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Quantum Electrodynamics at Infinite Momentum: Scattering
from an External Fieldt'
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Using a formulation of quantum electrodynamics in the infinite-momentum frame, we develop a theory
to describe the scattering of energetic electrons or photons off an external Geld. A physical picture emerges
which proves to be a realization of Feymnan's "parton" ideas. In this picture the incoming electron is
composed of bare constituents (the quanta of the Schrodinger 6elds) which, at high laboratory energies,
interact slowly with one another. Each bare constitutent is scattered from the external field in a simple way
and then the constituents again interact among themselves to form the Gnal state. This formalism is applied
to elastic electron and photon scattering, bremsstrahlung and pair production, and deep-inelastic electro-
production of lepton pairs, and the results of Cheng and Wu and others are recovered in a simple way. In
these applications, perturbation theory is used to construct the wave functions of the constituents in the
initial and 6nal states.

intuitive insights into low-energy electromagnetic
processes. It was shown in I that quantum electro-
dynamics in the infinite-momentum frame, although
formally equivalent to quantum electrodynamics de-
veloped in an ordinary reference frame, possesses several
simplifying features itself. These include the formal
absence of vacuum pair creation, computational sim-
plicities, and a nonrelativistic analogy which should be-
come a basis for intuition into high-energy phenomena.
However, just as the nonrelativistic limit of quantum
electrodynamics has certain de6ciencies, its ultra-
relativistic limit will inherit several limitations already
contained in I. For example, the renormalization pro-
cedure becomes more dificult, old-fashioned perturba-
tion theory must be used, and manifest covariance is
lost. Nonetheless, we will see in this paper that for a
limited range of applications, specifically the calculation
of high-energy amplitudes, the formulation of quantum
electrodynamics in the in6nite-momentum frame
possesses distinct advantages over the conventional
theory.

The plan of this paper is to review the formalism of
quantum electrodynamics in the in6nite-momentum
frame developed in. I, and present a heuristic derivation
of the salient features of that paper in a "nonrelativ-
istic" fashion. We next introduce an external field into
the theory and derive a closed form for the scattering
operator, .formally valid as the energies of incident and
produced particles tend to in6nity. We then apply this
formalism to several electrodynamic processes and ob-
tain the results of Cheng and Wu and others.

I. INTRODUCTION

ECENTLV considerable progress has been made in
evaluating amplitudes for high-energy electro-

'

~

~

~

~

magnetic processes. Uarious authors' have found, using
conventional calculational techniques and considerable
la,bor, that these amplitudes have several unifying
'features. First, when two electromagnetic particles
having large relative momenta exchange a 6xed amount
of momentum, the interaction can be viewed as occur-
ring between the bare quanta which compose the in-

coming and outgoing scattering states. .Furthermore,
the interaction between these constituents is simply a
relativistic generalization of the eikonal amplitude
familiar from nonrelativistic scattering processes. Thus,
a physical picture for these scattering processes emerges
which is similar to Feynman's "parton" ideas. ' We wish

to show in this paper that these interesting features can
be easily understood and derived from a recent formu-
lation of quantum electrodynamics in the in6nite-
momentuin frame developed by -two of the authors. 4

The motivation for developing a formal theory of
quantum electrodynamics in the infinite-momentum
frame was the hope that this exact theory would lead
to an approximate ultrarelativistic theory which couM.

provide a simple description of extremely high-energy
phenomena, just as nonrelativistic 6eld theories provide
understanding of low-energy phenomena. For example,
the nonrelativistic limit of quantum electrodynamics
aGords tremendous computational simpli6cations and
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II:.. REVIEW OF INFINITE-MOMENTUM
FORMALISM

970}' The trajectories of particles in nonrelativistic
d by processes cluster about a single direction in space-time,

which is generally taken to be the time axis. The tra-
jectories in extreme-relativistic processes likewise
cluster about a direction in space-time, which can be

70) conventionally taken to be a null vector in the ts plane.
It is sensible to describe nonrelativistic processes in the
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x"= (r,x' x2 $) =C" x"=g""x (2.1)

with x" the usual space-time coordinates and

2—1/2

C~, = 0
0
2-1/2

o o
0 0

0 1 0
O O —2-~/2,

(2.2)

coordinate system (t,x,y,s). It is likewise sensible to
describe extreme-relativistic processes using the co-
ordinates r=2 "'(i+s) x y )=2 "'(t—s), since in this
coordinate system the particle trajectories cluster about
the new "time" axis.

In I, quantum electrodynamics was reformulated in
this new coordinate system

tion of helicity. ) It turns out that the matrix elements of
the Hamiltonian of I are remarkably simple if one
chooses the incoming and outgoing particles to be in
infinite-momentum helicity states.

Instead of simply evaluating the relevant matrix
elements in the context of I, we 6nd it instructive and
intriguing to rederive these results in a simple heuristic
fashion which takes full advantage of the nonrelativistic
structure present in the infinite-momentum frame. (The
connection between the formalism of I and the formal-
ism to be presented here is given in the Appendix. )

VVe begin with the mass-shell condition for a free
electron, p„p)'=m', or 2ilH p'—=m' If .we make the
usual identification p„~i 8„, we arrive at the equation
of motion for the free electron field (the Klein-Gordon
equation):

0

gIlP
0
0
.1

0
—1

0
0

0 1
0 0

—1 0
0 0.

i 80'P(x) = (1/2)r) (p'+m') )P(x),

where 1/g is the integral operator

(2 3)

The corresponding momenta are H=po=2 '~'(E —p,),
rl=p3=2 '"(E+p,), and p=(p„p„). Since H generates
r translations, it plays the role of a Hamiltonian.

In brief, the procedure used in I was as follows.

(1) Change variables in the Lagrangian. The
equations of motion, being form invariant, remain
unchanged.

(2) Choose the gauge A'=A3=0.
(3) Identify the independent field components and

quantize them with the known equal-r commutation
relations satisfied by the corresponding free field com-
ponents. Only the two transverse components of the
electromagnetic potential are independent variables;
the component A3 is zero by the gauge choice, and the
component Ao is eliminated in a way similar to that of
conventional Coulomb-gauge electrodynamics. In a
similar way, we 6nd that only two of the four com-
ponents of the Dirac 6eld 0 are independent. Once the
equal-r commutation relations among the independent
field components have been specified, all of the equal-r
commutators in the theory can be calculated using
Maxwell's equations and the Dirac equation.

(4) Construct the Hamiltonian.
(5) For the perturbation expansion of the S matrix,

use "old-fashioned" Heitler perturbation theory. This
procedure is seen to give a perturbative solution to the
Geld theory identical to the more familiar Feynman
expansion.

