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The construction of Reggeized strong-interaction amplitudes is discussed in a series of three papers.
In this paper (Paper I), the amplitude is expanded in a partial-wave series with the individual partial-wave
amplitudes represented as products over direct-channel Regge-pole contributions. Unitarity bounds auto-
matically hold for direct-channel processes. Such representations are shown to account for the essential
features of both elastic and inelastic scattering, in terms of the Regge trajectories on several Riemann
sheets. It is shown that difIjculties usually associated with rising trajectories are naturally avoided in
this formulation.

I. INTRODUCTION investigate the consequences of large numbers of
infinitely rising trajectories, in terms of the forward
scattering peak as well as nonforward scattering.

Some of the results discussed in Paper I have been
pointed out by other authors in isolated contexts. They
are presented again in order to demonstrate how they
6t naturally into the mathematical framework pre-
sented in these papers, and to provide the background
necessary for the exposition in Paper II which cul-
minates in an extremely general Reggeized representa-
tion derived in Paper III.

In Paper II, we exhibit mathematical techniques
which can be used to continue analytically our partial-
wave series, determining the discontinuity across the
crossed-channel cuts and the residues of the crossed-
channel poles. We illustrate these methods by discussing
applications to some unitary Regge representations
previously proposed by other authors.

Using these techniques, one could perform bootstrap
calculations, imposing approximate unitarity in the
crossed channels and obtaining the proper spin and
mass of both direct- and crossed-channel resonances,
all by manipulating the parameters describing the
direct-channel phase shifts.

In Paper II, we also investigate some of the properties
of a specific model with an infinite number of evenly
spaced daughter trajectories, using one of the older
representations.

With some care in the choice of Regge representations,
the direct-channel and crossed-channel singularities
can be properly positioned, and correct direct-channel
phase-shift threshold behavior obtained, provided the
Regge trajectory functions are constrained to have
correct threshold behavior. This fact has been demon-
strated previously by several other authors. ' In
Paper III, we exhibit a representation with the addi-
tional feature that one obtains correct threshold
behavior of the direct-channel trajectories, by the
imposition of reasonable behavior of the whole ampli-
tude in the neighborhood of the nearest crossed-channel
singularity. Applying some of the mathematical

REASONABLE model of strong-interaction scat-
tering must have the following properties:

(1) Unitarity in all channels.
(2) Correct positioning of direct- and crossed-channel

singularities.

(3) Correct energy and angular behavior in the
neighborhood of singularities. Phase shifts should have
the proper threshold behavior, and resonances should
have the proper spin.

(4) Regge asymptotic behavior in any channel for
large values of the channel energy.

(5) A simple and accurate treatment of inelasticity.
(6) An explicit and workable mathematical procedure

for relating the parameters describing one channel to
those of another channel.

Decomposing the amplitude into a set of partial-wave
amplitudes expressed in terms of phase shifts, it is
trivial to meet the requirement of direct-channel
unitarity, at least below the erst inelastic threshold.
Expressing these phase shifts in terms of direct-channel
Regge trajectories results in an amplitude which has
Regge behavior in the crossed-channel energy variables.
Assembling a large enough ensemble of trajectories
which rise with energy, one can simulate Regge behavior
in the direct-channel energy variable. This article is the
first of a series of three papers which investigate the
problems associated with practical utilization of a
model defined in terms of direct-channel Reggeized
phase shifts. Of special concern are the difhculties
associated with making such a model consistent with
the above six properties.

In this paper, we discuss some properties of such
Reggeized representations. We show how direct-channel
inelasticity can be related to the behavior of the
trajectories on their various Riemann sheets. We also

* Some of the work described in these three papers was con-
tained in a thesis submitted in partial fulhllment of the require-
ments for the degree of Ph.D. in Physics at the California Insti-
tute of Technology, 1969.
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'See, e.g. , Hung Cheng, Phys. Rev. 144, 1237 (1966); W. J.
ndo, Abbe, P. Kaus, P. Nath, and V. N. Srivastava, iNd. 140, 81595

(1965).
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techniques of Paper II, we perform a simple bootstrap
calculation to illustrate our new representation; in so
doing, we obtain a relationship between the derivative
of the Regge trajectory, the self-consistent bound-state
mass, and the external mass.

