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Feynman Functional Integrals for Systems of Indistinguishable Particles
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The theory of path integration is extended to include systems whose configuration space is multiply con-
nected, and it is seen that there are as many distinct propagators as there are scalar representations of the
associated fundamental group. It is shown that the co'nfiguration space for a system of indistinguishable
particles is multiply connected. There are only two propagators for this system, giving bosons and fermions,
and showing that the Feynman formalism excludes parastatistics.

INTRODUCTION
' 'T has been pointed out by Schulman' that the path
~ - integral in a multiply connected space' has a novel
feature arising from the fact that paths in diferent
homotopy classes cannot be continuously deformed one
into the other. For, while the partial probability ampli-
tude E for a transition via paths in a particular
homotopy class may be obtained in principle by per-
forming the path integration over all paths belonging to
this class, the total probability amplitude is ambiguous
to the extent that these partial amplitudes may appear
in the final sum with unknown weight factors:

E=Q x(n)K .

The allowed values for these weight factors have been
found by Schulman for the multiply connected spaces
SO(2) and SO(3). We shall prove here that in general
they must form a scalar unitary representation of the
fundamental group of the space. ' We shall apply this
result to a system of indistinguishable particles.

DETERMINATION OF WEIGHT FACTORS

Assume that the configuration space X for a physical
system is a multiply connected, arcwise connected,
locally arcwise connected, and locally simply connected
topological space. Let (a,b) be any two points in X, and
denote by Q(X,a,b) the set of all paths q(a, b) in X from
a to b. Homotopy between paths in Q(X,a,b) is an
equivalence relat. ion. Let Lq(a, b)] be the set of all paths
in Q(X,a,b) which are homotopic to q(a, b) These.
equivalence classes are called homotopy classes, and the
set of all such homotopy classes will be denoted by
II(X,a,b) Compositio. n of paths gives rise to a "multi-
plication" of elements, since it can be shown that if
Lq&]&II(X,a,b) and Lq2]&II(X,b, c), then Lq&]Lqg]
=Lq&qa]+II(X, a, c). If a=b (i.e., the paths begin and
end at the same point), then the set II(X,a,a) =—II (X,a),

* Work supported in part by the National Science Foundation
and the National Aeronautics and Space Administration.

' L. Schulman, Phys. Rev. 176, 1558 (1968).' I. M. Singer and John A. Thorpe, Lecture Notes os I&.'lementary
Topology and Geometry (Scott, Foresman, New York, 1967),
Chap. 3.

~ This result is conjectured in a recent report by L. S. Schulman,
received after this work was written.

I. K~(c,t, ;a,t.)= P Ee(c,t, ; b, tg)E (b, ty', a, t )db.

II. For every point u+X there exists an open set
UQX containing a such that if a'g U, then

K (a', t', a, t) —+0 as t' —+ t, t'At

for all but one and only one homotopy class.
III. Under a change in the homotopy mesh C W C,

E W E, where K =K" & for some X, p+II(X,x).
IV. Linear independence.

Proof:

I. Every path qQf„(y) may be split into the pair
(q$ qg), where q|Ef,&(n) and q2& f&,(P) for some point b

and some a, P such that aP=y Hence the ne.ed to sum

4 This can always be done because X is arcwise connected.

together with this multiplication, forms a group, known
as the fundamental group of X based at a.

Let x be some fixed point in X, and denote by
e, a, P, . . . , y the elements of II(X,x). Let C(a) be an
arbitrarily chosen path' from x to u for every a&X; then
this construction induces a mapping f, q from II (X,x) to
II(X,a,b) for every (a, b) in X.

rr(X,x) ~ 11(X,a,b),

f.~( )a=[C '(a)]aLC(b)]

It is readily shown that f, b is a 1-1 mapping and that
it is compatible with "multiplication" of homotopy
classes, i.e.,

ab& bc ac& ~

Roughly speaking, the mapping f, b labels each homo-

topy class of paths from u to b with an element of the
fundamental group coherently for every a, b in the
space X. While this labeling is not arbitrary, neither is
it unique since it depends upon the choice of the
homotopy mesh of paths C.

