3 DIRECT-CHANNEL REGGEIZATION... I.

for L(s) ensures that dips and peaks in the amplitude
occur at points of constant ¢ for rising s, at least to the
nearest power of s. There is evidently a certain similarity
to the duality approach in this discussion, although
there is a distinct difference in the mathematical details,
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as will be clear in the subsequent papers. Paper II
describes calculations made with a product representa-
tion using a large number of trajectories, in which the
aforementioned properties for nonforward angles are
exhibited explicitly.
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Direct-channel Reggeized strong-interaction scattering amplitudes are defined in terms of a set of
direct-channel phase shifts and elasticity factors. These quantities are functions of the positions of direct-
channel Regge poles and certain convergence factors, which are related to crossed-channel behavior. Two
mathematical techniques are discussed which can be used to continue these partial-wave expansions outside
their ordinary region of convergence. Unphysical values of angular momentum are not used in the con-
tinuation methods. The numerical method requires the partial-wave amplitudes specified at positive-integer
values of / only. The analytic method can be used to calculate precisely the discontinuity across the crossed-
channel cut, and thus would be valuable in further theoretical work using these representations. Applica-
tions of these methods are discussed, with reference to two earlier phase-shift Reggeization schemes.

I. INTRODUCTION

N principle, all that is necessary for a complete
specification of the total scattering amplitude is
knowledge of the set of s-channel partial-wave ampli-
tudes {a;(s)} for non-negative integer ! along with a
viable method of analytic continuation of the partial-
wave series in cosf,. We seek an improvement of the
Sommerfeld-Watson transformation as a practical
continuation technique for this purpose: It is clumsy in
dealing with direct-channel unitarity and in determining
the behavior of the amplitude around nearby crossed-
channel singularities, and there is no simple way to
approximate the background integral.

We shall, however, utilize certain information ab-
stracted from the Sommerfeld-Watson method. For
example, we restrict our attention to a class of repre-
sentations for the scattering amplitude for which some
direct-channel Regge poles are manifest, thereby
treating whole sequences of observed resonances in a
unified way. We also incorporate non-Regge informa-
tion, insisting on certain asymptotic behavior of our
amplitudes, independent of the level of approximation.

In order to satisfy unitarity we have introduced a
“Regge zero’” as well as a Regge pole, and thereby have
lost the possibility of independently specifying a Regge
residue.! Near a Regge pole, in fact,
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This paper is the second in a series of three papers
dealing with direct-channel Reggeization of partial-
wave amplitudes. It is concerned with mathematical
techniques useful for calculations with such amplitudes.
An introductory discussion and additional references
are contained in Paper 1.}

II. ANALYTIC METHOD FOR CONTINUATION
OF PARTIAL-WAVE SERIES

We shall use product representations, in which InS; is
specified in terms of physically relevant quantities. In
this case, InS; is a simpler function than .S;, from the
point of view of practical analytic methods. Neverthe-
less, we must continue the sum:

A(s, cosb) =[26K(s)T* 3 (2141)
1=0

X[exp(InSi(s)) —1]Pi(cosbs). (2)

Let us therefore consider a class of methods for the
continuation of functions defined in terms of Legendre
series. It will be obvious that these methods, with
appropriate modifications, can be used for expansions
in terms of any set of orthogonal functions.

A discussion of the significance of the continuation
methods is given in Paper III, where they are used to
develop a set of equations to impose crossing and
Reggeized behavior.

Consider the analytic continuation of

)= g @I+ 1) —1]Pi(z) 3)

18, P. Creekmore, preceding paper, Phys. Rev. D 3, 1400 (1971).



1408 STEPHEN P.

and the related function
g(x) =2 IH1)b:Pi(z). 4
1=0

The latter will yield more readily to analysis. Writing
Cauchy formulas for f(z) and g(z),

1 r~ddAf(

o= [ adld] (52)
m™J 2 2 —2
1 (= de/Agle

== [ a2 (5)
) 22—z

we want to determine Af(z) in terms of Ag(z). We define
a new function:

AGE)= g QU+1)(Y—1)Pi(z), ©)

which for 0<A<1 converges within the same region as

the sum for f(z). Trivially, fo(z)=0 and fi(z)=f(2).
Differentiating the new function, we obtain

af)‘(z) » 0
=g@+X QIH1D)bi(er'—1)Py(3).

=0

Q)

Now we have obtained a new Legendre series whose
coefficients are products of coefficients belonging to the

~ two other series. The addition theorem? and the orthog-
onality condition?® for the Legendre polynomials imply
that our new series can be expressed as follows:

) 1 1 2T

% QI DBE =P = / dz'/ d¢

=0 T J -1 0

®)

Consequently, we have reduced the problem of con-
tinuation of f(z) to the continuation of an auxiliary
function and the solution of an integrodifferential

equation:

X fr(z")g(z") l 2! =z2'+ (2°~1)/2 (2 *—1)12 cos +

©)

aJ 1
D) ot — / 4 [,
O\ dar

with the boundary condition fo(2)=0.