Earlier workers derived the asymptotic behavior of
the partial-wave projection of the S matrix for large
values of

~ l ~. In the case where Rel) ~,'

jnS~ —ip(s)X(s)s-'I e ~'+i&&~'&g, t 2l sinhg(s)g ', (I)

where cosh/(s) = I+31,'/(2q, '). M is the mass and p(s)
is the strength of the nearest crossed-channel singularity.
E(s) is 'a kinematic factor. In the case where Re/( —~,
for a wide class of potential scattering problems, it has
been demonstrated' that the behavior is

g ~g2Ar(l+$)

This asymptotic behavior precludes the possibility of
pushing the Regge background integral to inanity in
the left half-plane and replacing it by a sum over Regge
poles lying to the left of Rel= ——,.4 Such a process
would not be convergent, which implies that the back-
ground integral is not simply related to the Regge poles
that lie to the left of the background integral contour.

Consider an amplitude Reggeized in the s channel. If
this function is represented, according to the
Sommerfeld-Watson transformation, by a sum of Regge
poles and a background integral, then satisfactory
behavior can be obtained for high-energy t-channel
scattering in the forward direction. Difhculties arise in
using such approximations to represent the scattering
amplitude for low-energy 7-channel processes, and for
the s channel in general. In particular, s-channel
unitarity cannot be rigorously imposed on such sums
in any simple way, and the position and discontinuity
of the t-channel cut is incorrect. Making adjustments
between the Regge-pole terms and the background
integral, one can correct the position of the t-channel
cut, ' but the elastic unitarity condition

Ima~(s) =X(s) I «(e) I
',

s&4M'

remains a hopeless tangle of Regge-pole and back-
ground. terms unless the amplitude is approximated by
a small number of terms in the Sommerfeld-Watson
expansion. The background integral is non-negligible in
these cases. Therefore, the Sommerfeld-Watson method
is not a particularly well-suited description for these
regions.

The most natural way around these difficulties is to

~This relation is obtained from the well-known asymptotic
behavior of the partial-wave amplitude: u~= (S~—1)/E'(s).' Hung Cheng and Tai Tsun Wu, Phys. Rev. 144, 1232 (1966).

4 See Ref. 3 and Hung Cheng (Ref. 1); also N. N. Khuri, Phys.
Rev. 130, 429 (1963); S. Mandelstam, Ann. Phys. (N. Y.) 19,
254 (1962).' N. N. Khuri (Ref. 4).

use a product form for S~.'

where the product is taken over the direct-channel
Regge poles of the amplitude. G(l,s) is an entire function
(for the case of potential scattering) and the {p~,„}are
convergence factors. ' The usefulness of such representa-
tions depends on a judicious choice of G(l,s) and the
{P&,„(s)},as well as on the availability of eKcient
computational techniques for summing the partial-wave
series described in these terms. This requirement implies
that alternatives to the Sommerfeld-Watson trans-
formation are necessary. Paper II is devoted to such
methods.

Paper III represents the convergence factors {P~,„(s)}
in an extremely general fashion, consistent with
analyticity and proper asymptotic behavior in the right
half / plane. It is then shown that for large values of
the direct-channel energy variable, families of crossed-
channel Regge poles appear in a natural way, out of the
representation which began in terms of Regge poles
explicit in the direct channel alone.

An important consequence of the mathematics of
Paper II and the representation of Paper III is that one
obtains a set of integral equations, for which the solu-
tions are automatically unitary and Reggeized in the
direct channel, allowing in a simple way for Reggeization
in the crossed channel and for imposition of crossing
symmetry. All remaining partial-wave series are exactly
summable in closed form, so that the resulting model
equations are to be solved directly in terms of the Regge
trajectories and the continuous functions (developed in
Paper III) which specify the particular representations.

II. PHASE-SHIFT REGGEIZATION

It is convenient to define a new function:

which may be regarded as being the contribution of
the nth s-channel Regge pole to the /th phase shif t, with
the reservation that such an identi6cation is dependent
on the decomposition which produces the convergence
factors {P&, }, which are not unique. The only finite

