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Using a formulation of quantum electrodynamics in the infinite-momentum frame, we develop a theory
to describe the scattering of energetic electrons or photons off an external field. A physical picture emerges
which proves to be a realization of Feymnan’s “parton” ideas. In this picture the incoming electron is
composed of bare constituents (the quanta of the Schrédinger fields) which, at high laboratory energies,
interact slowly with one another. Each bare constitutent is scattered from the external field in a simple way
and then the constituents again interact among themselves to form the final state. This formalism is applied
to elastic electron and photon scattering, bremsstrahlung and pair production, and deep-inelastic electro-
production of lepton pairs, and the results of Cheng and Wu and others are recovered in a simple way. In
these applications, perturbation theory is used to construct the wave functions of the constituents in the

initial and final states.

I. INTRODUCTION

' ECENTLY considerable progress has been made in
evaluating amplitudes for high-energy electro-
magnetic processes. Various authors! have found, using
conventional calculational techniques and considerable
labor, that these amplitudes have several unifying
features. First, when two electromagnetic particles
having large relative momenta exchange a fixed amount
of momentum, the interaction can be viewed as occur-
ring between the bare quanta which compose the in-
coming and outgoing scattering states. Furthermore,
the interaction between these constituents is simply a
relativistic generalization of the eikonal amplitude
familiar from nonrelativistic scattering processes.? Thus,
a physical picture for these scattering processes emerges
which is similar to Feynman’s “parton” ideas.? We wish
to show in this paper that these interesting features can
be easily understood and derived from a recent formu-
lation of quantum electrodynamics in the infinite-
momentum frame devéloped by two of the authors.4
The motivation for developing a formal theory of
quantum electrodynamics in the infinite-momentum
frame was the hope that this exact theory would lead
to an approximate ultrarelativistic theory which could
provide a simple description of extremely high-energy
phenomena, just as nonrelativistic field theories provide
understanding of low-energy phenomena. For example,
the nonrelativistic limit of quantum electrodynamics
affords tremendous computational simplifications and
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intuitive insights into low-energy electromagnetic
processes. It was shown in I that quantum electro-
dynamics in the infinite-momentum frame, although
formally equivalent to quantum electrodynamics de-
veloped in an ordinary reference frame, possesses several
simplifying features itself. These include the formal
absence of vacuum pair creation, computational sim-
plicities, and a nonrelativistic analogy which should be-
come a basis for intuition into high-energy phenomena.
However, just as the nonrelativistic limit of quantum
electrodynamics has certain deficiencies, its ultra-
relativistic limit will inherit several limitations already
contained in I. For example, the renormalization pro-
cedure becomes more difficult, old-fashioned perturba-
tion theory must be used, and manifest covariance is
lost. Nonetheless, we will see in this paper that for a
limited range of applications, specifically the calculation
of high-energy amplitudes, the formulation of quantum
electrodynamics in the infinite-momentum frame
possesses distinct advantages over the conventional
theory. ‘

The plan of this paper is to review the formalism of
quantum electrodynamics in the infinite-momentum
frame developed in I, and present a heuristic derivation
of the salient features of that paper in a “nonrelativ-
istic” fashion. We next introduce an external field into
the theory and derive a closed form for the scattering
operator, formally valid as the energies of incident and
produced particles tend to infinity. We then apply this
formalism to several electrodynamic processes and ob-
tain the results of Cheng and Wu and others.

II. REVIEW OF INFINITE-MOMENTUM
FORMALISM

"The trajectories of - particles in nonrelativistic
processes cluster about a single direction in space-time,
which is generally taken to be the time axis. The tra-
jectories in extreme-relativistic processes likewise
cluster about a direction in space-time, which can be
conventionally taken to be a null vector in the #z plane.
It is sensible to describe nonrelativistic processes in the
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3 QUANTUM ELECTRODYNAMICS AT

coordinate system (¢,x,y,2). It is likewise sensible to
describe extreme-relativistic processes using the co-
ordinates 7=2"12%(i+2), x, y, 3 =2"1%(t—2z), since in this
coordinate system the particle trajectories cluster about
the new ‘“time” axis.

In I, quantum electrodynamics was reformulated in
this new coordinate system

wr=(1,2%,0%3) =Chi’ =gwx, (2.1)
with £ the usual space-time coordinates and
(2712 0 0 271
o 10 o0
“=lo o1 o |
272 0 0 —2712
(2.2)
(0 0 0 1
YT 0 -1 00
£=lo 0o -1 o]
1 0 0 0

«

The corresponding momenta are H =po=2"1%(E—p,),
n=p3=2"12(E+p,), and p=(ps,py). Since H generates
7 translations, it plays the role of a Hamiltonian.

In brief, the procedure used in I was as follows.

(1) Change wvariables in the Lagrangian. The

equations of motion, being form invariant, remain .

unchanged.

(2) Choose the gauge A°=A4;=0.

(3) Identify the independent field components and
quantize them with the known equal-r commutation
relations satisfied by the corresponding free field com-
ponents. Only the two transverse components of the
electromagnetic potential are independent variables;
the component 43 is zero by the gauge choice, and the
component A, is eliminated in a way similar to that of
conventional Coulomb-gauge electrodynamics. In a
similar way, we find that only two of the four com-
ponents of the Dirac field ¥ are independent. Once the
equal-r commutation relations among the independent
field components have been specified, all of the equal-r
commutators in the theory can be calculated using
Maxwell’s equations and the Dirac equation.

(4) Construct the Hamiltonian.

(5) For the perturbation expansion of the S matrix,
use “old-fashioned” Heitler perturbation theory. This
procedure is seen to give a perturbative solution to the
field theory identical to the more familiar Feynman
expansion.

The infinite momentum analysis of I led naturally to
the use of four-component spinors and polarization
vectors which, when boosted to (almost) the speed of
light in the z direction, became eigenstates of helicity
as measured in the lab. (Thus, if we choose to describe
processes involving particles with almost infinite
momentum in the -4z direction, this notion of infinite-
momentum helicity coincides with the familiar descrip-
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tion of helicity.) It turns out that the matrix elements of
the Hamiltonian of I are remarkably simple if one
chooses the incoming and outgoing particles to be in
infinite-momentum helicity states.

Instead of simply evaluating the relevant matrix
elements in the context of I, we find it instructive and
intriguing to rederive these results in a simple heuristic
fashion which takes full advantage of the nonrelativistic
structure present in the infinite-momentum frame. (The
connection between the formalism of I and the formal-
ism to be presented here is given in the Appendix.)

We begin with the mass-shell condition for a free
electron, p.p*=m? or 29H —p?=m?2. If we make the
usual identification p, — 79,, we arrive at the equation
of motion for the free electron field (the Klein-Gordon
equation):

180¥ (xx) = (1/29) (0*+m?) ¥ (x)

where 1/ is the integral operator

(2.3)

E‘I'](x)= ‘21; / dt 3=V (r,%,8).  (2.4)

As we will see, it suffices to let ¥(x) have only two
components. The two components are postulated to
satisfy the equal-r anticommutation relations

{Wa(%),Up(x) } r=r = 8apd(3—3)02(x—X').

Free photons are described by the two transverse
components A(x) of the electromagnetic potential. As
in paper I, we use the infinite-momentum gauge, 4°=4;
=0. The equal-r commutation relations satisfied by
A(x) are

[A ](x) sA k(x,):|7=‘l" = 6]767’A(x—x’) T=1'

(2.5)

=0u(1/#)e(3—3)0%(x—x).  (2.6)
The free-photon Hamiltonian is
2
H,=1> [dxdz A*(x)p24*(x). (2.7

k=1

Using the commutation relations (2.6), this Hamiltonian
leads to the expected equation of motion,

LA*(x), H y]=100A *(x) = (1/2n)p?A*(x) .

The natural two-component spinors w(s) and polari-
zation vectors e(\) in this description are

w(+%>=<;>, w(—%>=(?),

8(+1) =2_1/2(1;i)a 8(—1)':2_1/2(1) _1) ’

(2.8)

(2.9)

where the arguments s and M\ refer to the infinite-
momentum helicity discussed earlier. Using these wave
functions, the Fourier expansions of the fields ¥ and
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F1c. 1. Vertices in the infinite-momentum frame.

A take the form®

0

dn )
V(&)= (20)3 f o [ L L e (p.)
')7 8

0

) (=)t (hs)], (2.10)
® d
AGx) =23 / dp ] O 5 Leeea(p\)
o 2n A
et (210)

The. operators b'(p,s), d'(p,s), and a'(p,s) are creation
operators for electrons, positrons, and photons, respec-
tively. They satisfy the commutation relations

{b(p,5),b'(p',5")} =8sw (27%) 205 (n—1")0*(0—P') ,
{d(p,s),df(p',s’)} =533'(27!')32775(77—1]’)52(1)""[)') ’
La(p\),a (p' N)]=bxv (2m)*298(n —n") (P —P') .