The in6nite momentum analysis of I led naturally to
the use of four-component spinors and polarization
vectors which, when boosted to (almost) the speed of
light in the s direction, became eigenstates of helicity
as measured in the lab. (Thus, if we choose to describe
processes involving particles with almost infinite
momentum in the +s direction, this notion of in6nite-
momentum helicity coincides with the familiar descrip-

1
-'p (*)= — 4" ~(h 5)p(r,—x,E)

2i
(2.4)

As we will see, it suflices to let %(x) have only two
components. The two components are postulated to
satisfy the equal-7 anticommutation relations

Free photons are described by the two transverse
components A(x) of the electromagnetic potential. As
in paper I, we use the infinite-momentum gauge, A =33
=0. The equal-r commutation relations satisfied by
A(x) are

[A '( ),xA'( )x], ;=&,.iS=(x x'), —
=~~'(1/4i) ~(&—&')~'(x —x') . (2.6)

The free-photon Hamiltonian is

H, =-,' Q dxds A "(x)p'A'(x). (2.7)

~(—l)=( ),
e(+1)=2 "'(1,i), e(—1)=2 '"(1, i), —

(2.9)

where the arguments s and X refer to the infinite-
momentum helicity discussed earlier. Vsing these wave
functions, the Fourier expansions of the fields 0 and

Using the commutation relations (2.6), this Hamiltonian
leads to the expected equation of motion,

PA ~(x),H~) = iBOA ~(x) = (1/2g)p'A ~(x) . (2.8)

The natural two-component spinors w(s) and polari-
zation vectors e(X) in this description are
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cquRtlon with 1Dtcl Rctlons bccolrlcs

iBO+=edoe+[m i—e {'y—eA)]
&&(1/2g) [ns+ia. (y —eA)]+. (2.14)

The dependent variable Ao is eliminated with the help
of Maxwell s equations, BI"P„„=BI'8„A„—8„8I'A„=J,.
Choosing s =3 and recalling that AS=0, we 6nd that
—83(8320—V A)=73. From I we 6nd that Js ——J'
=e%~%'. Therefore,

(2.15)

where 1/y 1s the llltegral operator

—,+ (&)= —— dtl h kl +—(r,x, 0) (2.16)
2

Now the equation of Inotlon fol O' reads

I"IG. I. Vertices in the in6nite-momentum frame.

3 take the form'

@(g)= (2s)—' dy —Q [(2g)'"w(s)e "'b(p, s)
2'g

+(2~) &i w( s)e+~u*«(p s)]'{210)

A(x) = (2s)-' dy —g [e(X)e "'u(p, X)

+e(X)*a+" ot(p, X)]. (2.11)

The. operators bt(p, s), «(p,s), and at(p, s) a,re creatio~
operators for electrons, positrons, and photons, respec-
tively. They satisfy the commutation relations

(b(p, s),bt (p', s') ) =8„(2m')2gb(r) —q') 8'(y —p'),
{d(p,.),«(p', "))=b.. (2 )'2»(~-~')b'(y-y'), (2.»)
[ (p,~),"(p',~')]=b- (2-)'2»(.—..')b'(y-y').

The electrodynamic interaction can be introduced
1Dto this formalism by wrltlng thc flcc-clcctI'on wave

cquRtloIl 1D thc form

~80+=(m ie y) (m+ie—y)+,—
29

then making the gauge-invariant substitution p„-+p„
n, Using thc gauge cholcc ~g —0, thc wave

' Note that dydee/27) is the Lorentz-invariant surface element
dp dp„dp, /2E on the mass shell. The q integration runs from 0 to
~, thus covering the forward mass shell. .

' Recall that the nonrelativistic equation of motion is written
i801I= (1/2m) e ye yp before introducing the minimal sub-
stitution in order to obtain the corrects 3 term.

+[m—ie (y —eA)]—[m+iIr (y —eA)]e. (2.17)
2n

Finally, from Eqs. (2.5) and (2.17), and, the IIeisenberg
relation AH, %']=80%', we can conjecture that the
Hamiltonian for the theory is

H= dxd~ —%(%—4'4+e%t%-y A
2 92

+4"[m i'e (y——eA)]—[ns+~e'(y —eA)]e
2g

+-,' g A~y'A~ {2.18)

(2.19)

with ho=H@
As we have mentioned, the matrix elements of H are

very simple when taken between the- "in6nite-momen-
tum helicity" states created by the operators bt(p, s),
«{P,s), and at(P, X). The matrix elements are easily
calculated using the expansions (2.10) and (2.11) of the
6elds

(1)»ngle photon emission [Fig. 1(s,)]:
(e {p',s'b(a) ) l&le-(p, s))

Xewt(s')j(p', p) e~(X)w(s), (2.20)

w'(s')j(p', p) e*(~)w(s)
=wt(s')[y, '(I e*(P)—o r.*(X)(2y)-'e y

ey'(2y') —'e e*P) ,'ime e*(—A)—

&&(~' '—n ')]w(s). (2 21)
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In Table I, we list all of the possible matrix elements
m~j e*m.~

The matrix elements for other processes involving
two fermions and one photon can be obtained by the
usual substitution rules. For instance, the matrix
element for y —+ e e+ is

(e (p', s') "(p,s) IH I v(v, ) ))
= (2~)'&(v..i —v'-) &'(p-i —p'-) (2n)'"(2v') '"

Xewt(s')j(P', —P) e*(—)~)w( —s). (2.22)

(2) Instantaneous electron exchange I Fig. 1(b)j:
&e (pi@i)v(ps)~s) IHle (pi»)v(ps)~s))

=(2~)'&(%.i —v -)&'(p i —p'-)(2~4)'"(2vr)"'
Xe'wt(s4)o e()is)(2ito) ir' e*P s)w(st) . (2.23)

The spinor product is very simple:

w (s4)o e(4)(2t)s) 'o" e*()~s)w(st)

1/imp (if all the particles are right-handed
or if all the particles are left-handed)

0 otherwise. (2.24)

(3) Instantaneous scalar photon exchange LFig. 1(c)j:
(e (ps, ss)e (p4, s4) IHle (pi,si)e (ps, ss))

= (2tr) '8(rioui —it;n) 8'(pout —p; ) (2r) t2its2its2rli) 'I'

Xe'(t)s)-'8„„8„„+(contribution from crossed

diagram) . (2.25)

The veteran field theorist, armed with this informa-
tion, will be able to construct the rules for old-fashioned
perturbation diagrams by whatever formal methods suit
his taste.

(1) A factor (Hr H+ie) ' —for each intermediate
state.

(2) An over-all factor 2rrib(Hy H;). — —
(3) For each internal line, a sum over spins and an

integration

TABLE I. Matrix elements for photon emission.
P+=2 "'(P'+sP') e=P P'—.