6 Earlier investigations of product representations were made by
S. R. Desai and R. G. Newton, Phys. Rev. 129, 1445 (1963),
by Hung Cheng (Ref. 1), and by Abbe et al. (Ref. 1). For a dis-
cussion of relativistic bootstrap calculations using one particular
(modified) form of the Cheng representation, see W. J. Abbe
et el., Phys. Rev. 141, 1513 (1966); W. J. Abbe and G. A.
Gary, ibid. 160, 1510 (1967). Some properties of the modification
of Abbe et ul. are discussed in Papers II and III of this series,
to illustrate mathematical techniques developed by this author
for the study of infinite-product representations, in the general
case. Desai and Newton discuss the justification of an infinite-
product representation of the S matrix in the case of potential
theory. Cheng and Abbe et ul. analyze approximations derived
from certain particular choices of the functions G(l,s) and (p&, }.
Paper III discusses a very general representation of these
functions.
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FrG. 1. (a) Pole and zero trajectories in the complex plane for the case of a completely elasticresonance. (b) Phase shift as a function of
energy for the pole and zero trajectories in (a). (c) Elasticity as a function. of energy for the pole and zero trajectories in (a).

singularities allowed for f&,„arelogarithmic singularities
at the Regge pole and Regge zero. The requirement that
the Regge singularity in the amplitude be a simple pole
fixes the normalization of if~„T,h.is fact,has a bearing
on the size of p(s), the t-channel residue of the whole
amplitude, as will be made clear in Paper II.

if&, (s) is not defined as an analytic function of s
unless we replace n„*(s) by the analytic function
agreeing with n„*(s)for real s above threshold. This
function we denote by n„i'(s);it is the analytic con-
tinuation of n„(s)defined by taking a counterclockwise
circuit around the thresho'ld branch point onto the
second physical sheet. To avoid any confusion, we
denote the function n„(s)on the first physical sheet by
n '(s). We can then express i/~, „(s)in terms of the
boundary values of the analytic functions:

P~,„(s)=lim In(Ll —n„"(o)j/D —n„i(o)j}+g~,„(s),
amP (6)

o =s+io, s&4M'.

III. TREATMENT OP INELASTIC THRESHOLDS

In principle, we could determine the Regge trajectory
on the second sheet by analytic continuation of the
trajectory on the first sheet. In practice, however,
knowledge of the analytic structure of the (n (s)} is as
remote as the complete solution of the scattering
problem with many-body production processes. As a
consequence, a practical Regge parametrization of
two-body elastic scattering will involve specification of
a new set of trajectory functions for every new thresh-
old; to the extent of our ability to determine them,
these new functions will be arbitrary, within certain
limits.

As an illustration of the relation between the multi-
sheeted Regge trajectory and the behavior of the
partial-wave amplitudes, consider a partial-wave ampli-
tude in an energy region for which only one resonance
dominates the amplitude:

~i =n«""=Zip —n" (s)j/D —n'(s) j.
Evidently,

„=ID—»(s)j/D —i(s)ll IZ, I

In generalizing to relativistic scattering problems,
we propose to retain the product form explicitly
exhibiting the pole and zero behavior of 57 in the / plane.
Below the elastic threshold, Imn '=0; at the elastic
threshold, Imn i=Imn rr 0 and Ren r Ren ~~. f
real s above the elastic threshold and below the first
inelastic threshold, n„~=n„',above the first inelastic
threshold, n '*/n„".Evidently, we need to know the
Regge trajectory function defined on two sheets in order
to determine the behavior of the scattering amplitude
for a process with an open inelastic channel, or for a
description of the amplitude below the elastic threshold.

8~=2 arg(Zq)+ —', argp —n»(s)g —
2 argLl —n'(s) j. (9)

If this energy is below the first inelastic threshold,
then n *=n" and IZ&l =1 identically. Figure 1 shows
the phase shift and trajectories representative of this
case. As the energy rises through resonance, the two
trajectory functions pass on either side of Ren=l,
with Imn'(s) = —Imn (s).

Consequently, the elasticity factor remains constant:
g7 ——I, and the phase shift follows the pattern character-
istic of an elastic resonance, rising from 8&=2 argZ7

Ima
{a) {c)
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l.'IG. 2. (a) Pole and zero trajectories in the complex plane for the case of a slightly inelastic resonance. (b) Phase shift as a function of
energy for the pole and zero trajectories in (a). (c) Elasticity as a function of energy for the pole and zero trajectories in (a).
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I'ro. 3. (a) Pole and zero trajectories as a function of energy for the case of a very inelastic resonance. (b) Phase shift as a function of
energy for the pole and zero trajectories in (a). (c) Elasticity as a function of energy for the pole and zero trajectories in (a).

through 8~=2 argZ~+2'n. at resonance, and reaching
8~=-,'argZ~+x at energies well past the resonance.