The electrodynamic interaction can be introduced
into this formalism by writing the free-electron wave
equation in the form®

(2.12)

1
10,V = (m—io-p);(m—{—io“p)\ll, (2.13)
n

then making the gauge-invariant substitution p, — p,
—eA,. Then, using the gauge choice 43=0, the wave

6 Note that dpdn/2n is the Lorentz-invariant surface element
dp.dp,dp./2E on the mass shell. The 7 integration runs from 0 to
o0, thus covering the forward mass shell.

6 Recall that the nonrelativistic equation of motion is written
o= (1/2m)e-pe-py before introducing the minimal sub-
stitution in order to obtain the correcto:B term.

BJORKEN, KOGUT, AND SOPER 3

equation with interactions becomes -

190V =eA V[ m—ioc-(p—eA)]

X (1/20)[m-Fia- (p—eA) .
The dependent variable 4, is eliminated with the help
of Maxwell’s equations, 9*F,,=0#9,4,—3,0*4,=J,.
Choosing »=3 and recalling that 4;=0, we find that
—-63(63A0——V A) =]3. From I, we find that j3=]0
=¢WW, Therefore,

Ao=(1/n?)e¥"¥+(1/n)p-A,

where 1/7?2 is the integral operator

(2.14)

(2.15)

[iz‘l’](x)=‘%/délkél‘lf(r,x,g). (2.16)

n
Now the equation of motion for ¥ reads

e? e
100¥ =T—¥ " T+T-p-A
7? 7

1
+[m—io-(p —eA)]z—[m+'ia~ (p—eA)]¥. (2.17)
n

Finally, from Egs. (2.5) and (2.17), and the Heisenberg
relation [4H,¥]=09,¥, we can conjecture that the
Hamiltonian for the theory is

e? 1 1
H= / dxdy {-——\I/T\I/—\I/T\If—{—e\I/T\I/—p-A
2 7? 7

1
+Vim—io-(p —eA)]é—[m—Ho- (p—eA) ¥
n

2
Yy AkpZAk} (2.18)
k=1

=ho+hr, (2.19)
with ho =Hg=0.

As we have mentioned, the matrix elements of H are
very simple when taken between the “infinite-momen-
tum helicity” states created by the operators 4'(p,s),
d'(p,s), and af(p,\). The matrix elements are easily
calculated using the expansions (2.10) and (2.11) of the
fields

(1) Single photon emission [Fig. 1(a)]:

(e ("5 (gM) | H| e (p,9))
= (2m)*3(1ous —1in) 0*(Pout —Pin) (21) /2(20) 112

Xew'(sNj(p',p) - *(Nw(s), (2.20)
where
w'(s)j(p',p) - e*(Nw(s)
=w'(s")[ns'q- £*(N) —0-£*(\)(27)"a-p
—o-p'(29") o e*(\) —2ime - £*(\)
X t=y™)Jw(s). (2.21)
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In Table I, we list all of the possible matrix elements
wlj-e*w.?

The matrix elements for other processes involving
two fermions and one photon can be obtained by the
usual substitution rules. For instance, the matrix
element for y — e7et is

(e=(#',s")et (p,9) | H [ v(g:\)
= (2m)26 (Mout — Nin) 8% (Pout —Pin) (21) 1/2(29) /2
Xew'(sj(p', —p)-*(—=Nw(—s).
(2) Instantaneous electron exchange [Fig. 1(b)]:

(e (paysa)y(pshs) [ H| e=(p1,50)7(p2,M2))
= (27)26(Mout —Min) 6*(Pous —Pin) (274) /*(291) /2
Xe2wT(s4) (1 £(>\2) (27]0)—10‘ . 8*()\3)71)(31) .

(2.22)

(2.23)
The spinor product is very simple:
a0t (84)0' . 8()\2) (2770)_10‘ . 8*()\3)71}(81)

1/m0 (if all the particles are right-handed
= or if all the particles are left-handed)
0  otherwise. (2.24)

(3) Instantaneous scalar photon exchange [Fig. 1(c)]:

(e (ps,53)e(pasa) | H | €= (pr,51)€™(p2,52))
= (271') 36("70111; - nin) 62(p0ut —pin) (2771277227732774) 12
X €2(10) 2851550555, (contribution from crossed
diagram). (2.25)

The veteran field theorist, armed with this informa-
tion, will be able to construct the rules for old-fashioned
perturbation diagrams by whatever formal methods suit
his taste.

(1) A factor (H;—H-1ie)™! for each intermediate
state.

(2) An over-all factor —27i6(H ;—H.;).

(3) For each internal line, a sum over spins and an

integration
© dn
(21r)“3/dp/ —.
Jo 29

(4) For each vertex,

(a') a factor (27")36(7]0“—nin)a(pomz—pin):

(b) a factor [2%]!/2 for each fermion line entering
or leaving the vertex (the factors [2%]'/2 associ-
ated with each internal fermion line have the
effect of removing the factor 1/27 from the phase-
space integral), '

(c) a simple matrix element (e.g., ew'j- e*w).

7 Readers familiar with the discussion in I of the Galilean sub-
group of the Lorentz group will note that such combinations in
Table I as q/nq—Dp/7 transform under this subgroup like (momen-
tum/mass) — (momentum/mass) and are therefore invariant under
“Galilean boosts.” This invariance can often be used to practical
advantage in calculations.
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TasLe I. Matrix elements for photon emission.

pe=2Vpikip?); g=p— 1.

s s’ A wi(s)j (') - € (Nw(s)
: ; i 4-/n— b
3 i -1 Qe/na— b/
3 —3 1 =27 25mg /'
3 -3 -1 0
-3 3 1 0
—1 1 -1 — 2%y oy’
—3 -3 1 4-/1q—p-/n
—% —% -1 Qa/ng—p4' [0’

(5) These rules give the S-matrix element (f|.S]7).8
One obtains the differential cross section from the .S
matrix in the conventional fashion.

The heuristic approach presented here shows that
with some imagination and a little guesswork (along
with considerable hindsight), one can obtain these
simple results in a simple way.

III. HIGH-ENERGY SCATTERING FROM
AN EXTERNAL POTENTIAL

The reformulation of quantum electrodynamics
described in I and above was motivated by a desire to
develop limiting theories to describe high-energy scatter-
ing. We will develop here such a theory to describe the
scattering of high-energy electrons and photons in a
prescribed external electromagnetic potential a,(x).
We have derived the results of this section using the
complete canonical formalism of I with the external
potential included in the Lagrangian. However, the
same results can be obtained by extending the heuristic
discussion of Sec. II. Since the heuristic method is some-
what simpler, we present it here.

Begin by introducing the potential ¢, into the electron
wave equation (2.14) according to the gauge-invariant
substitution p, — p,—ea,. Then the equation of motion
reads

(180—ed g—eag)¥=[m—ic- (p—eA—ea)]

1
X ——[m+ioc- (p—eA—ea) V.

3.
2(n—eas) 3.1)

Here (y—eas)™ is the integral operator

[,,_lwf’](”)= / ds%eu—s)

Xexp(-—i/g d&’%(r,x,é’))\Il(r,x,E). (3.2)
¢ v

8 With the present normalization conventions, (f|S|7)= (2x)*
X84(pr—p;)M, where M is the invariant amplitude calculated
with the conventions of Bjorken and Drell using Dirac spinors
normalized to #u=2m. See J. D. Bjorken and S. D. Drell,
Relativistic Quantum Fields (McGraw-Hill, New York, 1965),
Appendix B.
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Now, just as in Sec. II, we can eliminate the dependent
variable A, using Maxwell’s equations and find the
Hamiltonian H which gives i H,¥]=3,¥. The result is

1 1
H(n)= / dxdy leao‘I'T‘If+%e2\I/T\p—;\11f\Ir+e\p’r\1r-p. A
K n

m—ic- (p—eA—ea) ———
+ Vi m—io-(p—eA ea)]Z(n—eag)

2
X[m—+ic- (p—eA—ea) J¥+3 3 AkpzAk} . (33
k=1

It will be convenient to imagine writing A in the form
H(r)=H(1)+V(r), where Ho(7) is given by (3.3) with
a,=0 and

V(r)=H(r)—H(7). 3.4

Thus H, is the full Hamiltonian for quantum electro-
dynamics with no external potential, and V gives the
additional effect of the potential.

Now let us look at the scattering matrix in the inter-
action picture with V as the interaction Hamiltonian.
Define the interaction picture fields by

‘I’I(T,X,s) =gtiHo® 7\I,(O)x:3)e‘iH0 O )
AI(T,X,&) =¢tiHMTA (O,X,g)e—ﬁlo o ]

and let Vi(r) be given by (3.3) and (3.4) with ¥(x)
and Az(x) substituted for ¥(x) and A(x). Then it is a
familiar exercise to show that the scattering matrix
can be written in the form

Ssi={f| T{exp(—i/dr VI(T)>} liy,  (3.6)

where T indicates r ordering, and |f) and |i) are
appropriate eigenstates of H,o(0) (which may be
evaluated in perturbation theory).