The quantity of real physical interest is the dis-
continuity of f(z), since the cut in f(3) is related to
physical intermediate states in the crossed channel. In
fact, to complete the dynamical specification of an
amplitude in terms of direct-channel Regge poles, we
would impose unitarity in the crossed channel, and
consequently we would have to know the discontinuity
across the crossed-channel cut.

2 E. W. Hobson, Spherical and Ellipsoidal Harmonics (Chelsea,
New York, 1965), p. 143.
3 Reference 2, p. 37.
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The following identity* will be useful here:

1
- f 0 (r1—P1-B)(ra—fr B
4

© dy
= / K" (n,71,m0)
w NP1 P2

no=T71m3+ (T2 — 1) (r 2 — 1)/

where

and
K(x,71,79) =[(r179—2%)2— (1'12 —1)(re2—1)7].

Using this relation, we obtain an equation specifying
the discontinuity of f(z) in terms of the discontinuity

of g(z):

] 1
—AfH()=40g(z)+ — //dz'dz"
22 T

K>0

XAN(E)AL(E) K12 (3,8',2"),  (10a)
Afo(z)=0, (10b)
Af(z)=Afi(2). (10¢)

This relation is a linear integral equation with the
kernel being the form K—1/2, familiar from the potential-
theory Mandelstam iteration scheme, integrated over a
known function Ag. This method should not be confused
with the Mandelstam scheme, however, since the latter
involves 4 nonlinear integral equation which determines
the singularities of the scattering amplitude from a
partial knowledge of those singularities. Such a deter-
mination is on a dynamical footing and is equivalent to
imposing direct-channel unitarity. Our method involves
a linear equation which determines the singularities of a
function, hopefully an approximation to the scattering
amplitude. In any case, the function is completely
specified beforehand by the set {;}. This method is
purely mathematical; it is correct independent of direct-
channel unitarity. After we determine the analytic
continuation of a partial-wave expansion, we could
compare its behavior with the requirements of unitarity
in the crossed channel and crossing. For example, if the
direct and crossed channels were identical, then we
could bootstrap by adjusting {6;} so that the crossed-
channel amplitude has resonances which correspond to
the Reggeized resonances in the direct channel.

It should be clear that our method and the Mandel-
stam scheme have one important feature in common:
The cuts propagate in exactly the same way. If g(z) has
a singularity at z=cosh{, then our equation requires
f(2) to have an infinite sequence of singularities at the
points z=coshn{, n=1,2,. ... This fact makes iterative
methods of solution possible. More important, it means
that the nearest singularity of f(z) is exactly the same
as that of g(2).

Of course, the success of this approach depends on
our being able to sum the series in Eq. (4), representing

4 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 69 (1960).
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it in some form that can be analytically continued to
find Ag(z). In Secs. IV and V we present some explicit
examples of this sort of summation, using representa-
tions for &;=InS; which have practical significance.
Should it happen that our methods of analysis are not
sufficiently powerful to continue the input function g(z),
however, we might still be able to find some function
which relates the Legendre coefficients in our sum to
the coefficients in a tractable sum. In the previous
example, the function e® performed this role. We
introduced a spurious parameter A, which “turned on”
our unknown sum and its cut structure.
Another example is a rational function:

Faf)= f; QI+Db(1—th)Piz), (1)
o(5) = lﬁ_'fo QI4+-1)b.P (). (12)

Itis quite straightforward to obtain an integral equation
to determine f:

¢
1) =g+ [ a2 1.
Evidently, "

(13)

gf(zz+1)1n(1—blz)Pl(z)=— / fe . (14)

These methods of analytic continuation make no men-
tion of unphysical values of angular momentum. The
integral equations, however, involve unphysical partial-
wave amplitudes in intermediate steps.

III. NUMERICAL METHOD FOR CONTINUA-
TION OF PARTIAL-WAVE SERIES

In cases where there is insufficient knowledge of the
analytic structure of the partial-wave amplitude to
carry out the integral-equation scheme, it should still
be possible to continue the Legendre series, since in
principle all that is needed for complete specification of
the scattering amplitude is the set of numerical values
of the partial-wave amplitudes for integer /. We will
illustrate this fact by investigating a particular method
of numerical continuation of divergent Legendre series.

Consider the set of partial sums of the Legendre
series:

o'L(z)=§ 2l1+1)a,Pi(z), L=1,2, ...
=0 15)

0’0(2) =0.

If the sum converges, then we have f(z) =limy, ., 01(3)
<, If the sum fails to converge, we still expect that
the set {o.(2)} contains enough information to specify
the analytic continuation of f(z), even though the
sequence does not have a limit in the classical sense.

A well-known result is @;~KQ;(coshf) as [—w,
Rel> —1, where coshé=1+M,%/2¢,2 and M, is the
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mass of the lowest-mass exchanged system. If
Re(n—£)>0, the sequence of partial sums {or(coshn)}
will not converge. In any case, for large enough L,°

L
or~const+K > (2141)Qi(coshf) P i(coshy) (16a)
1=0

~ K(L+1)(cosht—coshn)~[Qr+1(cosh§)Pr(coshy)
—Qx(cosh§)Pri1(coshn)] (16b)

NK’eL —§) (16c)

or
lna' L

lim —— =const< .
L->c0 L

Asymptotically, at least, ¢ resembles an exponential
function.