Now consider the case where the resonance energy is
above one or more inelastic thresholds. There are two
cases which appear quite diferent in terms of the
behavior of the phase shift, but which appear very
similar when interpreted in terms of the behavior of
the multisheeted Regge trajectory.

First, there is the case where the two trajectory
functions pass on opposite sides of Rem=i. Figure 2
illustrates this case. For simplicity, let us assume that
Ren =Reo.r . The condition q~& 1 then implies
(
Imn'( & (

Imn'r
~
. In order to have a rising phase shift

as the energy goes through resonance, we must have
Imnr &0.Evidently, the elasticity will have a dip at reso-
nance. The phase shift will rise through 8g = 2 argZ~+ &~
to 5&

——
2 argZ&+~ at energies past resonance, just as in

the completely elastic case.
The second possibility is for the two trajectories to

pass on the same side of Ren=l. In this case, Fig. 3
depicts the expected behavior. Again, the elasticity will

dip at resonance. Slightly before resonance, the phase
shift will rise to a value smaller than 8~= ~ argZ~+~m. ,
exactly at resonance it will pass downward through
Bg = ~ argZ~, going lower at energies slightly past
resonances; finally, the phase shift will approach the
value it had for energies well before resonance:
b) ——-', argZ).

Evideritly, the difference between a "slightly in-
elastic" and a "very inelastic" resonance is simply that
the trajectory on the second sheet passes Reo, =l on
diferent sides of the real axis. Roughly speaking, the
6rst elastic threshold causes equal and opposite incre-
rnents in the imaginary parts of o.' and e", whereas any
inelastic threshold, causes increases in Imo. ' greater
than the increase in —Imn". As more inelastic channels
open, Ime and Imn come to have the same sign.

Examples of the three different kinds of resonances
can be taken from elastic Xx scattering at low energy.
Up to about 2000-MeV kinetic energy, this scattering
has been analyzed in terms of phase shif ts and elasticity
factors. ~ First, consider scattering in the I= ~3 channel.
In the F33 amplitude, there appear to be two resonances;
one, the well-known 1238 MeV at about 200 Me V above
threshold, is completely elastic; the other, at about

' C. Lovelace, CERN Report No. TH. 837, 1967 (unpublished).

900 MeV above threshold, is very inelastic, and shows
up as a dip in the elasticity factor. In the Ii37 amplitude,
there is a very inelastic resonance at about 1400 MeV
above threshold, which produces a dip in the elasticity
factor and an oscillation of the phase shift about zero
(this resonance is presumably the Regge recurrence of
the 1238 resonance). An example of a slightly inelastic
resonance can be seen in the I= ~ channel; in the Dqa
amplitude at about 600 MeU, the phase shift rises
through 90' and there is a large dip in the elasticity
factor. In a schematic fashion, Fig. 4 shows Regge
trajectories which will account for this behavior.

Unitarity constrains the behavior of the trajectory on
the two sheets. For example, if we assume Reer =Rex"
and that a one-trajectory approximation is valid, then
the unitarity bound on this approximate amplitude
implies tImn"

(
& ~Imn'~. ' The precise effect of uni-

tarity is modified by the presence of other trajectories.
In any approximation, the consequences of unitarity
will appear to depend on the form of the functions
G(l,s) and {g~„)in our amplitude.

IV. INFINITELY RISING TRAJECTORIES

Some authors have speculated on possible difFiculties
with amplitudes described in terms. of infinitely rising
trajectories. ' Such problems are easily avoided in the
inelastic generalizations of the product representations.
As more inelastic channels open, the {n ") cross the
real axis and the resonances cease causing the phase
shifts t6 jump by vr. Furthermore, since the eHect of a
Regge pole is negated by a Regge zero, any of the
other difFiculties appearing to arise from infinitely rising
Regge trajectories could be eliminated by the corre-
sponding poles and zeros approaching coincidence.
Since n" (s) -+n'(s) does not imply Imu(s) -+0, there
is considerable freedom left in the allowed representa-
tions for the Regge trajectory functions.

Consider the partial-wave amplitudes for o. 6xed
and l —+~, Rel& —~~. We must impose InS~ O(e '&/gl).