1
2
1
2

s

1
2
1
2

1
2

—1

—1

—1

~~~(s')j(p' p) *(~)~(s)

/nr -P -'/v'-

s+/~e-P+/~
—2 'I'imps/gg'

0
0

—2 "'imps/gg'
V-/~c-P-/~
V+/~c —p+'/n'

III. HIGH-ENERGY SCATTERING FROM
AN EXTERNAL POTENTIAL

The reformulation of quantum electrodynamics
described in I and above was motivated by a desire to
develop limiting theories to describe high-energy scatter-

-ing. We will develop here such a theory to describe the
scattering of high-energy electrons and photons in a
prescribed external electromagnetic potential a„(a).
We have derived the results of this section using the
complete canonical formalism of I with the external
potential included in the Lagrangian. However, the
same results can be obtained by extending the heuristic
discussion of Sec. II. Since the heuristic method is some-
what simpler, we present it here.

Begin by introducing the potential a„into the electron
wave equation (2.14) according to the gauge-invariant
substitution p„~p„—ea„. Then the equation of motion
reads

(5) These rules give the 5-matrix element (fISIi)s.
One obtains the differential cross section from the 5
matrix in the conventional fashion.

The heuristic approach presented here shows that
with some imagination and a little guesswork (along
with considerable hindsight), one can obtain these
simple results in a simple way.

(2tr) ' dp

(4) For each vertex,

cfg

2n

(ir')s eA s ea—s) O=—I m i'o" (p ——eA —ea)g,

X Ltts+iir (p —eA —ea)g@. (3.1)
2(r) —eas)

(a) a fac'tor (2') 8('&oui 'gin)8(pond pin)y

(b) a factor L2ii 3'~s for each fermion line entering
or leaving the vertex (the factors L2r17'~' associ-
ated with each internal fermion line have the
eRect of removing the factor 1/2v from the phase-
space integral),
(c) a simple matrix element (e.g. , ew j e*w).

7 Readers familiar with the discussion in I of the Galilean sub-
group of the Lorentz group will note that such combinations in
Table I as q/q~ —p/g transform under this subgroup like (momen-
tum/mass) —(momentum/mass) and are therefore invariant under
"Galilean boosts. "This invariance can often be used to practical
advantage in calculations.

Here (it —ear) ' is the integral operator

Xexpl i d&'a—s(r, x, f) I%'(r, x,P). (3.2))
s With the present normalization conventions, (f~S~s)= (2n)4

yb'(pf —p;)M, where jII is the invariant amplitude calculated
with the conventions of Bjorken and Drell using Dirac spinors
normalized to Nzc=2m. See J; D. Bjorken and S. D. Drell,
EelatzvisHc Qumstum Iiields (McGraw-Hill, New York, 1965),
Appendix B.
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J (q) = dx e—'&'*e—'«*'. (3.19)

Thus when a high-energy bare electron passes through
the potential at position x, the only effect of the po-
tential is to multiply the electron wave function by an
eikonal phase factor e '«*'. LNote that the phase x(x)
is simply the integral of the potential along the trajec-
tory of the electron. 7 The momentum component g of
the bare electron and its infinite-momentum helicity s
are conserved in the process, and no pairs are created.

The eBect of F on the positron creation operators is
equally simple. In passing through the potential each
bare positron receives the opposite phase:

Fd'(p, g; s)F—'=

where

dp
d'(P' ~ e)J'.(P' —P), (3 20)

(2s.)'

F,(q) = dx e '&'*e+'&&"&. (3.21)

Finally, we And that the bare photons are unaffected
by the potential:

Fa'(p g l~)F-'=at(p, g; l~). (3.22)

After we have moved E to the right past all of the
parton creation operators, we are left with an expansion
of the state F~i) in terms of parton states (similar
to the expansion (3.15) of ~i)7. Assuming that the ex-
pansion of the anal state

~ f) is also known, .it is then a

for the state ~i) to contain a bare electron with mo-
mentum pi, gi and spin sy, and a bare positron with
momentum p~, q2 and spin s2.

We also imagine the final scattering state
~ f) to be

expanded in terms of bare quanta ("partons") in the
same way. If we know all the amplitudes, g, h, etc. , we
can then evaluate Sy; by moving F to the right past all
of the parton creation operators until F acts on the
vacuum state t0). That is, we write

Fbt a'iO)=FbtF '. FatF-'FiO). (3.16)

We note that F is invariant under ) translations, and
thus commutes with the momentum operator g. Since
t0) is the only state with &=0, we conclude that
F~O) = ~0). (This result can be formally assured by
considering the operators in p(x) to be normal-ordered. )
The effect of F on the creation operators bt, d~, and at
is easily calculated using the equal-r commutation
relations (2.5). We And first that

F%'t(0,x,))F—' =e-'x &*&4't(0 x )) . (3.17)

Upon Fourier-transforming this relation, we obtain the
convolution integral

dp
F&'(, ; )F '= &'(p' )J'(p' —p) (3.1g)

(2') ~

where

simple matter to compute the overlap Sr; of
~ f) with

F(i).
Of course we do not in fact know the amplitudes in-

volved in the expansions of the states ~i) and
~ f) in

terms of bare-particle states. In the examples treated in
Sec. IV, we are forced to use approximate amplitudes
calculated from perturbation theory. What we wish to
emphasize here is the physical picture that emerges
from the present discussion.

(1) The scattering of high-energy physical particles
from the external potential is not simple. For example,
it is not described by a single eikonal phase.

(2) The physical particles can be viewed as being
composed of certain constituent particles (called
partons in the language of Feynman). In the present
case the partons are the "bare" quanta created by the
fields %' and A at 7 =0.

(3) The scattering of high-energy partons from the
potential is simple.

(4) The interaction of the partons among themselves
is complicated, but at high energies these interactions
are slowed down by relativistic time dilation. Therefore
no parton-parton interactions take place during the
finite time interval during which the partons interact
with the external field.

Thus the scattering of high-energy particles from the
external field occurs in three steps. First the partons in
the initial state interact among themselves during the
infinite time interval — (r(0. Then each individual
parton scatters in a simple way from the external
potential. Finally, the partons again interact among
themselves during the infinite time interval 0&r&00.

IV. EXAMPLES

In this section we calculate the high-energy limits of
the cross sections for several interesting scattering
processes. As we have seen, the contribution to the high-
energy limit of the S matrix from the scattering of the
individual partons oG the external field can be calcu-
lated exactly. However, the interactions among the
partons in the initial and final states do not simplify
in the high-energy limit. Thus we include these inter-
actions only to a finite order in perturbation theory.
Nevertheless, the required calculations in perturbation