Most methods of summing divergent series involve a
linear transformation of the sequence {o.(z)} to obtain
a new sequence which also converges to f(z). We refer
the reader to a standard text® in this field for discussion
of the linear methods.

Little attention seems to have been paid by
elementary-particle physicists to nonlinear transforma-
tions as summation methods for partial-wave expan-
sions. In a remarkable paper, Shanks’ investigated a
class of nonlinear. transformations of nonconvergent
and slowly convergent sequences.

If {4,} is a sequence, Shanks defines the kth-order
transform of {4,}:

Aus oA,
AA ., AA,
AAdp k1 Adups
AAd, 1 AApir—1
Bk.n= ) (17)
1 ce 1
AAn_k AAn
AAn_l AAn+k—l
where
AAn=An+1"‘An;
k=1,2,...,
n=kk+1,...,
BO,n=An

Shanks showed that if

k
A,=B+3 aq:",
=1

5 Reference 2, p. 60.

8 ()} H. Hardy, Divergent Series (Oxford U. P., Oxford, England,
1949).
7 Daniel Shanks, J. Math. Phys. 34, 1 (1955).
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then By,.=B. If the sequence converges, |¢;| <1 for
all 7, and B is the limit of the sequence. If the sequence
diverges, |¢:|>1 for at least one 7, and Shanks calls B
the anti-limit of the sequence.

Thus Shank’s transform removes exponential be-
havior from a sequence. Application of a transform will
generate a new sequence, so that transforms can be
compounded. Shanks defined a number of special
transforms, but we are most interested in the ‘“‘diagonal
transform”

ei(An)=DBn,n. (18)

Shanks showed that if {4,} is the set of partial sums
of a power series, then the diagonal transform obtains
the diagonal of the Padé table for the power series.
Roughly speaking, the diagonal-transform sequence is
a set of attempts to fit the partial sums of the series
with increasing numbers of exponential components.
Asymptotically, we expect this to be a justifiable
characterization for a Legendre series.

The simplest example of a Legendre series represent-
ing a function with a “Regge pole” is the partial-wave
expansion of the Legendre function itself?:

sinar « 1
— > (_)l(___ —

T 1=0 a—1

1
_ a+Il+1

Computing the diagonal transform of the partial-sum
sequence for this series, we have compared the result
with a contour-integral determination of P,(z) for
several values of complex a and z. These results are
presented in Appendix A. Inside or outside the ordinary
region of convergence, the agreement is excellent within
the range of practical applicability of Shanks’s diagonal
transform, and one would expect improvement with the
introduction of multiple-precision arithmetic.

One way to use Shanks’s method in a bootstrap
calculation would be to expand the total amplitude in
partial-wave sums in two identical channels. Continuing
to a region in complex s and ¢ where the diagonal-trans-
form sequence can be applied to both sums, we would
then compare the results.

The application of Shanks’s technique is limited by
the numerical accuracy of the input sequence as well
as the precision retained in the intermediate arithmetic
steps. Errors will propagate, and in general the accuracy
of the determination of the anti-limit is less than the
accuracy of the defining sequence.

Wynn? simplified the computations involved in
applications of Shanks’s transforms, eliminating the
need for calculating determinants in Shanks’s formulas.

IV. CHENG REPRESENTATION: APPLI-
CATION OF ANALYTIC METHOD

Cheng constructed the first reasonable product
representation as an outgrowth of a study of the

8 Higher Transcendental Functions, edited by A. Erdélyi
(McGraw-Hill, New York, 1953), Vol. 1, p. 167.

9 P. Wynn, Mathematical Tables and Other Aids to Computa-
tion 10, 91 (1956). Note that Wynn’s notation differs slightly
from that of Shanks.
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asymptotic behavior of the S-matrix partial-wave
projections, in a certain class of potential scattering
problems.*® Cheng considered the integral

d\
——eM1nS). (20)

The integral vanishes as the contour is expanded to

infinity, assuming the asymptotic behavior of InSy is

uniform. The only singularities in A (for potential scat-

tering) are logarithmic branch points corresponding to

the Regge poles and Regge zeros. The following
representation is obtained:

W™ g\
InSz=2/ ——eDE
n Jat AN—I

=2 [E(—a)8) —E((I—a.')8)], (21b)

(21a)

where the sum is taken over the Regge poles of the .S
matrix and where

® dt
Eq(3) =/ et —,
1 ¢

where the integral converges, and elsewhere by analytic
continuation.!!

It is immediately apparent that, for any finite number
of Regge poles, the asymptotic behavior of this represen-
tation is InS;~O0(e~*/l) rather than InS;~O0(e*/~/1)
as /—w, Re/> —3%. This fact means that the nearest
singularity of the total amplitude is not automatically
in the form of a pole or cut with finite discontinuity.
Consequently, the Cheng representation is not as
powerful as we desire for a practical calculation. Its
simple analytic form, however, makes it interesting for
a study of the application of some of the techniques
developed in Sec. III.

