0(b(a

k2( —b), b$) =0.
The asymptotic behavior of this function as P -+~ is

obtained simply as

g(~+s') 5

tb()() ~ — LFy(y)+ je(b-+) (&+1)kF2()()]
(2s X s)nhat)'&'

(57)
where

F)(X) 1 and F2P ) 1.

Then the asymptotic behavior of lnS~ is obtained as
follows:

.»' (b(X)A
lnS( ——Q -e &'+'&&(2nsinha)) "'l '"

P.—l)y(t)

of the integrand in the range of the integration:

~(~) = 'p((1- )()+-,')~]

1 S k&(w, a&)e&"+i)"dwX—s,r L2 (cosha$ —coshw) ]'i'

g
br k, (w bg)e&'+ , ) dw-

+— (56)
b$ L—2(coshbg —coshw)]"'

where

VII. REGGEIZATION OF CROSSED CHANNEL:
SINGULARITIES IN k(w, ag)

At this point, we see that it is fairly simple to arrive at
a scattering-amplitude approximation which, in some
sense, reproduces many of the qualitative features of
scattering for low energies, where one can represent the
crossed channel by the exchange of a single particle of
fixed spin. Simply setting k=—1 in our basic formulas
allowed us to perform a simple (albeit somewhat un-
realistic) bootstrap calculation by hand. Allowing k to
vary and enforcing stricter crossing conditions while
including a few more trajectories would presumably
produce even more interesting results. These approaches
are limited, however, unless we can show that such
amplitudes can simply be written in such a form that
Regge recurrences are obtained in the crossed channel
as well as the direct channel.

To this end, we consider a step which is one of the
most simple extensions of the single-exchange model,
k=1. Recalling briefly the function F(w), the Borel
transform of the convergence factor p(X), we note that
there is in principle no reason for F(w) not to have
singularities at other points than w =&a).Equivalently,
we could investigate singularities of the function
k(w, af) Suppose F(.w) were to have a square-root type
of divergence at some point within the interval

(—a$, aP). Then we could represent (b()() by a sum of
two pieces, each being an integral with no singularities

X g j"&., pL (b —)(l+-', )t]. (58)
n=o

Now, we have learned to identify a term with asym-
ptotic behavior e &'+»s/Ql wi-th the exchange of
a particle whose mass satisfies the equation cosh)
=1+%'/2q'. We then identify the remaining terms
with the exchange of particles with the "mass" relation

M„2
1+

2gg

=cosh{)L1+n(a —b)]}.

Evidently, the "masses" obtained in this way are a
function of s. Since we are dealing with a t-channel
process, it would appear that the exchange masses are
a function of a channel angle. Presumably, this de-
ficiency could be corrected by a more careful approxi-
mation. However, if we take s —+~, the limit in which
we expect a description in terms of a t-channel Reggeon
to be most valid, then we obtain, noticing that t M/q
as g ~~)

cosh{$1+n(a b)]$} 1—+I 1+n(a b)]'M'/2—&l'

or
M„L1+n(a—b)]M+0(1/q') .

That is, our sequence of peculiar singularities reduces,
as s ~00, to a set of legitimate exchange terms in the
t channel, with'positions evenly spaced in energy. Now,
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if we make the simple substitution

f=A+Bs =A'+B' cos8, ,

we see that the residues of these poles indicate that
each is composed of a sequence of partial-wave states,
of angular momentum values 0&l&n, where M„ is the
mass of the pole position. The behavior of our ampli-
tude in the t channel is very much like a sequence of
Regge recurrences and daughters, even in this extremely
crude approximation. A more systematic development,
using the integral equations, should arrive at an ampli-
tude with Regge poles in all channels, provided we
allow the Borel transform F(w) to have singularities
at points in the interior of the indicator diagram,
(—aP, +at). Furthermore, such an amplitude would be
unitary in all channels, to the extent that it satis6es
crossing, since we begin with a class of amplitudes
unitary in the direct channel. "

Finally, we note that the device of introducing ad-
ditional singularities in the Sorel transform

k(w, ag)n. 'L2(cosh'( —coshw) j "'
can be used to represent quite diverse types of
singularity structures as long as they are characterized
by the fairly regular spacing of an infinite number of
singularities in the t channel. For example, an in6nite
sequence of crossed-channel production thresholds
could be treated in this way, with a different choice of
the "angular factor" f, which we chose as f=A+Bs
to obtain Regge recurrences. In this picture, therefore,
an in6nitely rising crossed-channel Reggeon and an
infinite sequence of crossed-channel thresholds are seen
on the same footing —or as different manifestations of
the same mathematical structure, a fact which should
not be too surprising. "

VIII. EXTENSIONS OF THESE
PRELIMINARY RESULTS

In order to extend these results to a more interesting
class of reactions, the formalism must be generalized to
allow for unequal external masses, multiple trajectory
exchanges, inelastic channels, external particles with
spin, bound states lying below threshold, and the treat-
ment of more than one crossed channel. It does not
seem that these modi6cations would pose any problems
in principle, but they lie outside the scope of this work.
Unequal-mass kinematics would be straightforward;
extra complications arise from distinct t-channel and
I-channel states, in which case the different-signature

~Paper I discusses some of the modifications necessary to
extend these results to amplitudes which satisfy inelastic unitarity.

"This idea is widespread, that the opening of infinitely many
new thresholds is associated with infinitely rising trajectories,
perhaps by simulating low-energy behavior in some sense. The
author is not presenting it here as an idea that is very new,
but is only indicating how it arises naturally out of this class of
Reggerized representations.

amplitudes must be treated individually. Scattering of
particles with spin requires the separation of scalar
amplitudes which are then Reggeized.

In our parametrization, the higher inelastic s-channel
thresholds manifest themselves in various ways. The
integral

develops a new piece corresponding to each new open
channel. Presumably, the integrands g'(X) in these new
pieces would involve functions of q'„i, the relative
momentum of the inelastically produced particles, just
as the purely elastic pieces involve functions of the
elastic c.m. momentum q, . The functions n and p
themselves develop branch cuts on the various sheets.
The behavior of the functions @' as q'„& —+0 would
determine the inelastic threshold behavior of the o., just
as in the elastic case.

Application of unitarity would involve detailed con-
sideration of all the various channels involved in the
problem. In an intuitive sense, however, we might ex-
pect the solution of the problem to follow certain
patterns. Especially, we could speculate that quasi-
two-body approximations could be made to represent
the effects of inelastic channels on the scattering in the
basic elastic channel. For example, a three-pion channel
would be represented as px two-body scattering, with
an "effective" Regge trajectory equal to the original
trajectory displaced in the / plane according to the
rules for the addition of angular momentum, by the
value of the p trajectory at the relative c.m. energy of
the two pions bound in the fictitious p. Evidently, the
"effective" Regge trajectory would never rise much
above +=1, and, in this sense, the scattering would
always resemble a low-energy process, with the thresh-
old behavior and rate of rise of the effective trajectory,
and hence the original trajectory, being governed by the
kind of two-body threshold constraints we described
earlier. Therefore, the opening of new thresholds would
allow the trajectories to rise inde6nitely" at the same
time, the higher inelastic thresholds would inhuence the
behavior of the Regge trajectory in different manners on
different sheets, and the coupling of the Regge tra-
jectory to the original elastic channel would decrease
with rising energy, as urr(s) —+ nr(s).
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