It has been pointed out to this author that the relationship
between the behavior of the Regge-trajectory functions on the
various sheets and the phase shift near resonance was discussed
by Loyal Durand, III, Phys. Rev. 166, 1680 (1968). Dr. Peter
Kaus has informed the author that he also has noticed this
interpretation of phase-shift behavior in terms of Regge-pole
and zero trajectories.

'S. Mandelstam, Phys. Rev. 166, 1539 (1968); N. N. Khuri,
Phys. Rev. Letters 18, 1094 (1967).
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Pro. 4. (a) Schematic Regge pole and zero trajectories which account for some of the low-energy N~ phase-shift results in the P»
and F» amplitudes. e=J—$. (b) Schematic Regge pole and zero trajectories which account for some of the low-energy Nm phase-shift
results in the DIg amplitude. a =J+&.

A simple way to ensure this behavior would be to choose
the {p,,„}so that

and

@(,~(s) =y '(i,s) —y~" (i,s),
G(i,s) =0, (10b)

(12b)

If we assume that g(s) is an entire function, we have
constructed a representation which has only Regge
singularities and automatically has the correct asymp-
totic behavior in the right half l plane, regardless of the
number of terms kept in the product representation.

In the case of realistic particle scattering, it is often
supposed that the real part of a Regge trajectory rises
indefinitely with rising energy. To study the effect of
this behavior on our representation, we fix l and allow n-

to rise, causing the variable s=l—n to become large and
negative. If g(s) is an entire function, then exponential
falloff for large positive s would imply exponential
growth for large negative s. At first sight, this class of
representations would therefore appear to have the
unfortunate feature that partial-wave amplitudes are
influenced more by remote Regge trajectories than by
nearby trajectories. We expect the opposite effect to be
the actual case: Since the leading Regge trajectories
correspond to intermediate states with high spins, these
trajectories should become decoupled from the
amplitude.

g '(l, s) —lnD —n '(s)g 0(e-'&/gl), i=I, II
(1«)

Rel& ——,', l ~~.
We can specialize to a convenient class of representa-
tions without losing too much generality as follows:

P *'(l,s) =g(l —n„'(s)), i=I, II. (11)

Taking n„'(s)as the origin for the/ plane, we can write
the asymptotic condition as follows:

(12a)

In our approximate model, the full contribution of a
single Regge pole would be

—y —lns (14a)

=g(s) —lns (14b)

is a function falling off exponentially for Res&0 and
not blowing up exponentially for Res&0. In this
particular case, the contribution from the distant
Regge pole would reduce to (1—nr')/(i —n').

A priori, we have no idea how to approximate @i,„(s)
when l is in the midst of a cluster of Regge poles and
cuts. Presumably, the {p& „(s)}would be developed in
a full dynamical calculation as discussed in Paper III;
considerations such as the foregoing would be helpful,
however, in arriving at a reasonable first approximation.

'0 p is the Euler-Mhscheroni constant and A is a small positive
number.

Ui —o")/(i —~')j exp'(i —~') —g(i —~")j (1~)

This formula indicates that the high-energy diKculties
of our model would be resolved if any of the following
three conditions were satisfied:

First, n(s) might rise but still grow more slowly than
gs. Since $ s '", the product $n would remain
bounded.

Second, n" (s) might approach n'(s) rapidly enough
for [n'(s) cr"(s—)! 0(!e &!).' The remote trajectories
would fade away as the pole trajectory approaches
coincidence with the zero trajectory. This situation
would contrast with potential theory, where the tra-
jectories turn around rather than disappear.

Third, the relativistic problem allows Regge cuts as
well as poles. Cuts in g(s) might shield lower partial
waves from distant trajectories. For example, '
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V. DISTRIBUTION OF IMPORTANT TRA-
JECTORIES AT LARGE ENERGY

In order to get a rough picture of the distribution of
s-channel Regge poles, we consider the partial-wave
amplitudes of s (" for large s. Assuming a linear
approximation for (r(t), and using a well-known ex-
pansion of e '"" in a series of Legendre polynomials,
one obtains approximate partial-wave amplitudes a~

which are proportional to Bessel functions of half-
integer order. For small / we can use an expansion for
Bessel functions of large argument":

y CONST x2

y
--l-2 (x-I)

( -1)(t -9)
=ln 1— +

8a 2!(8a)'

ln(a, /ao) =in(I, +r/, (a)/Ir/~(a)) (15a)

(15b)
)

=—l(l+1)/2a,

where tr =4(/+ —',)' and a=2(I, 'n'(0) Ins and the approxr-
mation is valid for /(l+1)«2a.