We have reduced the problem of summing

&)= g @I+1)[exp(E [E{(I—aD)®)
— E((l—ax D ~11Pi(z) (22)

to the problem of summing

¢(2) = g QDY [E(l—aaD)®)
— B~ Pi(z) (23)

and solving an integrodifferential equation. We have
also seen that leading singularities of the two functions,
f(2) and g(z), are exactly the same. In a straightforward
manner, we can continue the Legendre expansion for
g(2) in the Cheng representation. We perform the
summation by considering a function F(e,z) which is

10 Hung Cheng, Phys. Rev. 144, 1237 (1966).
1 Handbook of Mathematical Functions, edited by M. Abram-
owitz and I. A. Stegun (Dover, New York, 1965), pp. 228-254.
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simply related to g(z):
Fla)=% QHDE(-D)PG).  (24)

For Rea <0, we obtain

F(oz,z)=/°° i‘w[z: QI4+1)ePy(z) Jdx.  (25)
g x 1

Using the generating function for Legendre poly-
nomials,? it is trivial to transform Eq. (25) into the
following:

1 0
Fla,z)= — / e(etHzsinhx(coshx—z)~3/2x~1dx  (26)
V2 J¢
and thus
OF 1 e .
—= —/ e@thz sinhy(coshx—z)~3/2dx. (27)
o 2 J

Integrating by parts, we obtain

oF
— =¢@tDEyI(coshE—g)~1/2

1411

For —1<Rea<0 the following representation of the
Legendre function is valid!®:

sinra [

™2 J_,

P (—z)=— e@tHz(coshx—z)~12dx. (29)

For —1<Rea<0 we can therefore rewrite Eq. (28):

oF Po(—2)
— =V2e+DE(coshE—z)~1/24 20+ l)r[ —

da

sinmra

1 ¢ |
—— | etetba(cosha—z)~V 2dx:| , (30)
W\/Z /—eo

which can be continued to all Rea> —1. Now

1 00
Flaz)= — / sinhx(coshx—z)~%/2x~1dx
V2 Jy

@ JF(d,2)
o[ T,

—1/2 Oa'

31

So putting in the conjugate trajectories a,! and a,I* and

Oa w summing over %, we obtain the analytic continuation of
+V2(a+3) / eletDz(cosha—z)~12dx. (28) our auxiliary function, g(z), defined in terms of an
¢ arbitrary set of Regge poles and zeros:
@ 1 eo{ 5 [oo o ¢b* sinhx dx LN : )
z)=— e F— et oo o. of Reap'> —3)— (No. of Rea,I> —1
§ V2 Jy Rean<—} x(coshx—z)3/2 Ja 2]
1 /“’ sinhx dx (cosht—2) s
X — —————— +V2(coshé—z —1/2g-1 elant+3)E _ p(anll+)E
V2 J; x(coshx—z)3/2 Rean>—} L ]
o’ Pu(=3z) 1 [t e@'+hagy
2 / (2a'+1)l:-— - - — -—————]da’. (32)
Roan>=1 J gult sinma’  wV2J_, (coshx—z)1/?

This formula explicitly exhibits the singularity structure
of g(z). The contours of integration from a,! to a,!* are
immaterial for the purpose of finding the discontinuity,
a reflection of the fact that the replacement InS;— InS,;
-+2x¢ produces no change in the value of the Legendre
series for the whole amplitude.

V. REPRESENTATION OF ABBE, KAUS, NATH,
AND SRIVASTAVA: ANOTHER EXAMPLE
OF ANALYTIC METHOD

Although the Cheng representation places the
crossed-channel cut in the correct position, the ampli-
tude fails to have the proper analytic structure near this
singularity. Consequently, it is difficult to define a
legitimate crossed-channel amplitude as an analytic
continuation of the direct-channel Cheng amplitude.
A bootstrap calculation would therefore not be sensible
in the Cheng representation.

12 Reference 2, Eq. (10), p. 15.
18 This formula can be obtained from Ref. 2, Eq. (122), p. 262.

Abbe, Kaus, Nath, and Srivastaval4 devised a
modification to the Cheng representation which, in a
superficial sense, repairs the analytic structure of the
Cheng amplitude, but at the expense of divorcing the
complete specification of the crossed-channel singularity
structure from the specification of the sequence of
direct-channel Regge trajectories.

AKNS considered the contour integral

da\
f ;_ZDDS A—1g%s'Qr(coshE) JeM, (33)

where
coshé=14-4M2/2¢,2,

coshi=1+4M,%/2¢.2,

and —g?is the ¢-channel residue. This integral tends to
zero as the contour is expanded to infinity, assuming

14W. ]J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 140, B1595 (1965), referred to as AKNS. See also W. J.
Abbe et al., ibid. 141, 1513 (1966), as well as W. J. Abbe and
G. A. Gary, ibid. 160, 1510 (1967).
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that InS; tends uniformly to the asymptotic behavior
derived by Cheng. This equality implies the following

representation:

Si=exp[ig’g:'Qu(coshf) ] H Sa(l,s), (39
where
et QO—DE)
S.(l,s) =ex ,: /
(l,s) =exp T
rnge +n)¢
- ,._l(coshg)] (35)
Qs(l'i‘n)

In this case, the scattering amplitude will have a
crossed-channel pole regardless of the disposition of the
direct-channel Regge trajectories. The crossed-channel
residue is completely independent of the direct-channel
trajectories. Therefore, as far as a bootstrap calculation
is concerned, this representation is no improvement over
the Cheng formula, although it may produce a better
fit to angular distribution in the direct channel. AKNS
noted that the modified Cheng representation is more
rapidly convergent in determining the residues of the
direct-channel Regge poles in potential theory.