theory are quite easy because of the simple form of the
matrix elements of the Hamiltonian the infinite-mo-
mentum frame.

We begin with a short discussion of the methods
involved in the calculations, and then proceed to the
calculation of cross sections for electron scattering with
second-order vertex corrections, bremsstrahlung, pair
production, Delbruck scattering, and electroproduction
of p-pairs in an external Geld.

A. Calculational Methods

In all of our applications we must compute the ampli-
tudes involved in the expansions (3.15) of the initial
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(p, s)

(~z "2)—
( p', s')

this expansion .'

1
l~(~)&=(v%) l~&+Z' l~&

H; —H„

(b)
ip, s) (p),s))~ (ps, ss)~ ip, s )

+P' g'
I e) &e I

hr
I m)

H —H

Fzo. 2. Electron scattering o8 an external field. {a)Zeroth order in
electron structure; {b) second order in electron structure.

and final states in terms of bare-particle states. To do
this, we recall the definition of the unitary evolution
operator U(r', r) =exp(abhor') expL —i(hp+hr) (r' —r)g
Xexp( —abhor), where ho is the free-particle Hamiltonian
and ho+br is the full Hamiltonian for quantum elec-
trodynamics with no external potential. The final
physical scattering state

I f(b)) consisting of outgoing
particles with momenta and helicities labeled by b is
related to the corresponding bare particle state

I b& by
(f(b) I =(bl U(~,0). Similarly, the physical initial state
I i(a)& is related to the corresponding bare-particle state
Ia& by Ii(a)&=v(0, —~)la&. Thus the high-energy

limit of the scattering matrix, Eq. (3.11), can be
written as

&blsl~&=v(b) IFI~(o))
= &bl U(~,0)F'v(0, —~) I o& (4 1)

We need the expansion (3.15) of
I f(b)) in terms of

bare particle-states In&: (f(b) I
=g (bl U(~,0) In&(nl.

The amplitudes (bl U(~,0) In& can be calculated to a
finite order in perturbation theory using the familiar
perturbation expansion of U(~,0):

&/(b) I =&bi+2 &blh. l~)
fb Hr II„+ie—

X &ml hr I o)+ (43)
H; —H

If Ia) is, say, a one-electron state, then the sums Q'
exclude one-electron states; the is terms in the energy
denominators are then irrelevant. Since U(0, —~) is
unitary, the renormalization constant QZ can be
determined from the requirement

&~(~) I
~(~')) =(~

I
~'&. (4.4)

Let us return now to the formula (4.1) for (blSI a&.

It will prove convenient to separate explicitly the un-
interesting "no-scattering" term (b I a& from &b I

S I a&

before doing any calculations. This can be accomplished
by noting that

(bl v(,o)1v(o, — ) Ia) =&bl v(, — ) lo&

is the 5 matrix for quantum electrodynamics with no
external potential, which is simply (bl U(~, —0D) la)
=(b I a& if

I a& is a (stable) one-particle state. Thus

&blSI o) =&bl o&+(bl v(™,0)LF—1jv(o, — ) I o&. (45)

It is, of course, only the second term in (4.5) which is
related to cross sections. With the normalization con-
ventions used in this paper, the exact relationship is"

dpycf'g j dp~dg~
40 = (2s)

2g (2s)'2gi (2s.)'2g~

+Z &blhrl~) . &~lbrl~&
m f R Hf —H +i&

xb(,.-Z „)I&bi~i~&l, (4.6&

where the transition amplitude (bl 1'I a) is deaned by

&~l+, (4.2) &bl V(,O)l:F—IjV(0,—~) lo&
Hf —H +i& =(2-)b('-. )&bi~I & (4~)

where Hr is the energy of the final state and holm)=e Im&.
Similarly, the initial state can be written as

I'()&=2 I && Iv(o —")I &

= lo&+Z IN& &~lhrl~&+ "
H;—H„+is

However, since the initial state in our examples is al-
ways a one-particle state, it is convenient to factor the
wave-function renormalization constant QZ, out of

B. Electron Scattering

Ke wish to calculate the amplitude

S,,—b,, =(s-(p', ")I V(~,0)LF—I)
XV(O, — )ls-(p, ~)& (4.S)

for high-energy electron scattering o8 an external field.

' We also use this formula for a one-particle 6nal state.
'0 This relationship can be obtained by using a wave packet for

the initial state I cf. M. I. Goldberger and K. M. Watson,
Collision Theory {Wiley, New York, 1964), Sec. 3.3j. In the high-
energy limit in which q~2E, this reduces to the more familiar
result with p replaced everywhere by 8 in {4.6) and {4.7).
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We will calculate the amplitude to second order in the (4.3) for (e-j U(~,0) and U(0, —~)~e ) and keeping
structure of the physical electron. Using the expansion terms to order e', we find with the help of (3.18) that

Sfj be ——(2s)b(q —e')2qZ&I F(p' —p) —(2x)'b'(p' —p)]
"d172 w ($ )J(p p p2) e(X2)w($1)w ($1)j(p p2 p) e (X2)w($)

X b..+(27r)-' dPs (4.9)
L&(p') —&(p' —p2) —~(p2)]t:&(p) —&(p—p~) —~(p2)]

Here P(p) =(p'+m')/2g is the free-electron Hamil-
tonian, co(p) =p'/2g is the free-photon Hamiltonian,
and Z2 is the electron wave-function renormalization
constant (to be calculated to order e'). The two terms
in Eq. (4.9) are represented by r-ordered diagrams in
Figs. 2(a) and 2(b). The 6gures also clarify the kine-
matic notation chosen here. The black dots in the dia-
grams refer to the eikonal factor

LF(p' —p) —(2 )'b'(p' —p)].
In order to discuss the general form of the scattering

amplitude, let us write (4.9) in the abbreviated form

The coefFicients a, b, c, and d will then be functions
of p' and p, or, equivalently, of g(=g'), p'+p, O~,

=tan '(q'/q'), and q'. But the invariance of widow
under I.orentz s boosts implies that the coefFicients are
independent of g, invariance under "Galilean boosts"
implies that they are independent of p'+p; and rota-
tional invariance implies that they are independent of
O~. Thus each coefFicient is a function of q' only.
Finally, invariance of m~Mm under the "parity" oper-
ation implies that c(q') = —c(q') and d(q') = —d(q');
hence c=d =0. The remaining form factors a and b are
functions of q'; but since g~=0,

Sr; bf; (2—x)b(g———g') 2qLF (q) —(2x) 'b'(q) ]
Xwt(s') M(p', g; p, g)w(s), (4.10)

g = /~/lb =2f/gH g
—

q = —q

Therefore, the expansion of M takes the form

(4.12)

where q"=p'"—p". One important result which we
notice immediately is that the second-order vertex cor-
rection does not destroy the proportionality between
the scattering amplitude and the eikonal factor that
one finds if the electron structure is neglected alto-
gether. ' However, it should be pointed out that if the
scattering amplitude were calculated to fourth order in
the structure of the electron, a diagram like Fig. 3
would appear and this proportionality would be lost."

The effects of the electron structure are contained in
the factor m~Mnr, It will come as no surprise that the
four matrix elements of M are simply related to two
invariant form factors Fi,2(q ).It is instructive to derive
this relation using the invariance principles which
appear naturally in the infinite-momentum frame. Using
Eq. (4.10) and the table of matrix elements, Table I,
we can easily verify that mt3fm is invariant under the
following symmetry operations.

(1) I.orentz s boosts. Momenta transform according