Examining the behavior of the amplitudes around
P 2a, we co—nsider the function ln(I(2 ) ~(*+r(a)/Ir/g(a)).

For large u we can replace the numerator' by an
asymptotic expansion of Bessel functions of large
order":

A more intuitive way to arrive at these results derives
from a study of the Legendre polynomials near the
forward direction. We can get a rough estimate of the
maximum order required if we determine the order of
a Legendre polynomial whose largest zero coincides
with the angle in which the exponential s &'& decreases
by one e-fold'4:

I/, (t)I„(z) e"(2 ) '"(1+a') '"(I+r, (168)
k=1 p~

(15c)
FIG. 5. y= in[a) (s)/aa(s)] vs at/!2al' /rwhere a( is the tth

partial-wave amplitude for s (') and a=2ggo. '(0) lns.

)t=(1+8')'/ /1nfs/D+ (1+8 )'/'j} (16b) L(s)=1.2Lrr'(0)s lnsjr/', (19)

t —(1+s2)—1/2 (16c)

in La((s)/a()(s)g= —1 —2L/ —(2a) '"j/(2a) '". (18)

For !(l (2a)'/ j/(2a)—'/'))1 it is easy to show"
that the partial-wave amplitudes decrease at an even
faster rate. Figure 5 shows a plot of inLa/(s)/a()(s)j
vs l/(2a)'", illustrating our conclusion that the
significant partial waves are concentrated in the region
l& (2a) '"= L(s).

"Handbook of Jtt/Iathemutica/ Functions, edited by M. Abramo-
witz and I. A. Stegun (Dover, New York, i965), Kq. (9.7.i),
p. 377.

"Reference ii, Eq. (9.7.7), p. 378.
"For example, by considering the uniform asymptotic expan-

sion for large orders, making the replacement a=vs, holding a
fixed and allowing v to increase.

where u/, (t) is a kth-order polynomial in t.
The expansion holds uniformly with respect to s in

the sector ~argo~ &2)r—e, e)0. Making the replace-
ments vs=a, v=(2a)'/'+b and s=(a/2)'/' —ah, we
obtain

lnLI(2~)~(~+r(a)/Ir/2(a) j=—1 —8(2/a)'", (17)

which is the result we would have obtained from a naive
extrapolation of our formula for small / For /—(2a)".',
we have demonstrated that exp( —(/ —L)/L4(I, '(r'(0) Insg'/'} (20)

for large s. It is appropriate to compare this behavior
with the exponential factor obtained in our earlier
discussion of large-l behavior:

expL —(/ —L)$(s)g—expL —(/ —L)(M '/(I ')"'j (21)

where M is the mass of the lowest-mass exchanged

'4 E. W. Hobson, Spherical and Ellipsoidal Harmonics (Chelsea,
New York, 1965), p. 407.

» If one attributes the forward peak in t to exponential behavior
in the Reggeized couplings (as is sometimes believed to be the
case in exchanges involving the Pomeranchon, which some people
believe to have a flat trajectory), then our argument is modified
in a nonessential way: n'(0)s lns is replaced by the coeQicient of
t in the exponential.

which is consistent with our previous estimate. "This
conclusion is the same as commonly given in discussions
of impact-parameter representations of the scattering
amplitude.

We now can abstract several results germane to the
developments described later in Papers II and III.
First, we point out a relationship between the derivative
of the t-channel trajectory and the value of the lowest
exchange mass. For / L(s), the pa—rtial waves are
decreasing with an exponential factor
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system. Equality is evidently impossible:

cV 'AL4n'(0) inset '. (22)

VI. HIGH-ENERGY BEHAVIOR AT
NONFORWARD ANGLES

It is instructive to consider another consequence of
direct-channel Reggeization: the nature of the devia-
tions from idealized crossed-channel Regge behavior.
In the forward direction, all Legendre polynomials have

This failure is not particularly significant because the
important properties of the partial-wave expansion of
s"(" are related to the lower partial waves. s"&" has no
t-channel cut for linear n(/) and therefore its Legendre
coefficients necessarily have incorrect behavior as l —+~.
lns is not a rapidly varying function; if we were to
speculate on a correct form of the above equation we
might assume

M', '—const/a'(0) (23)

in order to join the intermediate-l behavior to the
required asymptotic behavior in l. In Paper II we will

see that this equation arises in a more reasonable
calculation.