In the AKNS representation, it is straightforward to
calculate the input function g(z) for our analytic
continuation scheme. If the model includes an infinite
number of trajectories, as for example in an evenly
spaced trajectory model, then the effect of the AKNS
modification is to add the term

w e~ {tn)§

E[Ql(coshé) — Z Pn—l(COShé):l (36)
gs n=1

n

to the expression for InS.
Using the generating function for the Legendre

polynomials, it is trivial to show that

w ¢ (HmE )
> P,1(cosh?)
w1 bn 1 P GIL:
= [ ————ta. (D)
V2 (coshxz—coshg)!/?
For Rel>—1, Qi(coshf) can be represented as
follows?®:
—(l+3)z
coshf)= — / ———dx.  (38)
e )= ¢ (cosha—cosh§)!/?
Subtracting these two equations, we obtain
w = )
Qi(cosh§)— > P.,—1(cosh§)
n=1 n
1 ¢ e
(39)

= ———n
V2 Ji (coshx—cosh&)!/?
The integral vanishes as £ — £ and the equation

15 Reference 2, Eq. (82), p. 239.
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reduces to a representation'® for the Legendre function
of the second kind:

(+nt+1)¢
P(coshf),

© ¢

h —
Qucosh®) =3 "

n=0 l

(40)

convergent for all complex / not equal to a negative
integer.

We could have written down the summation formula
from intuitive arguments. The presence of the
exponential factor in the contour-integral equation

ig eM
f [lnSx-— ——Qx(coshé)]——d)\ 0
s N—1

has the effect of suppressing exponential components
¢ in a Laplace-transform representation of the func-
tion Qy for u>£. Accordingly, we write a convergent
decomposition of Q) and simply drop the unwanted

terms:

Qi(coshf)= — / ————dx —

¢ (coshx—cosh§)/2

e~ e

(41)

e~ U=

—————dx. (42)
\/" (coshx coshf)1/2

Since this is a finite integral, it is convergent for all /.
Approximating the sum

w e (Hn)E

=

n=1 l+n

P,_1(cosh§)

by any finite number of terms, however, introduces
spurious poles in the left half  plane.

In order to calculate the added contribution of the
AKNS modification to the'input function g(z) obtained
in the Cheng representation, we need to perform the
following sum:

5 (M) /
3

Using the generating function for P,(z), we can show
that the AKNS contribution to the input function is

e— 4Dz

W Pi(z). (43)

(coshx—cosh§)1/2

ig? } 1 )
——[(coshg—-z)—l—— / (coshx—cosh§)~1/2
qs 2 £

X (coshx—2z)~3/2 sinhx dx] (44)

in the case of an infinite number of trajectories. If we
truncate the sum in the AKNS representation, the

16 E. Hille, Arkiv Mat. Astron. Fysik 13, No. 17 (1918-1919),
Eq. (26), p. 18.
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contribution to the input function becomes

g} _ N -
———[ (coshé—2)"1— > P, 1(coshf)
Qs n=1

ooe—(n—%)z
X (coshx—z —3/2dx]. (45)
J, e

At this point, it should be apparent that the effect of
the AKNS modification is to give the scattering ampli-
tude reasonable analytic structure at the leading
singularity simply by introducing a pole in an ad hoc
fashion; difficulty remains, however, at the more
distant singularities.

V1. INFINITE SEQUENCES OF DAUGHTER
TRAJECTORIES: TOY MODEL

Other investigations have indicated that analyticity
of the amplitude requires every Regge trajectory at
s=0 to be associated with an infinite sequence of
“daughter” trajectories evenly spaced below it in
angular momentum.!” It is worth considering an
extrapolation of this arrangement of trajectories to
physical s>4m? Making this extrapolation within the
context of the Cheng representation, we arrive at a
toy-model scattering amplitude. While this amplitude
is not intended to represent a physically realistic
situation, it still serves to illustrate some of the behavior
of amplitudes with a large number of Regge trajectories.
Thus, properties described in a heuristic or abstract
way in Paper I can now be illustrated graphically.!
Designate by of and o', the leading pole and zero of a
family of daughters. By AT and Al we mean the spacing
of the pole-trajectory daughters and the zero-trajectory
daughters, respectively.