We are interested in the high-energy limit of .Sy; as
74, 77— . To study this limit, we let [%o) and | fo) be
fixed states and calculate Sy; between the high-energy
states |i)=e~%K2|4p) and | f)=e""X3| fo), where K is
the generator of Lorentz boosts in the z direction. Thus
we want to calculate

Spi= (fole""’KaT{exp(—i/dr Vz(r))}e“"‘”KSI i0)

(3.5)

=(fo| T{exp(—i/df ef"’KsVz(r)e—"“’“)} li0) (3.7)

in the limit w —.
We recall from I that the boost operator K3 is given

by
K3=/dXd3 3[‘1’1.%133‘I’+(63A) . (63A)]r=0, (38)
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and that the fields transform very simply under boosts:
I r xR = B e, o
e KA (7.x,3)e K =Ar(e7r,x,693) . '

It is thus easy to calculate the effect of the boost operator
on V(7). The term eag¥™¥ remains finite in the limit
w—o and the rest of the terms are of order e~; we
indeed find that

ez'wKa VI(T)e-—ins

= / dxdy e“ea(7,X,3) ¥t (e7“7,X,6°3)
X¥r(e1,%,63)+0(e)
= / dxd3 eao(r,X,e7¢3) V(e 97,%,3)

X¥r(e“r,x,3)+0(e ). (3.10)

Upon going to the limit, the operators are all evaluated
at 7=0, so the 7 ordering can be ignored. (This may be
checked by examining the power-series expansion.)
Thus we obtain as w —o

Sri={fo| F|i0)+0(e~)

=({fIF[})+0(e), (3.11)

where

F =exp< —1 / drdxd} eao(r,x,0) ¥ (0,x,3)¥7(0,x, 3))

= exp(—i/dx X(x)p(x)> (3.12)
and

X(x) =e/dr ao(7,x,0) , (3.13)

P = [ WO0xI¥OR). (1)

This (formally) closed expression for the limiting form
of the scattering operator is in fact the eikonal approxi-
mation, and also establishes a connection with parton
ideas. The initial state [4) is an eigenstate of H,, the
Hamiltonian for quantum electrodynamics with no
external field. Thus it is a “dressed” electron, photon,
or whatever. Imagine expanding [4) in terms of the
“bare” quanta associated with the fields ¥(0,x,3),
A(0,x,3) at time r=0:

® d
liy=+ / dp / 2-;’2 SN (B [0)- -

© dny ® dna
+ dpl o dp2/ - Z h(pl’ﬂlysl; p27772’s2)
0 27)1 0 2172 8182

XbT(Pb’?l,sl)df(szz,sz) [0)4---. (3.15)

Here, for example, %(p1,71,51; P2,72,52) is the amplitude
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for the state |7) to contain a bare electron with mo-
mentum pi, 71 and spin 51, and a bare positron with
momentum P, 72 and spin ss.

We also imagine the final scattering state | f) to be
expanded in terms of bare quanta (“partons”) in the
same way. If we know all the amplitudes, g, %, etc., we
can then evaluate Sy; by moving F to the right past all
of the parton creation operators until F acts on the
vacuum state |0). That is, we write

Fot- . -at|0)=Fb'F-1. . .FalF-1F|0). (3.16)

We note that F is invariant under 3 translations, and
thus commutes with the momentum operator 7. Since
|0) is the only state with =0, we conclude that
F|0)=]0). (This result can be formally assured by
considering the operators in p(x) to be normal-ordered.)
The effect of F on the creation operators &', d', and o'
is easily calculated using the equal-r commutation
relations (2.5). We find first that

FUt0x)Fl=ex®ui(0x3).  (3.17)

Upon Fourier-transforming this relation, we obtain the
convolution integral

ap’
Fb!(p,1; ) F-1= / s )E D —p), (3.18)
2n)°
where
Fq)= / dx e iaxg—ix (o) (3.19)

Thus when a high-energy bare electron passes through
the potential at position x, the only effect of the po-
tential is to multiply the electron wave function by an
eikonal phase factor e=x®, [Note that the phase X(x)
is simply the integral of the potential along the trajec-
tory of the electron.] The momentum component % of
the bare electron and its infinite-momentum helicity s
are conserved in the process, and no pairs are created.

The effect of F on the positron creation operators is
equally simple. In passing through the potential each
bare positron receives the opposite phase:

dp’
Fd*(P,n;S)F‘1=/———df(p’,n;S)Fc(p'—P), (3.20)
(2m)?

where

F.(q) =/dx e xgtix(x) (3.21)

Finally, we find that the bare photons are unaffected
by the potential:

Fa'(p,n; VF~1=a'(p,n; N). (3.22)

After we have moved F to the right past all of the
parton creation operators, we are left with an expansion
of the state F[7) in terms of parton states [similar
to the expansion (3.15) of |4)]. Assuming that the ex-
pansion of the final state | f) is also known, it is then a
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simple matter to compute the overlap Sy; of | f) with
F|i).

Of course we do not in fact know the amplitudes in-
volved in the expansions of the states |z) and |f) in
terms of bare-particle states. In the examples treated in
Sec. IV, we are forced to use approximate amplitudes
calculated from perturbation theory. What we wish to
emphasize here is the physical picture that emerges
from the present discussion.

(1) The scattering of high-energy physical particles
from the external potential is #of simple. For example,
it is not described by a single eikonal phase.

(2) The physical particles can be viewed as being
composed of certain constituent particles (called
partons in the language of Feynman). In the present
case the partons are the “bare” quanta created by the
fields ¥ and A at 7=0.

(3) The scattering of high-energy partons from the
potential s simple.

(4) The interaction of the partons among themselves
is complicated, but at high energies these interactions
are slowed down by relativistic time dilation. Therefore
no parton-parton interactions take place during the
finite time interval during which the partons interact
with the external field.

Thus the scattering of high-energy particles from the
external field occurs in three steps. First the partons in
the initial state interact among themselves during the
infinite time interval — o <7<0. Then each individual
parton scatters in a simple way from the external
potential. Finally, the partons again interact among
themselves during the infinite time interval 0<7< 0.

IV. EXAMPLES

In this section we calculate the high-energy limits of
the cross sections for several interesting scattering
processes. As we have seen, the contribution to the high-
energy limit of the .S matrix from the scattering of the
individual partons off the external field can be calcu-
lated exactly. However, the interactions among the
partons in the initial and final states do not simplify
in the high-energy limit. Thus we include these inter-
actions only to a finite order in perturbation theory.
Nevertheless, the required calculations in perturbation
theory are quite easy because of the simple form of the
matrix elements of the Hamiltonian the infinite-mo-
mentum frame. :

We begin with a short discussion of the methods
involved in the calculations, and then proceed to the
calculation of cross sections for electron scattering with
second-order vertex corrections, bremsstrahlung, pair
production, Delbriick scattering, and electroproduction
of u-pairs in an external field.

A. Calculational Methods

In all of our applications we must compute the ampli-
tudes involved in the expansions (3.15) of the initial
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(a) - . :
(p;s’) —

(BS)= (PpS)— (P3:Sz)—  (PiS) =

F1c. 2. Electron scattering off an external field. (a) Zeroth order in
electron structure; (b) second order in electron structure.

and final states in terms of bare-particle states. To do
this, we recall the definition of the unitary evolution
operator  U(7',7) =exp(ihor’) exp[ —i(ho+hr) (v’ —7)]
Xexp(—ihor), where k, is the free-particle Hamiltonian
and Ao+4; is the full Hamiltonian for quantum elec-
trodynamics with no external potential. The final
physical scattering state | f(8)) consisting of outgoing
particles with momenta and helicities labeled by & is
related to the corresponding bare particle state |5) by
(f(®)| =(b| U(,0). Similarly, the physical initial state
|i(a)) is related to the corresponding bare-particle state
[a) by |i(a))=U(0, —x)|a). Thus the high-energy
limit of the scattering matrix, Eq. (3.11), can be
written as

(0] S|a)=(f(8)|F|i(a))

=({|U(x,00FU0, —»)|a). (4.1)

We need the expansion (3.15) of | f(3)) in terms of
bare particle-states |n): (f(8)| =3, (6] U(,0)|n)(n|.
The amplitudes (| U(,0)|z) can be calculated to a
finite order in perturbation theory using the familiar
perturbation expansion of U(%,0):

1
@] =<bl+§: (bfhllwm@l

+§,ﬂ (blhrfm>g—1—+,<mihzf">

F— Ly T1€

1
X[+, (42)

Hf—H,,—l—ie

where H; is the energy of the final state and /o m)
=H | m).
Similarly, the initial state can be written as

li(a))=2 [n){n| U0, —=)|a)

1
=|d>+§ l”)m(nlhﬂ@-l--“-

However, since the initial state in our examples is al-
ways a one-particle state, it is convenient to factor the
wave-function renormalization constant +/Z, out of
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this expansion®:

1
H,—H,
1
H,—H,

li(a)>=(x/Za>[la>+Z'ln> (nlirlay

+Z 2 [n) (n|hx|m)

X

<m|hzla>+-~-] 4.3)