to (i1,p) ~ (e"y,p); helicities remain unchanged.

(2) "Galilean boosts. "Momenta transform according
to (g,p) -+ (g, p+gu); helicities remain unchanged.

(3) Rotations in the (x',x') plane.
(4) "Parity. " Momenta transform according to

(y,p', p') ~ (g, p', —p'); helicities are reversed.

For q&0, the four matrices 1, q e, q)&e=q'0' —q'o',
and o, are linearly independent. Thus M can be written
in the form

Sf bf — 'i d' 4x—ea„(x)e"*U(p',s')

z
X y~Fi(q')+

2m
e &"q„F2(q') U(p, s) . (4.14)

In the high-energy limit, Eq. (4.14) becomes

Si bf 2mib'(q'' —y) dx e '&'* dr eao(r, x,0)

x U(p', s')Lv'F i(q')+(i/2~)~'"q. F2(q')]U(p, s)

When this result is converted to the notation used in
this paper, it reads

Sr;—br; ——(2n) b(g' —g)2g i dx X—(x)e-'& *

Xwf (s') LF&(q')1+ (i/2m)F2(q') q. cr]w(s) . (4.15)

M(p', p) =a(q')1+b(q')q. e. (4.13)

This analysis can be compared to the general analysis
of electron scattering from a weak external field which
concludes that the 5 matrix, calculated to 6rst order in
the external potential and all orders in the structure of
the electron, takes the form

M(p', p) =a1+bq e+cqXe+do, . (4»)
1' H. Cheng and T. T. Ku, Phys. Rev. 184, 1868 (1969).

Fxo. 3. Higher-order contribution to electron
scattering oQ an external Geld.
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1 ulate the electron form factors. e egin
dhf f Pwith the hehcity- p p-Qi am litude an e o

t to choose a coor inate sysIt is convenien
transforming the coordinates wit a a i ean
necessary) so that

2 '0p"= ~ —P' &7), p'"=(~,p', &), q"=(0»P,0).Vl 7

rs in ~4.9, becomeThen the energy denominators 'n, .

&(p') —&(p' —pp) —~(pp)

1 (p. pp')'+P—m'

p(1-p)

&(p) —&(p —p2) —~(pp)

1 -(Ppypp') &+p'm'-

p(1 —p)

(4.19)

. The numerator factor in the helicity-

Qip amplitude is trivially calculate wi

Table I:
Z w ( p)J'eww J'e w(+2)

Sl &)t2

p.'(p2+ p+ ) p&+ ++ ]l' „~2,(„„.)V2q(g qp) E )1p—
1 p= —V2im pg'.
2 f p

(4.20)

l (4.19) and (4.20) back into (4.9)If we insert resu ts
and use (4.18) to identify Fp(q'), we find

4o.m'
F~(q') = dP P'(1 P) dpp-

(2pr)' p

Lp&~+p~(iq~+mp)7p —pp(p, q)'}—'. (4.21

' we can use the value Z =1 which"T calculate Ii 2 to order e, w0
0is correct to order e .

Fi(q') an (q c) d f)( ') an be identified with i m p q
Thus our result is

~f' —~f'=(2 )~(v' —~)2vLF(q) —(2 )'~'(q)7
Xwt(s')l F,(q')1+(i/2m)F2(q')q ir7w(s). (4.16

Rip amplitudes are proportiona to 2 q

Si,(s'=-,', s= ,') =bi-, +(2w)b(iI' —)1)

X2~LF(q) —(2~)'~'(q)7Fi(q') (4 17

s'= —l, s=p) =(2~)~(n' —v)2nLF(q) —(2~)'~'(q)7

X(q /&2 )F (q') (41g)

tar and we find withoutThe integrals are elementary an w

difhculty

2m2

2pr l q l
(q'+4m') "'

((~'+&~') "'+
I ~

I)Xlnl
k(q +4m )') —lql

ize this e uation as a familiar expressio@ for
the second-order contribution to 2 q . e

(4.23)

SI,X2

I+PP+ P+ PP+l PP— P +P2 ~l-
g, )—

= l"2P'( 1- )P'7 '(( p'-P'p"-)I. 1+(1-P)'7
+m'P'- '(p'Xp. )P'(P- )), (4 4)

used the fact that 2k+p =lr p —ilr Xp.
If we substitute expressions (4.24 an

numerator an end nergy denominators in (4.9 an use
(4.17) to identify Fi(q'), we 6nd

F (q') =~ l:1+I(q') 7, (4.25)

I(q') = dp dp, p
(2ir)' p

X((P ' —lp'q') E1+(1—p)'7+m'p')

X(l p '+P'(m'+lq')7' P'(p q—)') '.
. Ma Ph s. Rpv. 1SO, 1506 (1969)jJ g . . L y

have use id d'Gerent infinite-momentum tec niques o

. Lev, and T. M. Yan, Phys. Rev. Letters
22 7~ (1969)' H. Cheng an'

Wfu13)
ys

(1970); S. J. Chang and S. K. Ma Re .

we obtain
Fp(0) =n/2~r,

which is the well-known anomalous gma netic moment

shall oint out the calcu ationa a
't — mentum perturbationrmulation of in nite-momen

rs that have appeared inr used here has over ot ers a
~ ~

4 '
no h' h-energy approximationthe literature. " First, no ig -en

used to extract the important pieces o
Thi o b

have under boos ts in the s irection. econ
trod namic vertices between in ni e-mom

le that traces can be altogetherhelicity states are so simp e t a ra
avoided.

tion to the helicity-nonQipWe now turn our atten
amplitude and the form . '

e werm factor Ii~. Using Ta e, we
calculate the numerator factor in the amp itu e

Z w (+2)J'ew w J'e w(+2)
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In (4.26) we have used the fact that the term in the
numerator proportional to p2&(q will not contribute to
the integral.

The integral defining I(q2) diverges as P ~ 0 and as
p2' —+ ~. However, these divergences are canceled by
corresponding divergences in Z2, just as in conventional
treatments of the second-order vertex. If we calculate
Z2 to order o,, using

(b)

(p,q;s)- (p+k, sf+a;s)— (P '9'' s')

Z, (e-(p', —,')
I U(,O) U(O, — ) I e-(p, —,

'
=(2 )'2v~(v' —n)~'(y' —y) (42&)

(~-~ ~ ~k") (I'q''s')

FIG. 4. Bremsstrahlung oR an external field.

we 6nd easily that

z, =$1+I(0)7-i.

Thus Fi(q'), calculated to order n, is

Fi(q') =L1+I(0)7 'L1+I(q')7
= 1+LI(q') -I(0)7

(4.28) The terms in this expression can be visualized with the
aid of Figs. 4(a) and 4(b), respectively.

In order to discuss bremsstrahlung conveniently, we
choose a coordinate system with its s axis along the
direction of the outgoing photon. The energy denomi-
nators in Eq. (3.32) become

The integral defining I(q')„n„~«;«e ——I(q') —I(0) is
now better defined: The p integral converges for fixed

p, and the y2 integral converges for fixed P. However,
the integral still has the familiar infrared divergence
coming from the region near P=o, p2=0. In an
explicit evaluation of Fi(q'), this infrared divergence
could be eliminated by inserting a small photon mass in
the energy denominators.

Before proceeding to the next example, we should
point out that the use of the eikonal approximation in
(4.8) is self-consistent, even though Fig. 2(b) includes
a loop. This is true because the loop integrals are well
behaved in the region P=1, where the electron in the
intermediate state is no longer a "right mover. " If the
integrals had diverged at the end point P = I, the claim
that Eq. (4.8) closely approximates the effect of external
6eld on the physical particle would have been unjusti6ed.

C. Bremsstrahlung

In this section we shall calculate the helicity ampli-
tudes for the experimentally interesting process of
bremsstrahlung off an external. field. The matrix
element of interest is then

S;=(e(p',s')y(k, )i) i U(,0)(F—1)U(0, — )
X le(P,s)). (4.3O)

If we insert our expression for the physical states from
Sec. IV A accurate to terms of order e, we readily find

H(p')+~(k) —H(p'+k) = (ni/2m') (y"+m'),
H(p) —a)(k) —H(p —k) = —(iIp/2gg') (p'+m') .

Finally, if we choose de6nite helicities for the incoming
and outgoing particles, we obtain, with the aid of.Table
I, the infinite-momentum helicity amplitudes for
bremsstrahlung,

Sf'= (2~)~(n —0' —n~)2(nn') "'

Xt.F(p'-y)-(2 )'~'(y'-y)7 ~( ",~),

p-' p-
3f(,'—,', 1) = ——-+

p"+m' p'+m'

p+' p+ (4 32)
~(2~1, —1)= —— +

p 2+~2 p2+~2

1 1
M(-', ~ —-'„1)=v2iml-

y"+m' p'+m'