The Cheng representation for our amplitude is

lnSz= Z [El((l-—al-i-nAI)g)
n=0 :
—E((l—a"+nA)E)].  (46)
It is straightforward to obtain a closed expression for
this sum. If Rel>max(Rea!,Reall), then the defining
integral for Ey(z) converges for all the Regge poles.
Evidently, the series under the integral sign is abso-

lutely and uniformly convergent. Exchanging the
summation and integration, we obtain

0 =g (I—al)tt e—(l—aH)El dt :
1nS;= - — .
1 1— —ALEt l_e—Allst i

In Appendix A, we show that the analytic continua-

(47)

17 See, e.g., D. Z. Freedman and J. M. Wang, Phys. Rev.
Letters 18, 863 (1967).
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tion of this formula, valid for all /, is

l—al l—all l—al ]—all
Al Al Al AIL

e G-atDte— 14 (l—aTT) £
1
0

x (1—¢AME)
e~ 0=abts— 14 (I—a')tx AT g
_ H L [
(1—e2t) At a(l—et)
l__ I l— II
+ (e )ln(l—e“AIE)— ( al In(1—e2"¢)

AI AII

+ @ —a)g,

where v is the Euler-Mascheroni constant.

In Appendix C, we plot typical angular cross sections
defined by partial-wave sums derived from these
approximate phase shifts. Shanks’s method was applied
to accelerate the convergence of the Legendre series
and, in some cases, to allow numerical extrapolation of
the amplitudes outside the region of convergence of the
expansion. The reader may note the change of shape of
the curves in Figs. 2-4, as the leading zero trajectory
crosses the real axis, other parameters being held
constant. The phase of the amplitude in the forward
direction can be varied over a wide range with such
adjustments.

When the number of daughter trajectories is in-
creased, the Cheng representation converges fairly
rapidly to the infinite-trajectory amplitude. Specifically,
the representation is relatively insensitive to the exact
distribution of the trajectories to the left of the imagi-
nary ! axis, insofar as the qualitative behavior of the
amplitude for physical angles is concerned.

The graphs also evidence a phenomenon discussed in
Paper I; for nonforward angles, the amplitudes have
small oscillations at about the same rate as a Legendre
polynomial of the order equal to the leading trajectory.
In the forward direction, and for a fairly wide range of
parameters, the angular behavior is well approximated
by an exponential, as an expanded logarithmic plot
demonstrates in Fig. 1. Continuing outside the physical
angles, we found that the exponential behavior persists
in the forward direction; in the backward direction,
however, the differential cross section appears to have
a power-law bound.’® As we consider higher energies,
the Cheng representation is subject to the restrictions
developed in Paper I concerning the behavior of the low
partial waves in the case of infinitely rising trajectories.

The rate of convergence of the Legendre series was
improved if account was explicitly taken of the singu-

(48)

18 These amplitudes have only ¢-channel singularities. In order
to obtain more realistic amplitudes, we would use the signature
device and two sets of direct-channel trajectories corresponding
to the two signatures. For our purposes, however, the present
case will suffice.
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Fic. 1. Expanded graph of the forward peak in a typical Cheng-
representation differential cross section with an infinite number

of evenly spaced Regge poles.

larity structure of the function defined by the sum. For
example, the function in the above discussion had a

singularity at z=cosh{. If
A(z)=2 Q+1)aPi(z),
=0

then rearranging the sum using one of the recursion
relations for Legendre polynomials, we obtain

A(z) =(3—cosh§)™?
%> [lars+(4+1ar—Q2i+1) cosh ailPi(z).

The new series and its diagonal transform converge
faster than the old.

VII. CONCLUSIONS

We have exhibited tractable mathematical methods
for precisely determining the crossed-channel dis-
continuity of an amplitude defined by a direct-channel
partial-wave expansion. Our analytic method involves
the solution of an integrodifferential equation, in terms

STEPHEN P. CREEKMORE 3

of an input function which is simple to calculate exactly.
We have given several examples of such computations.
These methods are particularly appropriate for calcula-
tions involving amplitudes suggested in Paper I. In
Paper III, we generalize the observations of Papers I
and IT to a class of amplitudes which exhibit Regge poles
in both direct and crossed channels, while still having a
great deal of flexibility.

APPENDIX A

P,(3), the Legendre function of the first kind, was
calculated for various values of @ and 3, in order to
compare values obtained from three methods: first, the
ordinary partial-wave expansion; second, the sequence

TasLE I. Comparison of values of P,(z) obtained from three
methods, for a=1.540.5¢, 2=2+42;. From a contour-integral
calculation, P,(z) = —1.32+3.47;.

Original partial-wave Diagonal-transform

sequence sequence
0+40; —0.0087-+4-0.0104:
—0.1740.098; —0.06128+0.05643:
2.51-0.285; —1.74—0.514;
—7.33+11.0; —2.204+-3.38:
24.9-5.74; —1.444-3.454
—93.6—33.2; —1.344-3.465
162.84-365.5¢ —1.32+3.46¢
604.2—1590.97 —1.32+4-3.474
—7030.2+3047.7%
32788.2+13718.5;
—60537.2—157778.9¢
—351862.0+-739498.4¢
3831230.4—1247462.15

a

a Absolute value of real or imaginary part greater than 107,

TaBLE II. Comparison of values of P,(z) obtained from three
methods, for a=2.5+0.5/, 2=2+42;. From a contour-integral
calculation, P,(z) = —16.14-5.714.