Now if we assume that the scattering is determined
by a collection of singularities in the / plane and that
these singularities a,re confined to a region left of an
effective "leading trajectory" at /=L(s), we can make
the identification L(s) const s'I' to the nearest power
in s.

The growth rate for L'(s) is consistent with the
exponential behavior in t which is dictated by the
crossed-channel Regge formalism, again, to the nearest
power in s. This growth rate is a constraint on the
behavior' of the (a„(s))only in on average sense. As we

pointed out earlier, it does not necessarily follow that
e/l trajectories are strictly constrained by this asymp-
t;otic behavior; the inhuence of the higher trajectories,
rising, for example, linearly with s, could be reduced by
the associated Regge poles and Regge zeros approaching
coincidence. L(s) would then be the position of the
highest important trajectory, roughly speaking.

We have given general arguments that an amplitude
can be parametrized by direct-channel Regge poles and
cuts and still have behavior appropriate to crossed-
channel Reggeization. It should be clear, however, that
such amplitudes necessitate a large collection of direct-
channel Regge singularities; this observation means
that a simp/e bootstrap could work only at values of
the Mandelstam variables for which the amplitude is
dominated by a single trajectory in all channels. In the
following papers, we require that a direct-channel
Reggeized amplitude reduce, for low energy, to a
conventional fixed-spin amplitude, which manifests
appropriate behavior near poles and threshold branch
points. In this sense, the calculation would resemble
old-fashioned bootstraps involving fixed-spin particles,
although there may be significant di6erences in the
treatment of distant singularities.

the same sign, while away from the forward direction,
the Legendre polynomials of di6erent order oscillate
with di6erent frequencies and will tend to cancel. In
the previous discussion, we constructed a forward peak
by imposing constraints on an otherwise unspecified set
of partial-wave amplitudes. As we consider increasing
angles, conformation to exponential behavior implies
constraints on higher moments of our partial-wave
amplitudes (or, equivalently, on higher derivatives of
the amplitude in the forward direction). Recall that
we have assumed that there is a fundamental change in
the nature of the partial-wave amplitudes as / increases
past L(s), the "leading edge" of the region of important
resonances. It would be possible to arrange the set of
Regge trajectories and cuts to produce some desired
set of amplitudes u~ for l(L(s) but there would be little
possibility of flexibility in a& for /)L(s) As a .conse-
quence, for large-angle scattering, there would be
deviation from the behavior expected from a simple
crossed-channel Reggeized. model. This deviation would
be an oscillating term similar to a Legendre polynomial
of order roughly equal to L,.

The magnitude of these deviations is related to the
discontinuity in the behavior of the partial-wave
amplitudes between the resonance and nonresonance
regions. At low energies, a Regge pole close to the real
axis can produce discernible resonances, assuming that
the effect of the Regge pole is not diminished by the
presence of a nearby Regge zero on the same side of the
real axis. If the Regge singularities were not of sufhcient
strength to produce resonant sects in low-energy
scattering amplitudes, however, it is plausible that on
the real axis there would be a fairly smooth transition
across /=L, in which case there would be small deviation
from angular behavior smoothly extrapolated from the
crossed-channel Regge-pole approximation. Experi-
mentally, this appears to be the case. For example,
high-energy pp scattering has dips and peaks at non-
forward angles, whereas pp scattering does not"; our
qualitative picture would associate these results with
the presence of resonances in pp scattering and the
absence of resonances in pp scattering, whereas the
conventional crossed-channel Regge picture would
associate these dips with interference between terms
from several crossed-channel trajectories. The reader
should verify for himself that the stated growth rate