3l(-', ~ —,', —1)=0.

These results should prove useful in detailed calcula-
tions with specified external 6elds. For cases in which
the external field can be treated perturbatively, one
can easily show that Eqs. (4.32) lead to the high-energy
limit of the Bethe-Heitler formula.

Sf;——(2s.)8(g —g' —kg) 2(gg') 'I'

XLF(y'+1 —p) —(2 )'&'(y'+1 —1)7

-re'(s')j(P', P'+k) e*(X)w(s)
X

H(p')+a&(k) H(p'+k)—
ut(s')j(P —k, P) e*()~)w(s)

+
H(p) —(g(k) H(p k)——

D. Pmr Productj. on

We wish to calculate the scattering amplitude

Sr, =(e (Pi,si)e+(P2, s2)
~
U(~,0)LF—17

X U(0, —~) iy(k, )~)). (4.33)

(4 31) Proceeding along familiar lines, we insert perturbation
expansions of the physical states accurate to 6rst order
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problems in "nonrelativistic" quantum mechanics, it
pays to change variables to the total momentum k of
the two particles and their relative momentum. Since g
plays the role of particle mass in the nonrelativistic
analogy, the relative momentum is

Fxe. 5. Pair production on an external Geld. where

~ =nrv2/(nr+n2)

(4.36)

Xe(2n)—' dp M(l(~ s(1 s2)LF(p( —p)F, (p2+p)

where

—(2 )'~'(p). —p) ~'(P2+p)] (4 35)

—;,—;)=("')
p'+m'

2r/A p+
cV(1 —+ —-'„-', ) =

g, ip'+m'

ilE(1 —& -'„',) = (42im-)
p'+m'

3E(1 —+ —-'„-',) =0.

It is interesting to convert the momentum integra-
tion in (4.35) to an integration in coordinate space in
order to appreciate the two-dimensional Galilean-
invariance group which manifests itself in the infinite-
momentum frame. To begin, we drop the special
requirement that the transverse momentum k of the
photon be zero and return to the energy denominator
in (4.34):

(k,&,)-H(p, &)-H( -p ..) =(2~.)-Q+(k-p)]'
—(2)))) '(p'+m') —(2))2) 'L(k —p)'+m'].

This is a rather messy function of the momentum p of
the electron and the momentum k —y of the positron
in the intermediate state. As is usual with two-body

in e and find

~i'= (2~)&(~~-v)-n2)2(nin2)"'

dp wt(sr) j(p, p —k) e(l()w( —s2)

(2n.) ' (o(k) —H(p) —H(k —p)

XLF (pr —p)F.(p +p —k)

—(2~)'~'(pr —p) ~'(P2+p —k)], (4.34)

which can be visualized with the aid of Fig. 5.
If we now choose the s axis along the direction of the

photon and calculate helicity amplitudes, we 6nd

Sfj (2s) &())I,—))&
—))2)2()),)),)'~'

is the "reduced mass" of the pair. %hen written as a
function of k and q, the energy denominator is inde-
pendent of k:
co(k, ))p) —H(p, ))()—H(k —p, )),)

= —(2)))
—'(q'+m') . (4.37)

(In nonrelativistic terms, this is minus the "internal
energy" of the pair. ) Similarly, the vertex matrix
element wtje w in (4.34) is a function of the relative
momentum q only. After a little algebra, we obtain the
explicit form

ew"(»)j(p v~ p —» —~2). eo()w( —»)

~(»~~) —H(P, vi) —H(k —p, v2)

—=w (sg)G(q; ))),))2)w( —sg) eP,),
(4.38)

n2 nl
G(q; ))&,))2) =e q i(qX—a)o.+ime (q'+m') ',

$1(,'

where qXs'=(I7', —q').
Using these results, we can write (4.34) as a co-

ordinate-space integral. I et xi, x~ be the coordinates of
the electron and positron, respectively, in the Fourier
expansions (3.19) and (3.20) of the eikonal factors, and
de6ne

R =))), '())(x)+))~x2) = (coordinate of the center of

4.39
"mass" of the pair),

r =x(—x2 = (relative coordinate).

Then we find

Sfj (2s)8())1,—))&
—))2)2())&))p)'~' dx)dx2

where

Xe ipse xte (ps xs—Le
—~'x—(x&)e+~x(xs) 1]

Xw't(sr)G(r; ))r 'g2)w( —s2) e())e' ', (4.40)

G(r; g),g ) =(2s) ' dq e')'G(q; ))&,))2).

It is interesting to interpret the various factors in
(4.40). First, eP)e'~'" is the wave function of the initial
bare photon. Multiplying this by G(r) tells us the com-
position of the physical photon in terms of its constit-
uents, which, to first order, are an electron and a
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positron. "Hence we might refer to G(r) eP)e'"'" as
the first-order approximation to the wave function of
the physical photon. The "internal" wave function G(r)
satis6es a two-dimensional SchrMinger equation with
a point source, -

1 m'q——v'+ —IG(r)
2g 2g)

e
v —(vXz)~, +mme P(r).

The solution of this equation which vanishes as
I "I~c

is simply related to the modified Bessel function Xo.

G(r) = ——i
I
& (&X—z)a.+im~ Ko(m I

r
I ) .

2~

The next factor in Eq. (4.40), the eikonal Phase factor,
tells us how the constituents of the physical photon

interact with the external 6eld. Finally, the factors
wt(si)e 'i""' and nr( —s~)e '»'*' are the wave functions
of the final electron and positron (calculated to zeroth
order). Evaluation of the S matrix is completed by
integrating over the coordinates xi and x2 of the electron
and positron and multiplying by 2x times an p-con-
serving 8 function and by a fermion normalization factor
(2vi)"'(2n~)'".

E. Delbriick Scattering

Let us turn our attention now to the problem of
photon scattering off an external 6eld. We shall see that
our scattering theory gives a clear and concise deriva-
tion of the amplitude for this process.

The matrix element we wish to calculate is

S,,—h, ,=(~(p', l ')
I U(,0)LF—1j

XV(o, — ) I~(p,~)). (4.41)

If we insert the expansion of the physical photon state
into (4.41) and calculate to order e', we find

Sr;—4;=e'(2s) '6(g' —il) dpi dPidPi' Q tF(Pi' —Pi)F, (P~' —P2) —(2ir)'8'(Pi —Pi')8'(Pi' —Pa)j

Xw (si)j(Pi, —P2) e(X)w( —s&)mt( —s2)j(—P,', P,') e*(Y)w(si)

XI ~(p) —&(pi) —&(p2)j 't.~(p') —&(pi') —&(p~')j ', (4.42)

where

pi = (pi, vi), pi'=(pi', vi),
p2 (P Pl '0 'gl), p2 = (P Pl 0 'll) ~

The momenta 1 and Q are defined so that the "relative
momentum" of the electron-positron pair is 1—Q before
the interaction with the external field and 1+Q after
the interaction:

This formula is visualized, and its kinematics are
defined, in the g-ordered diagram Fig. 6.

We are now faced with two related problems. First,
the integrand in (4.42) is a very messy function of the
independent momenta p~ and p~'. Second, the rnomen-
tum integration is divergent: If the integrals are cut
off in an arbitrary noncovariant fashion, the result will

depend on the cutoff parameter. The remedy is simple.
Since S~; is invariant under the Galilean symmetry
group discussed in I and in Sec. IV B, it will be to our
advantage to use integration variables which are in-
variant under this group.

We choose to make use of four Galilean-invariant
momenta r, q, 1, and Q. The momenta r and q are
de6ned so that the momentum transfer from the external
potential to the electron in the intermediate state is

r+q and the momentum transfer to the positron is
r—q:

1—Q =e(Pi/ni P&/'~~)

1+Q =n(Pi'/ni —P~'/e),
(4 44)

Q =-,'(r+ q) —ar, (4 4$)

where we have de6ned

n = ili/g. (4.46)

When this change of variables has been made, the
scattering matrix takes the form

where il =iliil~/g is the "reduced mass" of the Pair. We
will use q and 1 as integration variables instead of p~ and
p&'. The momentum r is, of course, fixed by the external