Original partial-wave Diagonal-transform

sequence sequence
040z
0.0836—0.0295; 0.00433 —0.00640z
—0.805—0.357; 0.00519—0.00638:
8.295+4-7.8927 0.0415—0.05367
—60.514-8.0245 2.083+41.614¢
98.56-68.271 —13.0414.7;
—183.86—438.72; —16.3+6.60¢
—773.284-1783.3¢ —16.145.812
7779.4—3124.8; —16.14-5.732
—34930.5—15399.6: —16.1+5.737
61582.44167881.74 —16.14-5.702

377298.6—770005.4¢
—3992259.74-1268998.1;
a

a Absolute value of real or imaginary part greater than 107,
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TasLE III. Comparison of values of P.(2) obtained from
three methods, for a=1.5+40.5¢, z=1.544. From a contour-
integral calculation, P,(z) =0.283+1.95:.

1415

TasLE V. Comparison of values of P,(2) obtained from three
methods, for a=1.540.5;, z=1.5/. From a contour-integral
calculation, P,(z) = —1.064-0.334:.

Original partial-wave Diagonal-transform

sequence sequence
04-0:z —0.01594-0.0128;
—0.172+4-0.0983: 0.0983-+-0.0918;
1.46—0.477; —1.234-2.45;
—0.7104-4.98; 0.2304-2.022
4.33—-2.30¢ 0.276+41.95:
—12.64-5.04; 0.28241.95¢
31.24+14.4¢ 0.283+-1.95:
—46.4—74.5¢ 0.283+1.95¢
—24.74252;

498 —529;

—21314-349¢

5735431132

—8046—18319;

—151924-60241;

153678 — 1198084

—6165334-70.45

1549716+1208627:

TaBLE IV. Comparison of values of P.(2) obtained from three
methods, for a=1.5+40.5, 2=1.541.5:. From a contour-integral
calculation, P,(z) = —0.5684-2.30:.

Original partial-wave Diagonal-transform

sequence sequence

0+0: —0.0115-0.01347
—0.1724-0.0983; —0.06924-0.07744
1.84—0.189; —1.8554-0.7342
—3.914-6.00; —0.7824-2.29;
10.16—0.315z —0.5924-2.29;
—26.84—12.15¢ —0.5704-2.30z
24.274-89.66: —0.5684-2.304
149.39—250.69: —0.5684-2.30:

—973.84-213.14
284342011
—1543 123684
—29646--34498;
168409—4274¢
—435034—458025¢
—1856034-23860234
7251866—5573949;
a

a Absolute value of real or imaginary part greater than 107.

Original partial-wave Diagonal-transform

sequence sequence
0+0: —0.0002154-0.02574
—0.172+4-0.0980z —0.03234-0.103;
0.9784-0.9612 —0.646-+0.227¢
—2.80—2.06¢ —0.985+40.359;
—4.36-+4.607 —1.06+-0.347;
8.93+6.21; —1.064-0.3357
11.22—24.16 —1.06+-0.333:¢
—63.87—28.06¢ —1.06+0.3337
—71.314-167.16:

454.294-182.512

487.86—1269.49;
—3603.7—1346.3;
—3786.04-103667
30176.94-10811.8¢
31292.2—88726.1;
—263077—91577%
—2704974-785741

obtained from the  partial-wave expansion using
Shanks’s diagonal-transform method; third, a contour-
integral representation. The results are shown in
Tables I-V.

The partial-wave expansion of P,(3) is

Pu(z)=lim S,(z,2) (where the limit exists),

where

sinra » 1 1
Su(a) = 5 (_),(_ - _)p,<z).
T =0 a—1 ati+1

This expansion converges for all z in the segment
—1<3<1 and for all nonintegral a.

APPENDIX B

Consider

InSi=3" [Ex((l—al4nA)E) — Ex((l—al+nAT)g)].

n=0

In order to find an analytic continuation of this formula valid for all /, we use a representation of the £, function

valid for all values of the argument!®:

1
Ei(z)= —’y—lnz—i—/ (1—e2) e,
0

where v is the Euler-Mascheroni constant. Now we consider the Nth partial sum of the infinite series in the Cheng

representation:

N l—al\ N [ l—al4nAl
IS, M =3 [E((l—al+nAl)E)— Ex((—al+nAl)E)]= -——ln(—l- 1 >— > ln(———————)

n=0

19 Reference 11, Eq. (5.1.11), p. 229.

—all) a=1 \J—all4pAl

1 N N dx
+/ [e—(l—aﬂ)éz(z e—nAIIE:v)_e—(l—al)Ez(Z e—nAIEJ:)]__.
o x

n=0 n=0
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This form is not convergent as we take N—oo. Rearranging the sum and the integral, we obtain

! I—al)/Al 14 (I—at) /nAl
In$; W =—(N+1) ln<—A~>—1n[i———)/A ]~ > 1{%}
ATl (l—atD)/AT] n=1t L14-(I—alt)/nAll

11 N 11 N
+/ Lottt 1 (l—a )] (3 o) de— / Lo G-t 14 (=) g ](X e 4)da
0o X n=0 0 n=0

x
11 ~ N I 1 N
+ [ (T e T et ip—(—aMg [ X enttdnt(l—al)g [ X enieeda
0o X n=0 n=0 0 n=0 o n=0
Substituting
1 N 1 N eraé—q
> erbtady=1—— 3 ,
o n=0 A n=1 n

as well as adding and subtracting

l—a!  l—al! Ny 1
(AI an )(V_Ex;)
we obtain
o Al N 14 (l—al)/nAl l—al! [—all
InS; =—-(N+1) In| —H‘ —_ Z In| - —_ +
A n=1 14+ (l—a') /nAl nAl nAll
(I—at)/Al l—al l—ol! N /l—aoll  ]—qol l—al ]—oll
+in — A1) /AT et I Al +:£'1 o I +r T Al
(l—all)/A A A nls nl A A