2 m

If |a) is, say, a one-electron state, then the sums Y’
exclude one-electron states; the 7e terms in the energy
denominators are then irrelevant. Since U(0, —x) is
unitary, the renormalization constant +/Z, can be
determined from the requirement

(i(a)|i(a’))=(ala’). (4.4)

Let us return now to the formula (4.1) for (3[S|a).
It will prove convenient to separate explicitly the un-
interesting ‘“no-scattering” term (b|a) from (b|S]|a)
before doing any calculations. This can be accomplished
by noting that

@|U(,0)1U(0, —»)|a)=(b|U(, —=)|a)

is the .S matrix for quantum electrodynamics with no
external potential, which is simply (3| U(®, —x)|a)
=(b|a) if |a) is a (stable) one-particle state. Thus

(8] Slay=(b|a)+(b| U( ,0)[F—1]U(0,—»)|a). (4.5)

Tt is, of course, only the second term in (4.5) which is
related to cross sections. With the normalization con-
ventions used in this paper, the exact relationship is®

1 dp1d771 ded"?N
a‘= — ... (21r)
29, (21)3291  (2m)32qy -

Xo(—Z |Gl 7Ia]%, @)

where the transition amplitude (3] 7| a) is defined by

@|U( ,0)[F=1]U(0,—)]a)

=(2m)8(na—no){b| T]a). (4.7)

B. Electron Scattering
We wish to calculate the amplitude

Spi—8ri={e~(p',s")| U( ,0)[F—1]
XU, —»)|e(p,5)) (48)

for high-energy electron scattering off an external field.

9 We also use this formula for a one-particle final state.

10 This relationship can be obtained by using a wave packet for
the initial state [cf. M. L. Goldberger and K. M. Watson,
Collision Theory (Wiley, New York, 1964), Sec. 3.3]. In the high-
energy limit in which n~V2E, this reduces to the more familiar
result with » replaced everywhere by E in (4.6) and (4.7).
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We will calculate the amplitude to second order in the
structure of the physical electron. Using the expansion

Syi—07s=(2m)6(n—n")2nZo[ F (p'—p) — (2m)26*(p’—p) ]

w*(s’)J(P P’ —p2) - eQa)w(s)w! (s1)j(p—p2, p) - *(Aa)(s)
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(4.3) for (¢~|U(»,0) and U(0, —)|e~) and keeping
terms to order e?, we find with the help of (3.18) that

K d"lz
{533""(21) fdpz/
299 s1, )\z

Here H(p)=(p>*+m?) /2y is the free-electron Hamil-
tonian, w(p)=p?/2y is the free-photon Hamiltonian,
and Z, is the electron wave-function renormalization
constant (to be calculated to order e2?). The two terms
in Eq. (4.9) are represented by r-ordered diagrams in
Figs. 2(a) and 2(b). The figures also clarify the kine-
matic notation chosen here. The black dots in the dia-
grams refer to the eikonal factor

[F(p'—p)— (2m)%*(p’' —p)].

In order to discuss the general form of the scattering
amplitude, let us write (4.9) in the abbreviated form

Spi—07i=(2m)8(n—n")2n[F(q) — (2m)?6*(q) ]
Xw'(s") M ,n; pm)w(s),

where ¢#=p'*—pt. One important result which we
notice immediately is that the second-order vertex cor-
rection does not destroy the proportionality between
the scattering amplitude and the eikonal factor that
one finds if the electron structure is neglected alto-
gether.! However, it should be pointed out that if the
scattering amplitude were calculated to fourth order in
the structure of the electron, a diagram like Fig. 3
would appear and this proportionality would be lost.!

The effects of the electron structure are contained in
the factor w'Mw, It will come as no surprise that the
four matrix elements of M are simply related to two
invariant form factors Fi,2(¢?. It is instructive to derive
this relation using the invariance principles which
appear naturally in the infinite-momentum frame. Using
Eq. (4.10) and the table of matrix elements, Table I,
we can easily verify that w'Mw is invariant under the
following symmetry operations.

LH()—

(4.10)

(1) Lorentz z boosts. Momenta transform according
to (,p) — (e“n,p); helicities remain unchanged.

(2) “Galilean boosts.” Momenta transform according
to (9,p) — (n, p+nu); helicities remain unchanged.

(3) Rotations in the (x%,%2) plane.

(4) “Parity.” Momenta transform according to
(n,p%,02) — (n, p, —p?); helicities are reversed.

For ¢#0, the four matrices 1, q-o, qXo=¢'v2—q%?,
and o are linearly lndependent Thus M can be written
in the form

M p)=al+bq-o+cqXo+do,.  (4.11)
11 H, Cheng and T. T. Wu, Phys. Rev. 184, 1868 (1969).

} 4.9)
H(p'—p2) —w(p2) LH(p) —H(p— p2) —w(p2) ]

The coefficients @, &, ¢, and d will then be functions
of ¢’ and p, or, equivalently, of n(=y'), p'+p, O,
=tan~!(¢?/¢"), and q% But the invariance of w'Muw
under Lorentz z boosts implies that the coefficients are
independent of 7; invariance under “Galilean boosts”
implies that they are independent of p’+p; and rota-
tional invariance implies that they are independent of
O, Thus each coefficient is a function of q? only.
Finally, invariance of %'Mw under the “parity’”’ oper-
ation implies that ¢(q?)=—c(q? and d(q%) = —d(q?);
hence ¢=d=0. The remaining form factors ¢ and b are
functions of q?; but since 5,=0,

P*=q"qu=2n,H —q*=—q". (4.12)
Therefore, the expansion of M takes the form
M(p',p)=a(g®)1+b(¢*)q-o. (4.13)

This analysis can be compared to the general analysis
of electron scattering from a weak external field which
concludes that the S matrix, calculated to first order in
the external potential and all orders in the structure of
the electron, takes the form

Syi—8si= —-i/d“x ea,(x)e'=U(p',s")

X[ PP+ o) [U9). 419

In the high-energy limit, Eq. (4.14) becomes

Sri—0s= —Zm'a(r;’—n)[/dx e‘iq"/dr edo(T,X,O):l

XU 8"\ [v°Fr(g?)+(i/ 2m)a%q,F2(g*) JU (,5) -

When this result is converted to the notation used in
this paper, it reads

Sri—085i= (ZW)B(n'—n)Zn[—i/dx X(X)g—iq~x:|

Xw'(s")[F1(g)1+(i/2m)Fo(g%)q- o e (s) .

(4.15)

Fic. 3. Higher-order contribution to electron
scattering off an external field.
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Comparison of this result with (4.10) and (4.13)
shows that the form factor a(¢?) can be identified with
Fi(g?) and b(¢g%) can be identified with (i/2m)Fa(¢?).
Thus our result is

Syi—87i=(2m)8(n"—n)29[F(q) — (2m)**(@) ]
Xw'(s)[F1(g?) 1+ (i/2m)F+(g2)q- o Jw(s) -
Apparently the amplitude for scattering with no change

in helicity is proportional to Fi(¢?), whereas the helicity-
flip amplitudes are proportional to Fs(¢%. For instance,

Syi(s'=%, s=3%) =08;:+(2m)6(n"—n)
X 29[ F(q) — (27)%%(Q) JF1(¢?), (4.17)

Spi(s'=—%, s=%5)=(2m)8(n' —n)2n[F(q) — (2m)*3*(q) ]
X (igy/N2m)Fs() ,  (4.18)

where gy =2"12(g'41g?).

We are now in a position to return to Eq. (4.9) in
order to calculate the electron form factors. We begin
with the helicity-flip amplitude and the form factor F,.
It is convenient to choose a coordinate system (by
transforming the coordinates with a Galilean boost if

necessary) so that
pﬂ: (7], _p/: II) ) lb,”= (%P’:H) )

Then the energy denominators in (4.9) become

H(p")—H(p'—p2) —w(p2)

¢*=(0,2p",0).

—

~(p2—Bp’)*+B%m?
B(1—pB)

2 (4.19)

H(p)—H(p—p2) —w(p2)

1 ‘(pz+ﬁp’)2+62m2]
B(1—B)

where 8=7,/7. The numerator factor in the helicity-
flip amplitude is trivially calculated with the aid of

Table I:
> wi(—3)j-ewwhj-e*w(+3)

29L

s1,A2
B A W
V2n(n—n2)\ 92 7 72 n /VZn(n—n2)
1 B
7? 1-8

If we insert results (4.19) and (4.20) back into (4.9)
and use (4.18) to identify Fa(¢?), we find!?

4am? !
Falq?) = f 48 8(1—p) / ips
(27" ) 2 0
X ([pst+B° G m) T — (Do)} .

12 To calculate F3 to order 2, we can use the value Z;=1, which
is correct to order e°.

4.21)

(4.16)
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The integrals are elementary and we find without
difficulty

) ozl: 2m?
T el ) @t ame

2 2Y1/2
Xln(&‘lj___ )1+ lal )] 422)
(q*+4m*)'*—|q|

We recognize this equation as a familiar expression for
the second-order contribution to Fa(g?).!* Letting g2 — 0

we obtain

Fa(0)=a/2r, (4.23)

which is the well-known anomalous magnetic moment
of the electron.