The dynamics of the system will be given by some
Lagrangian in X. The partial probability amplitude
E (b, t&, a, t,) will be obtained by performing the path'

integration over all paths in the homotopy class f,&(e)
which start at time t and end at time tb. The following
four properties are satisfied by these partial amplitudes:
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over all n, p such that np=y as well as to integrate
over b.

II. Let a be any point in X; then, since X is locally
simply connected, there exists an open set V+X con-
taining u such that if b&V then all paths from a to b

in V are in the same hornotopy class. Let UQX be an
open set containing a such that S,(a,a')/h(e if and only
if a'g U, where S, is the least minimum action (for each
homotopy class there may be a minimum action) be-
tween (a,t) and (a', t') and e is positive nonzero number.
Suppose q(a, a') is a path from (a,t) to (a', t'), part of
which lies outside U. Then we can write q(a, a')
=q(a, b) q(b, a'), where b is not in U and t - tq & t'. Hence,
S[q(a,a')])S[q(a,b)], But S[q(ab)], )Itc, both be-
cause b is not in U and because the time interval (tq —t)
is smaller than (t' —t). Thus S[q(a,a')])bc. Therefore,
a path q, (a,a') for which the action takes on its least
miriimum value' lies inside U. Let us choose e sufficiently
small such that UQ V; then the path q, (a,a') is unique.
It is well known' that when the time interval is small,
the only paths which contribute significantly to the
path integral are those which lie close~ to the classical
path q, . But those paths which lie close to q. are in V
and hence are all in the same homotopy class. As the
time interval approaches zero, all other contributions to
the path integral become vanishingly small and we have
the desired result.

di6'erent order. The sufhcient condition is

P A K~ I'(b, tq, a, t. ) =0 for all a, bgX

and for all X,p@II(X,x) .

Let tb —+ t, ; then property II implies that 2 =0 for all
e. This contradicts the initial supposition, and so the
partial amplitudes are linearly independent.

The total probability amplitude is the weighted sum
of the partial amplitudes

K(b, t&, a,t.) =p x(a)K (b, t&-, a,t.).

We are assuming for the present that a set of weight
factors can be found such that any change in the mesh
will not alter the absolute value of E. We may then
write

lK(b, tb, a,t.)l =
l p x(a)E" "(b,tb, a,t.) l

for all X,ygil(X, x) .

Property II then implies that
l
x(cx)

l
=1 for all n.

In order that the total probability amplitude propa-
gate the states of the system in a well-defined fashion, it
is necessary that

l E(c,t. ; a,t,) l

='K(c,t. ; b, ts) K(b, t ~', a, t )db

=Q x(n)x(p) Ke(c,t„b,ty)K (b, tg, a, t,)db
a,P

III. Consider .a change in the mesh C W C:

f.~(a) = [C '(a)]a[C(b)]
=LC '(a)][C(a)][C '(a)] [C(b)][C '(b)][C(b)] e'K(c, t. ; a,t.)
= [C-'(a)]hnp[C(b)]
=f ~(lat)

where

X = [C(a)C—'(a)]&II(X,z),
t =[C(b)C '(b)]&II(X a')

2"(b,t„a,t.) =K'"(b,t&., a,t.), for some phase factor e".Change the mesh to all points
b&X except for b=a and b=c such that f~b(a)= f,~(ny)
and fq, (P) =fq, (y 'P) Sum both .sides over y and use
property I.
p'e'~ p x(b)K-e(c,t„a,t.) =p x(a)x(p)K e(c,t„;a,t.),

IV. Suppose that the partial amplitudes are not
linearly independent functions. Then we can find a set
of complex numbers (A },not all of which are zero,
such that

P A K (b, ta,' a, t ) =0 for all a, bgX.

where N. is the number of elements in the fundamental
group. Using the linear independence of the partial
amplitudes, we obtain

e"NX(b) = P x(&)x(P).
aP=5

However, this condition is not sufBcient for linear de- Therefore,
pendence because, with a change in mesh, the coefB-
cients would be attached to the partial amplitudes in a &=I Z x()x(p)l& 2 lx()x(p)l=&'

' Such a path exists because X is locally arcwise connected.
Cecile Morette DeWitt, Ann. Institut Henri Poincar5 (A) XI,

i53 (1969).
7 A path q(u, u') will be close to the classical path if Sgqj—$(q,)(AB, where 8 is some small nonzero positive number.