momenta: 2r=p' —p. We 6nd with a little algebra that
Q is given in terms of r and q by

pi —pi=r+q
p2 —p2=r q

(4.43)
Sq; hq; e'(2 )'igr8(g'—q)——dqI F(r+q)F—,(r—q)

"The amplitude QZ3 for a physical photon to be a bare photon
is 1 to lowest order, but does Dot, of course, contribute to pair
production. —(2s)'8(r+q) b(r —q) jcV~(q,r; ),,V), (4.47)
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cV'(q, r; X,V) = dl Z w'(»)&(Pi, —P2) '(')w( —»)w'( —»)&(—P' Pi') '"("')w(»)
s$82

Xf (p)-fI(p, )-If(p.)]-'f (p') -II(p, ') -If(p.')]-'. (4.4g)

Equation (4.47) has the attractive property that the
integrand of the q integration decomposes into two
factors: one describing the interaction with the external
Geld and a second, called the photon impact factor by
Cheng and %u, '6 describing the composition of the
physical photon as a bare pair.

A technical complication arises because the impact
factor M depends on a cutoff A. in the I integration. How-
ever, we will see that the cutoff does not RGect the scat-
tering amplitude, and therefore has no physical signifi-
cance.

It is quite easy to write down the explicit form of M~
using the variables 1 and Q =-,'(r+q) —nr. The energy
denominators are

"(P) ~(p&) —&(P2) = —(2e) 'f(1—Q)'+m']
= —f2'~(1 —~)] 'f(1—Q)'+m'],

(P') —&(P ') —~(p') = —(2e) 'f(1+Q)'+ ']
= —f2gn(1 —n)] 'f(1+Q)'+m'].

By making use of the Galilean invariance of the numer-
ator factors mtjm, we can write them in terms of I and
Q immediately:

'()1(p, —P) (—)
=w'(si) j(1—Q, q&, 1—Q, —q2)w( —s2),

w'( —»)j(—P2', Pi')w(»)
=w'( —»)j(1+Q, —v2 1+Q, ~i)w(»).

Let us consider the helicity-Qip case first. Reading
from Table I, we 6nd

"(1,Q; 1, —1)= —2(viz.) '(/+ —Q+)(~++0+)
2n —'L~(1 ~)] '(f+l+ 0+0—+) (45. 1)

3'(q, r, +1, —1)

= —8 dna(1 —n) dl(l~l+ —Q+Q+)

Xf(1—Q)'+m27 'f(1+Q)2+m']-'. (4.52)

The helicity-nonfbp amplitude is also quite simple.
Reading from Table I, we And

(1, Q;+1, +1)=("-+"-')(/,-a,)(l +a )
+-',m'g-'

= lf~~(1 —~)] '{f"+(1—~)']
X(12—Q' —2ilxQ)+m'). (4.53)

The term proportional to 1XQ can be dropped, since it
will not contribute to Mq. Thus we obtain

M(q, r; +1, +1)

&f(o'+(1—~)')(1'—Q')+m']

XL(1—Q)'+m'] 'f(1+Q)'+m'] ' (4 54)
Thus Mp takes the form

cV'(q, r; ~,V) = d dl f2"(1—n)]'e(1,Q; X,V)

e(1Q XV)=g wt(s)

Xj(1—Q, yi, 1—Q, —
gm) e(X)w( —s2)wt( —s2)

Xj(1+Q, —&„.1+Q, &,)'*(V)w(s,). (4.5O)

As mentioned earlier, the impact factors 3fq given
1 A in (4.52) and (4.54) depend on the cuto8 parameter h.

used to avoid the logarithmic divergence in the 1

0 integration. However, wc can verify that the cuto6

Xf{1 Q)2+ 2] if(1+Q)2+ 2]-i (449)
does not aKect the scattering amplitude in the limit
A —+~ by writing 3fq in the form

N'~(q, r; A,X') =XI~(q r; X,X')+M~(r, r; X'X,). (4.55)

The term 3IIp defined by (4.55) is evidently 6nite in the
limit A ~~. If we use the simple observation that .

FIG. 6. Delbxtlck scattexing.

"H. Cheng and T. T. YVu, Phys. Rev. 182, 1852 {1969).

we see that the ento& dependent part of 3E'(q r; X,X),
namely, JI'(r,r; X,X'), does not contribute to the scatter-
ing amplitude (4.4/) and therefore has no physical
slgni6c ance.

In RddltloIl wc may note th.Rt because of its dc6nltion
3II~(q,r; X,X') is zero at q=r. It is also zero at q= —r.
fIndeed, it is an even function of q, as can be verified
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by making the change of variables n —+ I n —in (4.52)
and (4.54).j Thus the scattering amplitude (4.47)
remains 6nite even if the eikonal factors are singular at
q=&r, as they are in the case that A„(x) is a static
Coulomb potential. The renormalized impact factors
1IE„(q,r; X,X') are identical Laside from a factor
—e'(2 2)r'j to the impact factors for the photon found
by other techniques by Cheng and Wu. "

F; Electroyroduction of p Pairs and Scaling

We wish to discuss here a "model" calculation which,
hopefully, has important features in common with
electron-nucleon inelastic scattering. We imagine the
process pictured in Figs. 7(a) and 7(b): A virtual pho-
ton, produced by the scattered electron, creates a pair

of muons which diifract through an external field (e.g.,
a nucleus). In the spirit of inelastic electron-nucleon
scattering, we put eikonal phases only on the members
of the pair and treat all particles as distinguishable.

One purpose of the model is to investigate the scal-
ing property recently discovered in electron-nucleon
scattering. '~ To do this, we assume that only the final
electron is observed and construct the cross section
do/dQ2do, where Q' is the four-momentum transfer
from the electron line and I is the energy transfer.
We then ask whether the diffractive mechanism en-
visioned here leads to scale-invariant expressions for
the form factors or and as in the limit Q' —&Do."

To begin, we construct the scattering amplitude cor-
responding to Figs. 7(a) and 7(b):

dgl
Sf;= e (22 2)re(2I 2I' —2Ii —

2I2)—(22I22I'22I122I2) "'
(22r) 2

Zi ~'(")j(P',P) '*(I)~(e)~'(2 )I(P ', —P') '(l)~( —2 )
X + (2I2) ~s, s11sl,—s2

(2~.)L&(P)—&(P') —~(c)j
&&L&(P)—&(P') —&.(P ') —&.(P ')3 'LF(p —P ')F.(p —P ') —(2 )'~'(P —P ')~'( —P ')j, (4 56)

where

q, =u u

P2 = —Pi+q1
The first term in curly brackets in (4.56) corresponds
to exchange of transverse photons LFig. 7(a)j; the
second term corresponds to the exchange of a "scalar
photon" LFig. 7(b)j. The function H„(p) refers to the
free-muon Hamiltonian (p2+p2)/22I, where p is the
muon mass.

Before proceeding further, it is convenient (as usual)
to change variables in the momentum integration from
py to k, where k is the "relative momentum" of the
virtual p-pair:

The numerator functions mtj. a*mmtj. m can be read
from Table I, and are also simple functions of R.

We are now prepared to write out Sy; in a form
suitable for calculating the cross section. Let us choose
the z axis in the direction of the beam, so p=0, and
consider Sf, for the choice of spins s =s' =s~ =2, s2 = —&.
Then when we substitute the expressions from Table I
and Eq. (4.60) into (4.56), we obtain

Sf,= (22r) b(2I —2I' —2li —F2)L22I22I'2yi2212j''2

&&(—2"/Q'~. )~(pi,p ), (4.61)
where

3E(pi,p2) =(22r) ' dk f(k)

2Ilit2 Pi P2 )
I=Pi

g2)
(4.57)

Xp'(Pi —~q —k)&.(P2—(I —n) q+k)
(2~)'8'—(Pi nq k)—82(p2—(1 n)q—+k—)j (4.62)

where
~ =ni/V2. (4.58) (a)

(p,s)— ( pl Sl )

It is also convenient to let —Q' stand for the square of
the four-momentum transferred from the electron line:

Q'=(p P')"(P p—')' — (4 5—9)

In terms of these variables, the energy denominators in
(4.56) have the simple forms

(b)
(p,s)— (p', s')—

&(p) —&(p') —~(V) = —Q'/2~. ,

&(P) &(P') &.(P ') &.(P ')---
Va'

(k'+I ') .
2'Q q 2X/ J 'g 2

(4.60)
FIG. 7. Muon pair production oft an external 6eld.

~' E. Bloom et a/. , Phys. Rev. Letters 23, 930 (1969).' Note that the limit v —& ~ is already implicit in our formaLism.
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FIG. 8. 0&/oz for high-energy electroproduction of lepton pairs