Before turning to consider the form factor Fi(¢?),
we shall point out the calculational advantages that
the formulation of infinite-momentum perturbation
theory used here has over others that have appeared in
the literature.* First, no high-energy approximation
has to be used to extract the important pieces of the
energy denominators and vertices. This occurs because
of the simple scaling behavior our kinematic variables
have under boosts in the z direction. Secondly, the
electrodynamic vertices between infinite-momentum
helicity states are so simple that traces can be altogether
avoided.

We now turn our attention to the helicity-nonflip
amplitude and the form factor Fy. Using Table I, we
calculate the numerator factor in the amplitude (4.9):

> w(+3)j ew whj-e*w(+3)

s1,A2
_(@_r 3 ;b+’—pz+)(g_z: n 1)-’+1)2—>
n2 n—mn2 ne n—mn2

) G i e

72 AN D n V2 n(n—n2)

=[2928*(1—8)*]H{ (p2>—B%"H[1+(1—p)%]
+m*B¢—2i(p' Xp2)B*(B8—2)}, (4.24)

where we have used the fact that 2k,p_=k-p—ikXp.

If we substitute expressions (4.24) and (4.19) for the
numerator and energy denominators in (4.9) and use
(4.17) to identify F1(¢?), we find

Fi(q¥) =2Z,[1+1(q?)], (4.25)
where
20 1
I(@®)= — dﬁ/dzﬂ_l
q%) ey P
X{(p2?—16%q)[ 14 (1—B)*]+m’B*}
X{[p2*+B2(m*+19?) ]*—B%(p2-q)*}~*.  (4.26)

135, J. Chang and S. K. Ma [Phys. Rev. 180, 1506 (1969)]
havtle used different infinite-momentum techniques to obtain this
result.

145, D. Drell, D. J. Levy, and T. M. Yan, Phys. Rev. Letters
22, 744 (1969); H. Cheng and T. T. Wu, Phys. Rev. D1, 1069
(1970); S. J. Chang and S. K. Ma (Ref. 13).
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In (4.26) we have used the fact that the term in the
numerator proportional to p.Xq will not contribute to
the integral.

The integral defining 7(¢?) diverges as 83— 0 and as
p22— . However, these divergences are canceled by
corresponding divergences in Zs, just as in conventional
treatments of the second-order vertex. If we calculate
Zs to order «, using

Zx(e~(¢',3) | U(,00U(0, —)|e(p,3))

=(2m)*295(n' —n)o*(p'—p), (4.27)
we find easily that
Zy=[141(0)]". (4.28)
Thus Fi(q?), calculated to order a, is
Fi(q®)=[1+1(0)]"[1+1(q?]
=1+4[7(q? —1(0)]. (4.29)

The integral defining 7(q2)renormalizea=1(q%)—1(0) is
now better defined: The 8 integral converges for fixed
p: and the p, integral converges for fixed 8. However,
the integral still has the familiar infrared divergence
coming from the region near B=0, ps=0. In an
explicit evaluation of Fi(g?), this infrared divergence
could be eliminated by inserting a small photon mass in
the energy denominators.

Before proceeding to the next example, we should
point out that the use of the eikonal approximation in
(4.8) is self-consistent, even though Fig. 2(b) includes
a loop. This is true because the loop integrals are well
behaved in the region 8=~1, where the electron in the
intermediate state is no longer a “right mover.” If the
integrals had diverged at the end point 3=1, the claim
that Eq. (4.8) closely approximates the effect of external
field on the physical particle would have been unjustified.

C. Bremsstrahlung

In this section we shall calculate the helicity ampli-
tudes for the experimentally interesting process of
bremsstrahlung off an external field. The matrix
element of interest is then

Sfi= (e(P’>SI)‘Y(k,>\) { U(oo ;O> (F— 1) U(O) — )
X|e(p,9)).

If we insert our expression for the physical states from
Sec. IV A accurate to terms of order e, we readily find

Sri=(2m)6(n—n"—nx)2(nm") 1/
X[F(p'+k—p)—(2r)**p'+k—p)]
e[“”(s')j (', /+B)-e*(Nw(s)
H(p")+w(k)—H(p'+F)
w'(si(p—k, p)- e*(Nw(s)
H(p)—w(k)—H(p—k)

(4.30)

] . (431)
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-~
@ ,
(Pmis)=  (Brkrfmas)—  (B7s)
(b) - I 7
(pmis)=  (pkim-7m:8)— (P.79)

F16. 4. Bremsstrahlung off an external field.

The terms in this expression can be visualized with the
aid of Figs. 4(a) and 4(b), respectively.

In order to discuss bremsstrahlung conveniently, we
choose a coordinate system with its z axis along the
direction of the outgoing photon. The energy denomi-
nators in Eq. (3.32) become

H(p")+w(k) —H(p'+k) = (ne/20n") (0"*+m?) ,
H(p)—w(k) —H(p—k) = — (ni/ 27") (p*+m?) .

Finally, if we choose definite helicities for the incoming
and outgoing particles, we obtain, with the aid of Table
I, the infinite-momentum helicity amplitudes for
bremsstrahlung,

Sri=2m)6(n—n"—n)2(nn") 12

XLE(p' —p)—(2m)*6*(p'—p) JeM (s —> ', N),,

2 ! _
Ha—4 D= —(-—E ),
, M p’2+m2 p2+m2
27’ ! 4.32
M-y —n= -y >,( :
n N\ pPHmP pitm?
1 1
M= —h =i~ ——— ),
pl2+m2 p2+m2

MG — —3, —1)=0.

These results should prove useful in detailed calcula-
tions with specified external fields. For cases in which
the external field can be treated perturbatively, one
can easily show that Eqs. (4.32) lead to the high-energy
limit of the Bethe-Heitler formula.

D. Pair Production
We wish to calculate the scattering amplitude

Sri={e(p1,51)€* (p,52) | U(e0 ,0)[F—1]

Proceeding along familiar lines, we insert perturbation
expansions of the physical states accurate to first order

(4.33)
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F16. 5. Pair production on an external field.

in ¢ and find
Sri=2m)s(ne—n1—n2)2(n1m2) '/
ap w'(s1)j(p, p—Fk)-e(Nw(—s2)
e/ (@) w(t)—H(p)—H(k—p)
X[F(pr—p)Fo(p2+p—k)
—(2m)*5*(p1—p)*(p2+p—K) ],

which can be visualized with the aid of Fig. 5.
If we now choose the z axis along the direction of the
photon and calculate helicity amplitudes, we find

S ri= (2m)6(me—m1—12)2(n1n2) /2

(4.34)

Xe(2m)? / dp M (= s1, 55)[F(D1—p)Fo(pr-+D)

—(2m)%%(p1—p)o*(p2+p)], (4.35)
where
‘ -2
R o e
. p2+m2
2
M(l—»—%,%>=(—’1"f) Pe |
N p2+m2

1
M(1— 3, %)= (V2im) )
p2+m?

M(1— —3,3)=0.

It is interesting to convert the momentum integra-
tion in (4.35) to an integration in coordinate space in
order to appreciate the two-dimensional Galilean-
invariance group which manifests itself in the infinite-
momentum frame. To begin, we drop the special
requirement that the transverse momentum k of the
photon be zero and return to the energy denominator
in (4.34):
w(kyne) —H (p,71) —H (kK—p, n2) = 2nx)~'[p+(k—p) J*

~ (2n1)'(p*+m?) — (2n2) [ (K—p)>+m*].
This is a rather messy function of the momentum p of

the electron and the momentum k—p of the positron
in the intermediate state. As is usual with two-body

KOGUT, AND SOPER 3

problems in ‘“nonrelativistic’” quantum mechanics, it
pays to change variables to the total momentum k of
the two particles and their relative momentum. Since 7
plays the role of particle mass in the nonrelativistic
analogy, the relative momentum is

(4.36)

where

1=mns/(n1+ns)
is the _“reduced mass” of the pair. When written as a
function of k and q, the energy denominator is inde-
pendent of k:

w(&,n) —H (p,n1) —H (k—p, n2)
=—(27)7q*>+m?). (4.37)

(In nonrelativistic terms, this is minus the “internal
energy” of the pair.) Similarly, the vertex matrix
element w'je-w in (4.34) is a function of the relative
momentum ¢ only. After a little algebra, we obtain the
explicit form

ew' (s1)j(P, n1; P—K, —n2) - e(N)w(—s3)
w(k,n) —H(p,n1) —H(K—Dp, n2)

= (s)G(g; m,m)w(—52)-e(M), (4.38)

m>q—i(qxé)oz+imo](q2+m2)‘l,

~ n2
&(q; nm2) =e[<

Nk

where g X2=(¢g?, —¢").