"See, e.g., V. Barger, review paper, in Proceed~ngs of the CERE
TopicaL Conference on EIigh-Energy ColLisions of Iradrons, 196$
{CERN, Geneva, 1968), Vol. I, Fig. 17. Our discussion would
seem to indicate that pp scattering has trajectories not associated
with easily identified resonances. In our original product repre-
sentation, we allowed explicit poles in l associated with multi-
plicative factors expL@q, „{s)j as well as an over-all multiplicative
factor exp| G{L,s)g. The latter factor could be used to account for
some of the behavior of the amplitude above inelastic threshold,
and would contain terms due to Regge cuts, Regge poles not
explicitly included, and background effects not properly taken
care of by the factors g&, {s).In a practical calculation one might
use as a first approximation a few leading Regge trajectories whose
behavior could be determined roughly from experiment, absorbing
the rest of the amplitude into the factor expLG{L,s)j with some
reasonable parametrization.
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for L(s) ensures that dips and peaks in the amplitude
occur at points of constant t for rising s, at least to the
nearest power of s. There is evidently a certain similarity
to the duality approach in this discussion, although
there is a distinct difference in the mathematical details,

as will be clear in the subsequent papers. Paper II
describes calculations made with a product representa-
tion using a large number of trajectories, in which the
aforementioned properties for nonforward' angles are
exhibited explicitly.
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Direct-channel Reggeized strong-interaction scattering amplitudes are de6ned in terms of a set of
direct-channel phase shifts and elasticity factors. These quantities are functions of the positions of direct-
channel Regge poles and certain convergence factors, which are related to crossed-channel behavior. Two
mathematical techniques are discussed which can be used to continue these partial-wave expansions outside
their ordinary region of convergence. Unphysical values of angular momentum are not used in the con-
tinuation methods. The numerical method requires the partial-wave amplitudes specified at positive-integer
values of l only. The analytic method can be used to calculate precisely the discontinuity across the crossed-
channel cut, and thus would be valuable in further theoretical work using these representations. Applica-
tions of these methods are discussed, with reference to two earlier phase-shift Reggeization schemes.

I. INTRODUCTION
' N principle, all that is necessary for a complete
~ - specification of the total scattering amplitude is
knowledge of the set of s-channel partial-wave ampli-
tudes (a~(s)} for non-negative integer / along with a
viable method of analytic continuation of the partial-
wave series in cos8, . We seek an improvement of the
Sommerfeld-Watson transformation as a practical
continuation technique for this purpose: It is clumsy in
dealing with direct-channel unitarity and in determining
the behavior of the amplitude around nearby crossed-
channel singularities, and there is no simple way to
approximate the background integral.

We shall, however, utilize certain information ab-
stracted from the Sommerfeld-Watson method. For
example, we restrict our attention to a class of repre-
sentations for the scattering amplitude for which some
direct-channel Regge poles are manifest, thereby
treating whole sequences of observed resonances in a
unified way. We also incorporate non-Regge informa-
tion, insisting on certain asymptotic behavior of our
amplitudes, independent of the level of approximation.

In order to satisfy unitarity we have introduced a
"Regge zero" as well as a Regge pole, and thereby have
lost the possibility of independently specifying a Regge
residue. ' Near a Regge pole, in fact,

u„i—O.„ii
S~(s)—exp/&„(n„'&s)+G(n.',s)j

1—a„i

This paper is the second in a series of three papers
dealing with direct-channel Reggeization of partial-
wave amplitudes. It is concerned with mathematical
techniques useful for calculations with such amplitudes.
An introductory discussion and additional references
are contained in Paper I.'

II. ANALYTIC METHOD FOR CONTINUATION
OF PARTIAL-WAVE SERIES

We shall use product representations, in which 1nS~ is
specified in terms of physically relevant quantities. In
this case, lnS~ is a simpler function than S~, from the
point of view of practical analytic methods. Neverthe-
less, we must continue the sum:

A(s, cos8.) =f2~'It(s)$ —' P (2l+1)
Z=O

)(Lexp(lns&(s)) —1)P((cos8,) . (2)

Let us therefore consider a class of methods for the
continuation of functions defined in terms of Legendre
series. It will be obvious that these methods, with
appropriate modifications, can be used for expansions
in terms of any set of orthogonal functions.

A discussion of the significance of the continuation
methods is given in Paper III, where they are used to
develop a set of equations to impose crossing and
Reggeized behavior.

Consider the analytic continuation of

X g
~

exp| P (n„',s)) for l=n„'.(1)
kn„'—n„'

*Present address: The Aerospace Corporation, El Segundo,
pa)if, '

f(s) = Z (21+1)L&"—13'~(s)
l=o

' S, P. Creekmore, preceding paper, Phys. Rev. D 3, 1400 (1971).