from a slowly varying external 6eld.

of v/Q' only. However, the factor in(Q'/y') spoils the
scaling behavior of o.~.24

In the somewhat hypothetical limit of an external
6eld which varies in space slowly compared with the
lepton Compton wavelength (I VxI/x«p), the formula
(4.71) for o s/a r is valid for all Q2. The direct evaluation
is shown in Fig. 8; we see that os/or is never larger than
0.26.

It is not clear what direct connection these calcula-
tions have with respect to hadron electroproduction.
While there appears to be a diGractive mechanism'5

operating in both cases, the details (e.g., the scaling
behavior of or) are different. However, it may be that
some features of the process, such as the importance of
small transverse distances (Dx)'&Q ' at large Q' are
common to both. "

V. FUTURE PROBLEMS AND
POSSIBLE LIMITATIONS

Throughout this paper we have found support for a
simple physical picture for high-energy scattering
processes. However, this picture is couched in perturba-
tion theory, and one may wonder whether it is generally
valid. For example, to what extent does this picture
apply to strong-coupling field theories P Or, more
modestly, will this picture survive higher-order calcu-
lations in quantum electrodynamicsP

Studies of diagrams such as shown in Fig. 9 indicate
that the complete situation is not as simple as we suggest
in this paper. "Using these or other methods, it is not

~4 Strictly speaking, scale invariance for cd means that Q'o.z
approaches a 6nite limit as Q' —+~ with v/Q' held constant.
However, we have evaluated 0-z in this model in the limit v/Q' ~~
with Q~ held constant, and then we have let Q2 —+~. It is not
impossible for Oz to exhibit scale invariance in the limit Q2 —+~,
v/Q2= const, but not in the reversed limit used here.

2~ B. L. Ioffe, Phys. Letters 303, 123 (1969).
"This picture is clearly stated by H. Cheng and T. T. Wu

LPhys. Rev. 183, 1324 (1969)j, who also considered electroproduc-
tion for the case of Coulomb external 6eld. Aside from an over-all
factor of 2, they have obtained the results contained in Eq. (4.78).

''I G. V. Frolov, V. N. Gribov, and L. N. Lipatov, Phys. Letters
318, 34 (1970); H. Cheng and T. T. Wu, Phys. Rev. D 1, 2775
(1970).

FrG. 9. Electron-scattering diagram contributing
q lnq term to the S matrix.

dificult to find that this diagram diverges logarithmi-
cally as y ~~, where y refers to the incoming electron.
The logarithm comes from a loop integral and receives
a large contribution from that region of phase space in
which the internal partons are (almost) "wee." This
example raises two problems. First, if we apply per-
turbation theory to very high orders, we must be
equipped to deal with such logarithms, which in suK-
ciently high order violate s-channel unitarity. Secondly,
since the internal photons in this example are (almost)
wee, one can question the applicability of the eikonal
approximation to this diagram. The true situation may
be somewhat like using purely nonrelativistic methods
to calculate the Lamb shift: They work up to a certain
point, and contribute a great deal of insight into the
physics. However, beyond that point they fail utterly.
In the present case there is very likely a similar bound-
ary, associated with wee partons, beyond which the
simple methods of this paper fail. It remains for the
future to see how much of the physics lies on the simple
side of the boundary and how sharply the properties
of the boundary region can be delineated.
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APPENDIX

However, the plane-wave expansion (2.11) of A(x)
differs from Eq. (4.37) of I by a factor L2(2n)'7'~'; the
comparison yields"

new a(p, h) =L2(2~)'7'"a(p X) old. (A2)

"While the new X refers to circular polarization and the old )
to linear polarization, we trust this causes no confusion.

The two-component formalism described in Sec. II
suggests, in the interest of over-all simplicity and uni-
formity, a change in notation, mainly in normalization
factors, from that used in I.This appendix is devoted to
clarifying the connection between the old and new
formalism.

We begin by discussing the electromagnetic potential.
The operator A(x), as discussed in (2.6) and below, may
be directly identiffed with Ar(x), of I:

new A(x) =A~(x) old.
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The connection between the new two-component relation
electron field f(x) and the old four-component %(x) is
more disagreeable. Not only is there a change in normal-
ization but there is also a unitary rotation. The essential
connection is between

P(x) =2"4U%'(x),

1 0 (AS)

=('i
and the independent dynamical variables of I,

(A3) and insert this relation into (A7), we obtain

(iso eA—o)tP=[ (p—eA—) UyU '+mj(1/2g)
XL(p—eA) UyU '+nsj-iP. (A9)

0
0

By comparing the anticommutation relations (4.36)
of I with (2.5) of this paper, we see that the normali-
zations of the 6eld operators di6'er by a relative factor
2'~'. If we choose phases such that

new f~(x) =2'~'+~(x) old, (A5)

then we 6nd it is best to make the identification

neW |bo(X) =i2'"44( )XO'ld. (A6)

=L—(p —eA) y+mj —L+(p —eA) y+mj%'+. (A7)
2g

Using the y matrices (4.9) of I we, see that, as 2X2
matrices acting on the first and fourth components of
++, the matrices y' and y' are

)0 -1y 0

0) i 0)
If we combine (A5) into the two-component spinor

%e verify the connection by comparing the equations
of motion for 4+ and f. Elimination of 4' from Eq.
(4.18) of I produces

(iao e~ o) e—+

Uy'U '=acr', (A10)

so that (A9) is identical to the equation of motion (2.14)
for g.

The unitary matrix U introduces relative phases in
the comparison of the elements of the plane wave
expansions of P and ++. By definition, the new spinors
re(s) appearing in the expansion (2.10) of f are equal to
the old two-component spinors w(s) appearing in the
expansion (4.32) of 4'+ in I. Thus the creation and
annihilation operators in (2.10) must absorb, in addi-
tion to a normalization, the phase introduced by the
presence of U. The comparison between (2.10) .and
(4.32) of I, using Eq. (AS), yields

new b(P, +—,') =L2(2n)'j"'b(P +xo) old,

new b(p, ——',) =iL2(24r) oj'lob(p —-') old

new dt(p, +-',) =i[2(24r)'j'~'dt(p, +-') old,
(A11)

new dt(p, ', ) =[2—(-24r)'j'"dt(p, —-', ) old,

This completes the correspondence relations between
the old and new notations. It is now straightforward
to check that the new formalism is consistent with the
old, including rules for diagrams.

Ke must apologize for changing notation in mid-
stream. However, many disagreeable factors of V2,
(2~)o~', etc., have thereby been eliminated, and a con-
sistent mnemonic now exists for the factors 2 occurring
in the rules for perturbation diagrams at the end of
Sec. II: for every factor m-, a factor 2, for every factor g
a factor 2.