Using these results, we can write (4.34) as a co-
ordinate-space integral. Let x;, X2 be the coordinates of
the electron and positron, respectively, in the Fourier
expansions (3.19) and (3.20) of the eikonal factors, and
define

R =71 (n1X1+1n2Xx2) = (coordinate of the center of
“mass” of the pair),

r=x;—X,;=(relative coordinate). (4.39)
Then we find
Spi= (27")5(7Ik—111—772)2(771772)1/2/dxldx2
X g ipt-xigins- o gmix (xn)grhix (x2) — 1]
Xwi(s1)G(T; n1,m2)w(—s2)-e(\)e®™=R  (4.40)

where

G(r; n1,m2) = (27")_2/dq et G (q; n1,72) -

It is interesting to interpret the various factors in
(4.40). First, e(\)e’ "R is the wave function of the initial
bare photon. Multiplying this by G(r) tells us the com-
position of the physical photon in terms of its constit-
uents, which, to first order, are an electron and a
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positron.’® Hence we might refer to G(r)-e(\)e™® 'R as
the first-order approximation to the wave function of
the physical photon. The “internal” wave function G(r)
satisfies a two-dimensional Schrédinger equation with
a point source,

(— —1:V2+ ’—n;)G(r)

25 25

_ i[_i(“_"‘)v—(v xé)az+ima]a2(r) :

27 N

The solution of this equation which vanishes as |7|—c
is simply related to the modified Bessel function Kj:

G@)= i[-i("rm)v - (VX%)UZ-I—im«r]KO(m]rI ).

27 Nk

The next factor in Eq. (4.40), the eikonal phase factor,
tells us how the constituents of the physical photon
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interact with the external field. Finally, the factors
w(s1)e~"?1'*1 and w(—s,)e~"P>*2 are the wave functions
of the final electron and positron (calculated to zeroth
order). Evaluation of the .S matrix is completed by

-integrating over the coordinates x; and x; of the electron

and positron and multiplying by 2r times an y-con-
serving é function and by a fermion normalization factor

(202)2(2n2)2.

E. Delbriick Scattering

Let us turn our attention now to the problem of
photon scattering off an external field. We shall see that
our scattering theory gives a clear and concise deriva-
tion of the amplitude for this process.

The matrix element we wish to calculate is

Sri—8rs={v(p'N)| U( ,0)[F—1]

If we insert the expansion of the physical photon state
into (4.41) and calculate to order e?, we find

n
Sfi_‘sﬁ=52(27")—45(7)1_77)/ dm[dpldpl’ 2 [F(py —p1)Fo(ps’ —p2) — (2m)46%(p1—p1) 6%(ps’ —P2) ]
0

81,82

Xwi(s1)j(p1, —p2) -e(Nw(—s2)w'(—s2)j(—po’, p1’) - (N )w(s1)

XLw(p)—H(p1) —H(p2) T Lw(p) —H(p:)—H(ps) T,

where

p1=P1,m), = m),
pe=@—DPy, n—m1), p'=@ —p/,n—mn).

This formula is visualized, and its kinematics are
defined, in the 7-ordered diagram Fig. 6.

We are now faced with two related problems. First,
‘the integrand in (4.42) is a very messy function of the
independent momenta p; and p,’. Second, the momen-
tum integration is divergent: If the integrals are cut
off in an arbitrary noncovariant fashion, the result will
depend on the cutoff parameter. The remedy is simple.
Since Sy; is invariant under the Galilean symmetry
group discussed in I and in Sec. IV B, it will be to our
advantage to use integration variables which are in-
variant under this group.

We choose to make use of four Galilean-invariant
momenta r, q, , and Q. The momenta r and q are
defined so that the momentum transfer from the external
potential to the electron in the intermediate state is
r+q and the momentum transfer to the positron is
r—q:

P —pi=1+q,
p2'—p=r—q.

15 The amplitude 1/Z; for a physical photon to be a bare photon

(4.43)

is 1 to lowest order, but does not, of course, contribute to pair

production.

(4.42)

The momenta 1 and Q are defined so that the “relative
momentum” of the electron-positron pair is 1—Q before
the interaction with the external field and 14-Q after
the interaction:

1—-Q=7(py/m—p2/n2) (4.44)

1+Q=7(p1'/m—p2'/n2) ,
where 5=n17s/7 is the “reduced mass” of the pair. We
will use q and 1 as integration variables instead of p; and
Pt- The momentum r is, of course, fixed by the external
momenta: 2r=p’—p. We find with a little algebra that
Q is given in terms of r and q by

Q=3@+qg —or, (4.45)

where we have defined
a=n1/y. (4.46)

When this change of variables has been made, the
scattering matrix takes the form

Spim 5= 2 (2m)tmi(o =) / TP G+F.—)

—(2m)* 5@+~ IMa(g1;\N),  (447)
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where

1 A
Ma(@r M) = / da / 015 W (s2)i (1, — ) e(Nw(—s2)t0! (—s2)j(— o'y 1) - e*(N)(s2)
’ XLw(p)—H(p1)—H(p) T [o(p') — H(py) — H(ps) T

8182

Equation (4.47) has the attractive property that the
integrand of the q integration decomposes into two
factors: one describing the interaction with the external
field and a second, called the photon impact factor by
Cheng and Wu,'¢ describing the composition of the
physical photon as a bare pair.

A technical complication arises because the impact
factor M depends on a cutoff A in the lintegration. How-
ever, we will see that the cutoff does not affect the scat-
tering amplitude, and therefore has no physical signifi-
cance.

It is quite easy to write down the explicit form of M,
using the variables 1 and Q =3(r+q) —ar. The energy
denominators are

w(p)—H(pr) —H (p2) = — (27)'[1—Q)*+m?]
=—[270(1-a) '[1-Q)*+m*],

w(p")=H(py)—H(ps) = — (27)'[1+Q)*+m?]
=—=[270(1—a) I7'[A+Q)*+m?].

By making use of the Galilean invariance of the numer-
ator factors w'jw, we can write them in terms of 1 and
Q immediately:

wi(s1)j(p1, — p2)w(—s2)
=w'(s0)j(1—Q, 71;1-Q, —n)w(—s2),

w'(—52)j(—p2, pr)w(s1)
=w'(—s52)j(14+Q, —n2;14-Q, n1)w(sy).

Thus M, takes the form

Ma@r M) = / da / A 2na(1—a) P, Q; AN)

X[A=Q)*+m*T'[(1+Q)*+m?T, (4.49)
where
n(L,Q; M) =32 w'(s1)
Xjd—Q, 71;1—Q, —n2) - e(N)w(—s2)w'(—s2)
Xj+Q, —n2;14-Q, n1) - e*(N)w(s1).  (4.50)

F16. 6. Delbriick scattering.

16 H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969).
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(4.48)

Let us consider the helicity-flip case first. Reading
from Table I, we find

n(,Q; 1, —1)=—2(nn2)~ 'l — Q) U1+ Q)
==27"a(l=a) 704124 —0:Qy) . (4.51)
Thus

MA(q’ r, +17 - 1)
——8 / daa(l—a) / AUl —040,)
XLA=Q)+m T [+ Q)+ mT1.

The helicity-nonflip amplitude is also quite simple.
Reading from Table I, we find
n(l) Q; +17 + 1) = (771—2+7]2—2) (l+—Q+) (l_+Q_)
+%m27*7—2
=3[na(1—a) I*{[a*+(1—a)?]
X(12—Q2—21XQ)+m?}. (4.53)

The term proportional to 1)XQ can be dropped, since it
will not contribute to M. Thus we obtain

M(q,1; +1, +1)

(4.52)

-2 f o f Adl[(a2+(1-_a)z)(12—02)+m23

X[A=Q)*+m* [ (14Q)*+m* T, (4.54)

As mentioned earlier, the impact factors M, given
in (4.52) and (4.54) depend on the cutoff parameter A
used to avoid the logarithmic divergence in the 1
integration. However, we can verify that the cutoff
does not affect the scattering amplitude in the limit
A —o0 by writing M in the form '

MA(‘LU >‘:>‘I) =MA(q)r; )‘:A,) +MA(I',I'; Al}‘;) . (455)

The term M, defined by (4.55) is evidently finite in the
limit A —oo. If we use the simple observation that

f QL F (+QF o (r—q) — (2m) 52 (r+-0) 02 —q) ] =0,

we see that the cutoff dependent part of M(q,7; \,\),
namely, M, (r,r; \,\'), does not contribute to the scatter-
ing amplitude (4.47) and therefore has no physical
significance.

In addition, we may note that because of its definition
Ma(q,r; \\) is zero at q=r. It is also zero at q= —r.
[Indeed, it is an even function of q, as can be verified
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by making the change of variables o — 1—a in (4.52)
and (4.54).] Thus the scattering amplitude (4.47)
remains finite even if the eikonal factors are singular at
q==zk7, as they are in the case that 4,(x) is a static
Coulomb potential. The renormalized impact factors
Mo(q,r;\\) are identical [aside from a factor
—e4(2r)~%] to the impact factors for the photon found
by other techniques by Cheng and Wu.!6

F. Electroproduction of u Pairs and Scaling

We wish to discuss here a “model” calculation which,
hopefully, has important features in common with
electron-nucleon inelastic scattering. We imagine the
process pictured in Figs. 7(a) and 7(b): A virtual pho-
ton, produced by the scattered electron, creates a pair

I

dpl
(2m)

Sri=e2(2m)o(n—n"—n1—n2) (2129'29127,) 1/2]
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of muons which diffract through an external field (e.g.,
a nucleus). In the spirit of inelastic electron-nucleon
scattering, we put eikonal phases only on the members
of the pair and treat all particles as distinguishable.