1] N 11
+ [ Lot 1+ (—a)Ex](X ) du— [ et 1 (—a) ] (5 et
[ n=0

[ n=0

(I—al) N yenalé—q (I—all) N g mAllE_{ Ldt N N
- > < )+ Zl< >+(an—a1)£—-/ —(2 e nAlit— 3~ gmnallir),

Al st n Al o= 7 t n=0 n=0

Now notice that the expression in the curly brackets { } is the logarithm of the Nth partial product of Euler’s
infinite-product representation of the I' function?':

il

o=l (4]

lim Tw()=T().-

valid for |z| < . Define

so that

Also define
N
Iny(1—z)=—3_ z"/n,

n=1

so that limy ., Iny(1 —2) =In(1—2) where the series converges.
Finally, rewriting the integral

11 wn AIL N Al
- Z (e—nAIIEx_e—nAIEa:)dx= _ Z e—nszdx_(]\r+1) ln(——>,

0 X n=0 Al x n=0 Al

20 Reference 11, Eq. (6.1.3), p. 255.
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we obtain for our expression

l—aol l—all
o) ()
AI AII
l—a!  ]—oll
=)

/ Lttt (e e

l
/ i “—ﬂ‘m—1+a—al>ex3(z e da
o X

Aul N —al
+/ - e”"f"dx—l— lnN(l—e‘A’f)

x n=0

l|—all

Iny(1— A1) (ol —al)E.

Now all the terms are convergent as N—. Using
the expansion

> ar=(1—x),

n=0

we can write
InS;= lim §;™,
N>

obtaining Eq. (48).

This expression can be continued to any point in
the ! plane except for the singularities of the I' functions.
We have arrived at an elastic-scattering ‘“‘model”
involving an infinite number of Regge trajectories.?!

APPENDIX C

Using the Cheng representation, scattering cross
sections are calculated for infinite numbers of evenly
spaced Regge pole and zero trajectories. a! and o!! refer
to the leading pole and zero trajectories, respectively,
while AT and A refer to the spacings of their respective
daughters. £ is a kinematic variable indicating the
position of the nearest crossed-channel cut (see text).
Figures 2-4 show the variation in these cross sections
as the leading zero trajectory crosses the real axis and

21 These formulas simplify for real, integer spacing of daughter
trajectories. In fact, one obtains a recursion relation relating the
S matrix for a single trajectory Si! to the S matrix for an infinite
number of integer-spaced daughters S1° lying below a leading
trajectory identical to the single trajectory of Sp*: 11" =S:"S¢t *.
This relation is also valid for a slightly larger class of product
representanons Transforming back to cosd space, one obtains
for A®(cosf)jan integral equation involving a kernel given in
terms of A!(cosd)

with an infinite number of evenly spaced Regge
+0.44;

explanation of parameters.)
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DIFFERENTIAL CROSS SECTION (ARBITRARY UNITS)
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Fic. 2. Differential cross section for the Cheng representation
yoles, al=4.1
See text for

all=41-047; Al=Al1=12; £=0.35.

DIFFERENTIAL CROSS SECTION (ARBITRARY UNITS)

| l |
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cos @

Fic. 3. Differential cross section for the Cheng representation
with an infinite number of evenly spaced Regge poles. al=4.1
+0.4¢; al1=4.1—0.2;; Al=A1=1.2; £=0.35.
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DIFFERENTIAL CROSS SECTION (ARBITRARY UNITS)

DIFFERENTIAL CROSS SECTION ( ARBITRARY UNITS)

I l I
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I I I cos § ,
-1.0 -0.5 0.0 0.5 1.0 Fic. 6. Differential cross section for the Cheng representa-
) tion with an infinite number of evenly spaced Regge poles.
cos al=6.140.04; a11=6.1—0.04;; A1=1.14+0.1; All=1.14—0.13;
Fic. 4. Differential cross section for the Cheng representa~ £=0.28.
tion with an infinite number of evenly spaced Regge poles-
al=4.14042; o11=4.140.2{; Al=A1T=1.2; £=0.
3
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Fic. 7. Differential cross section for the Cheng representa-
[ tion with an infinite number of evenly spaced Regge poles.
al=6.5-+0.04/; alT=6.5—0.04i; AT=1.13+0.14; All=1.13—0.17;

I I
-1.0- -05 00 05 10 £=0.27.
cos 8

Fie. 5. Differential cross section for the Cheng representa- approaches the leading pole trajectory. Figures 5-7
tion with an infinite number of evenly spaced Regge poles.  jjjgprate the cross-section behavior as Ree is increased

0.1

al=5.74+0.047; o11=57—0.04;; Al=1.540.15: A=1.5-0.15;

£=0.29. and A is made complex.