One purpose of the model is to investigate the scal-
ing property recently discovered in electron-nucleon
scattering.” To do this, we assume that only the final
electron is observed and construct the cross section
do/dQ%y, where Q? is the four-momentum transfer
from the electron line and » is the energy transfer.
We then ask whether the diffractive mechanism en-
visioned here leads to scale-invariant expressions for
the form factors o7 and og in the limit Q% — .18

To begin, we construct the scattering amplitude cor-
responding to Figs. 7(a) and 7(b):

2w (s)i(p',0) - € Nw(s)w! (s0)j(pr', —p2) - e(Nw(—s2)

+ (ﬂq)—zas' ,3581,—82

(2n)[H(p)—H(p')—w(q)]

X[H(p)—H(p')—H,(p1') —Hu(po) T [F(p1—p1)F o(P2—p2') — (27) *6*(p1—p1') 6*(P2—p2) 1,

where
ng=n—1",
n'=n1, n'=ns.

q=p—7,
p)'=—p/+q,

The first term in curly brackets in (4.56) corresponds
to exchange of transverse photons [Fig. 7(a)]; the
second term corresponds to the exchange of a ‘“‘scalar
photon” [Fig. 7(b)]. The function H,(p) refers to the
free-muon Hamiltonian (p2+u?)/2y, where u is the
muon mass.

Before proceeding further, it is convenient (as usual)
to change variables in the momentum integration from
p: to k, where k is the “relative momentum” of the
virtual g-pair:

’ 7
717
k= —1—2<p—1 ~ Bg—>=p1'—aq, (4.57)
Ng \M n2
where
a=7ll/"7q- (4~58)

It is also convenient to let —(Q? stand for the square of
the four-momentum transferred from the electron line:

—Q*=(p— )P~ (4.59)

In terms of these variables, the energy denominators in
(4.56) have the simple forms

H(p)—H(p') —w(g) =—0% 214,
H(p)—H(p") —Hu(pr') —Hu(py)

(4.56)

The numerator functions w'j-e*ww'j-ew can be read
from Table I, and are also simple functions of k.

We are now prepared to write out Sy; in a form
suitable for calculating the cross section. Let us choose
the z axis in the direction of the beam, so p=0, and
consider Sy; for the choice of spins s=§"=s;=1, so=—1.
Then when we substitute the expressions from Table I
and Eq. (4.60) into (4.56), we obtain

Spi=(2m)8(n—n"—n1—n2)[2n2n' 2129212

X (_262/Q277'1)M(p1;p2) ) (4'61)
where
M (pyp9) = (2m)? / dk (k)
‘ X[F(p1—eq—K)F(p:—(1—a)q+k)
—(2m)46*(p1—aq—k) 6 (p:— (1—a)q+k)] (4.62)

(pys)— (p,s')—

(a)

7 ! S\ —
/ Py
Q_// (p“s‘),..—- ( 1 l)
\

(%r%5)
2) (Pars)

(p,s')—

Prs)— .

(P

(Dé,sz)\ .
(DZ’SE)\

Fi16. 7. Muon pair production off an external field.

17 E. Bloom et al., Phys. Rev. Letters 23, 930 (1969).
18 Note that the limit » — « is already implicit in our formalism.
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and

F(&) = fr(k)+ fr(k)+ fs(k)
={L(n/n")p'~Jaks—p' (1—c)k_+a(1—a)Q%}
X[k+a(l—a)Q*+u? T,  (4.63)

The three terms in f(k) arise from exchange of a right-
handed photon, a left-handed photon, and a ‘‘scalar
photon,” respectively.

The physics of the amplitude 37(py,p2) is more ap-
parent if we write it as a Fourier transform by inserting
the expansions of the eikonal factors into (4.62). The
resulting structure of 7 (ps,p.), and its physical interpre-
tation will be familiar from the discussion of pair
production by real photons in Sec. IVD. We find

M (p1,p2) = /dxldx26_ip‘"‘B_ipz'”M(Xsz)

= [ A% dx o021 Mg R

X[e~ix@etix(x) —17] f(x;—Xz)e R | (4.64)
where R=7,"Y(yX;+n:Xs) and f(r) is the Fourier
transform of f(k). Explicit evaluation gives the wave
function of the virtual muon pair f(r) in terms of
modified Bessel functions Ky and K;:

1) =(2m) / dk o Fa(l) - J(0)+ (k)]

=fr@+fr@)+fs), (4.65)
where
i/ n
) =~ 2! a1 —a)Q T
2w\ 7
X K1([a(1—a)Q*uZ]M?%),
ful)=— zim'a —)[all -a)Q2+u2]"2rf
XK y([e(1—a)Q2+u2]"%), (4.66)

1 .
f5@)= - a(l=a)Q*Ko[a(1-a)Q+u']"").

We will see in the sequel that, for our purposes, this
expression for f(r) is not as formidable as it seems.

With a usable expression for Sy; now at hand, we are
ready to construct the cross section do integrated over
the unobserved momenta of the muon pair. Using (4.61)
in Eq. (4.6), we obtain

4et

1
da'=dp'dn'<——>f da
(2m)*Q*nq/ /o

X (2m)4 / dpdpa| M (prp)|?. (4.67)

BJORKEN, KOGUT, AND SOPER 3

Since M(x1,%s) is simpler than M (p;,p:), we write the
P1,p: integral as

(2m)—* / dp1dps| M (p,ps) | *
= / dx1d%s | M (%1,%2) | 2

=/dx1dx2lf(x1—x2) [2[2—2 cos(X(x1) —X(%2))]

- [also1z [

X[2—2 cos(X(b+31) —X(b—31))].

Assuming that the potential has cylindrical symmetry
about the z axis, we can replace |f(r)|% by |fr()|?
4| @) |2+ fs()|? in (4.68), since the various cross
terms will vanish when the integration over the angle of
r is performed. Thus the cross section separates into a
part owing to the exchange of a “transverse photon,”
dor=dog~+dor, and a part owing to the exchange of a
“scalar photon,” dog. If we substitute the expressions
for | fr|? |fz|? and |fs|? obtained from (4.66) into
(4.68) and (4.67) and interchange the roles of a and
1—a in do;, ,we obtain

do=dor+dog

1
=dp’dn’'[4e*(2n)~°Q ;] / da / dr
0

(4.68)

X E[(Z—)Z l:lp/2a2[a(1 —)Q*u7]
X UKol =a) Q] )}
a1 =) QUK Call—a)0 4T )

X/db[Z—Z cos(X(b+3r)—X(b—3r))]. (4.69)

This expression gives the cross section in the high-
energy limit discussed in Sec. III, i.e., in the limit
7, 7’ = with /9" and Q? fixed. It remains now to
evaluate do in the limit Q2 —. To take this limit we
have only to note that the modified Bessel functions
appeaing in (4.69) are large only for small values of
their arguments, so that the main contribution to the
r integral comes from the region r2< [a:(1—a)Q2+u2]L

Physically, this means that for large Q? the transverse
separation 7 between the muons as they pass through
the external potential is small. If the separation were
zero, the two muons would receive exactly opposite
eikonal phases; thus for small  the net phase received by
the muon pair is proportional not to X but to VX.
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Mathematically, this means that the Q2 —co limit
of do can be obtained by substituting for the b integral
in (4.69) its limiting form as » — 0.!% This limiting form
is easily evaluated:

/db[Z —2 cos(X(b+3r) —X(b—31))]

N/db[Z—Z cos(r- vx(b))]
~ / db[r-vXx(b)]?

=1y2 / db[VX(b)]2. (4.70)

[In the last step we have used the assumed cylindrical
symmetry of X(b).]

Once the limiting form (4.70) of the b integral has
been substituted into (4.69), the r integral can be evalu-
ated using the formula?

L(Gs+)T(Es—J)
T'(s) .

| astks@pa =2t
0
This leads to

do=dp'dn/ 3} 2y 1] [ abLVX(b) T
) o
2L\y’ o a(l—a)Q*+u

+ /0 lda[a(j(_l;';)f:ﬂj} @)

Evaluating the a integrals in the limit Q2 —c, we find

do=dor+dog

et
77,7

~dp'dy

— [ db[VX(b)]?
3(2m)*Q*nq ®)]

X{%[(%)z—!—l](%/:)[ln‘%? +0(1)J+1] . @72)

We recall that this is the cross section for the choice
of spins s=s'=%, si=%, s;=—%. It is not difficult to
see that the choice s=s"=3%, si=—%, se=-+3% leads to
the same cross section. Each of the other six possible
choices for the spins of the final particles gives a cross

19 More precisely, let do’ be the limiting form of do so obtained.
Then it is not difficult to prove that des=do/[14+0(1/0%)],
dor=dor'[14+0(1/InQ?) ] as Q2 — =, assuming that the potential
is sufficiently well behaved.

20 Tables of Integral Transforms, edited by A. Erdélyi (McGraw-
Hill, New York, 1954), Vol. 1, p. 334.
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section dos=0 and a cross section dor which is small
compared to the cross section in (4.72) as Q% —o .2
Thus the limiting cross section for s=1 (or s=—1),
summed over final spins, is two times the cross section
in (4.72).

In order to make contact with standard notation and
identify the form factors o7(Q%p), 05(Q%»), let us define

E=(lab energy of the incident electron)
=2""[n+H(p)],
E’=(lab energy of the scattered electron)

=270y +H(p)], (4.73)
v=E—F’'.
Apparently in the high-energy limit,
n=212E o/ =212F' 5,=212%, (4.74)

We recall also the definition of Q2:
Q*=— (=)= )u=—20LH(p)—H(p') ]+p"
= (/1" )"+ (n*/nn"ym*.  (4.75)

Thus in the high-energy limit, and neglecting w2 com-
pared to Q% we can replace p'? by

p*=(E'/E)Q".

When we make these replacements, we find for the
cross section summed over final spins

do dor
= +
dQ%y  dQ%y  dQ%y

2* 1 ETEME? (Q?
]
3200t EL 2EE  \u?

(4.76)

dog

X / db[VX(b)]2. (4.77)

Using (4.77) we can extract the form factors o g and o7 22:
(o)~ 2 [arwx
o — )~ — — vX s
o QZ 3,". Q2
(4.78)

UT<Qz,aV;>~ j—z -ém(%z) / db[VX(b) .

It is interesting to compare the behavior of og and o7
in the present model with the well-known scaling be-
havior of the same form factors for deep-inelastic
electron-nucleon scattering.?® In this model, o s(Q%»/0%)
is scale invariant: For large » and Q2?, Q% s is a function

21 Tf the helicity is flipped on the electron line, dor is suppressed
by a factor m2/Q? as Q% — . If the helicity is flipped on the muon
line, dor is suppressed by a factor [In(Q2/u?) ]

22 J. D. Bjorken, Phys. Rev. D 1, 1376 (1970).

23 J, D. Bjorken, Phys. Rev. 179, 1547 (1969).
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F1G. 8. gs/or for high-energy electroproduction of lepton pairs
from a slowly varying external field.

of »/Q? only. However, the factor In(Q?/u?) spoils the
scaling behavior of o7.2*

In the somewhat hypothetical limit of an external
field which varies in space slowly compared with the
lepton Compton wavelength (| VX|/X<u), the formula
(4.71) for og/ar is valid for all Q2. The direct evaluation
is shown in Fig. 8; we see that og/or is never larger than
0.26.

It is not clear what direct connection these calcula-
tions have with respect to hadron electroproduction.
While there appears to be a diffractive mechanism?
operating in both cases, the details (e.g., the scaling
behavior of 7) are different. However, it may be that
some features of the process, such as the importance of
small transverse distances (Ax)2< Q2% at large Q? are
common to both.2

V. FUTURE PROBLEMS AND
POSSIBLE LIMITATIONS

Throughout this paper we have found support for a
simple physical picture for high-energy scattering
processes. However, this picture is couched in perturba-
tion theory, and one may wonder whether it is generally
valid. For example, to what extent does this picture
apply to strong-coupling field theories? Or, more
modestly, will this picture survive higher-order calcu-
lations in quantum electrodynamics?

Studies of diagrams such as shown in Fig. 9 indicate
that the complete situation is not as simple as we suggest
in this paper.?” Using these or other methods, it is not

24 Strictly speaking, scale invariance for o7 means that Q%r
approaches a finite limit as Q?— with »/Q? held constant.
However, we have evaluated or in this model in the limit »/Q? —
with Q? held constant, and then we have let Q2 — . It is not
impossible for o7 to exhibit scale invariance in the limit Q2 — o,
v/Q%=const, but not in the reversed limit used here.

2 B, L. Ioffe, Phys. Letters 30B, 123 (1969).

26 This picture is clearly stated by H. Cheng and T. T. Wu
[Phys. Rev. 183, 1324 (1969)7], who also considered electroproduc-
tion for the case of Coulomb external field. Aside from an over-all
factor of 2, they have obtained the results contained in Eq. (4.78).

27 G. V. Frolov, V. N. Gribov, and L. N. Lipatov, Phys. Letters
%1337,0;54 (1970); H. Cheng and T. T. Wu, Phys. Rev. D1, 2775

1 .
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e

F1c. 9. Electron-scattering diagram contributing
7 Inn term to the S matrix.

difficult to find that this diagram diverges logarithmi-
cally as n — o, where 5 refers to the incoming electron.
The logarithm comes from a loop integral and receives
a large contribution from that region of phase space in
which the internal partons are (almost) “wee.” This
example raises two problems. First, if we apply per-
turbation theory to very high orders, we must be
equipped to deal with such logarithms, which in suffi-
ciently high order violate s-channel unitarity. Secondly,
since the internal photons in this example are (almost)
wee, one can question the applicability of the eikonal
approximation to this diagram. The true situation may
be somewhat like using purely nonrelativistic methods
to calculate the Lamb shift: They work up to a certain
point, and contribute a great deal of insight into the
physics. However, beyond that point they fail utterly.
In the present case there is very likely a similar bound-
ary, associated with wee partons, beyond which the
simple methods of this paper fail. It remains for the
future to see how much of the physics lies on the simple
side of the boundary and how sharply the properties
of the boundary region can be delineated.
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APPENDIX

The two-component formalism described in Sec. IT
suggests, in the interest of over-all simplicity and uni-
formity, a change in notation, mainly in normalization
factors, from that used in I. This appendix is devoted to
clarifying the connection between the old and new
formalism.

We begin by discussing the electromagnetic potential.
The operator A(x), as discussed in (2.6) and below, may
be directly identified with Ar(x), of I:

new A(x) =Ar(x) old. (A1)

However, the plane-wave expansion (2.11) of A(x)
differs from Eq. (4.37) of I by a factor [2(2x)3]'/2; the
comparison yields?$

new a(p,\) =[2(2m)¥]%a(p,\) old.

28 While the new X refers to circular polarization and the old A
to linear polarization, we trust this causes no confusion.

(A2)
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The connection between the new two-component
electron field y(x) and the old four-component ¥(x) is
more disagreeable. Not only is there a change in normal-
ization but there is also a unitary rotation. The essential
connection is between

()
2

y= (A3)

and the independent dynamical variables of I,

¥,
0
‘P.,. = 0

VA

(A4)

By comparing the anticommutation relations (4.36)
of T with (2.5) of this paper, we see that the normali-
zations of the field operators differ by a relative factor
21/4_ If we choose phases such that

new Y1(x) =214, (x) old, (AS)
then we find it is best to make the identification
new Yo(x) =1214¥,(x) old. (A6)

We verify the connection by comparing the equations
of motion for ¥, and ¢. Elimination of ¥_ from Eq.
(4.18) of I produces

(i‘(‘)g—eA 0) ‘I/_(..
1
=[—(p—eA) 'Y+m]2—[+(p—eA) x+m]¥.. (A7)
n

Using the v matrices (4.9) of I we, see that, as 2X2
matrices acting on the first and fourth components of
¥, the matrices y! and v? are

0 -1 0 <
0700
1 0 i 0

If we combine (AS) into the two-component spinor
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relation

Y(x) =2"4U¥(x),

10 (A8)
0=y +)
0 2
and insert this relation into (A7), we obtain
(id0—eAo)Yy=[—(p—eA)- UyU~"+m](1/2n)
X[(p—eA) - UyU+mlp. (A9)
But
UnyiU =107, (A10)

so that (A9) is identical to the equation of motion (2.14)
for ¢.

The unitary matrix U introduces relative phases in
the comparison of the elements of the plane wave
expansions of ¢ and ¥,. By definition, the new spinors
w(s) appearing in the expansion (2.10) of y are equal to
the old two-component spinors w(s) appearing in the
expansion (4.32) of ¥, in I. Thus the creation and
annihilation operators in (2.10) must absorb, in addi-
tion to a normalization, the phase introduced by the
presence of U. The comparison between (2.10) and
(4.32) of 1, using Eq. (A8), yields

new b(p, +%)=[2(2m)*]"*(p, +3) old,
new b(p, —%)=i[2(2r)*]'*b(p, —3) old,
new d'(p, +3) =i[2(2m)*]"*d(p, +3) old,
new d'(p, —%) =[2(2r)*]"%d"(p, —%) old,

This completes the correspondence relations between
the old and new notations. It is now straightforward
to check that the new formalism is consistent with the
old, including rules for diagrams.

We must apologize for changing notation in mid-
stream. However, many disagreeable factors of V2,
(2m)3%, etc., have thereby been eliminated, and a con-
sistent mnemonic now exists for the factors 2 occurring
in the rules for perturbation diagrams at the end of
Sec. I1: for every factor = a factor 2, for every factor g
a factor 2.

(A11)