By choosing 5 sufFiciently small, one can always arrange to have
paths which lie close to the classical path inside V.

"e( xp)a=x(n)x(p).

The over-all phase of the total amplitude is unimportant,
and so without loss in generality we may set 8=0.

x(n)x(P) =x(nP), with lx(n) l
=1.
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But this says that the weight factors form a scalar
unitary representation of the fundamental group,

x(n) =D(n) .

Conversely, given a one-dimensional unitary repre-
sentation {D(a)) of the fundamental group at a base
point, how does one assign the elements of this set to
each partial amplitude? Attaching, say, D(a) to E, .

D(8) to Ko, etc. , implies that one knows how to label the
partial amplitudes by the elements of the fundamental
group. The labeling of the homotopy classes, hence the
labeling of the partial amplitudes by the elements of the
fundamental group, depends on the choice of mesh and
therefore is not unique. This ambiguity cannot be re-
moved since it reflects the fact that there is no canonical
isomorphism between the fundamental groups at two
different base points. We shall prove that the arbi-
trariness affects only the over-all phase factor of the
total amplitude. This proof will justify the assumption
made to determine the weight factors.

Proof:

Suppose that a given mesh C has labeled a given
partial amplitude E . We can change the mesh so that
the new mesh t gives to this amplitude any label we
choose, say, P. Let us choose C such that

Ã(a)~ '(a) j=l~, K(b)~ '(b)1=p
where

This choice of ) and p then completely determines the
labeling of the other partial amplitudes.

Thus if a mesh has given for E the expression

K=Q D(u)K,
'

mesh C and two points b and b' such that

E(b,a) -I+ K(b', a).

For every n,

where

K (b,a) -+ K i'(b', a),
5-+ b'

~=L~(b')C-'(b') j,
C(b') being a change in the mesh such that

K~(b)a) - E~(b',a).

Consequently, the lack of continuity of the partial
amplitudes at b' affects the total amplitude exactly like
a change of mesh at b', namely, multiplies it by an over-
all phase factor. In particular, let us move a and b to x;
the paths from u to b become closed paths at x, and the
assignment of weight factors to the partial amplitudes is
then unique. Thus any mesh construction leads to
equivalent total amplitudes which are related by
continuity to a uniquely defined amplitude.

In conclusion, there are as many distinct propagators
as there are unitary scalar representations. Further-
more, if over some interval of time the evolution of the
system is given by a propagator associated with a
certain representation, then the system will continue to
evolve with the same propagator indefinitely (or until
some radical change in the system alters the topology of
its configuration space). The proof that transitions be-
tween the different means of propagation do not occur
rests on the orthogonality theorem in the theory of
group representations. This implies that any property
of the system which depends only upon the means of
propagation will be conserved.

another mesh will give

E=Q D(n)K" ~

=D(X 'p ')E',

and the assignment of elements of {D(n)) to the partial
amplitudes by any mesh gives the same physical results.
I.et us call "equivalent" those labelings which give the
same physical result; equivalent labelings differ from
one another by pre- and postmultiplication by fixed
elements.

It is interesting to note that the partial amplitudes
have no physical meaning; only the total amplitude has
physical meaning, a proposition which led Feynman to
say, "sum over all paths. "

Finally, we shall prove that
~
K

~

as a function of the
endpoints a and b is continuous, provided, of course,
there is no physical discontinuity at a or b, although the
partial amplitudes may not be continuous. Consider a

SYSTEMS OF INDISTINGUISHABLE PARTICLES

We shall require that the configuration space X for a
system of particles, whether distinguishable or indis-
tinguishable, be in a 1-1 correspondence with the states
of the system, and that points which represent the
coincidence of two or more particles be excluded.
Whether or not two point particles can simultaneously
occupy the same point in space is not a question that we
wish to settle here. We are only saying that by excluding
points of coincidence from the configuration space, the
resulting topology leads to meaningful physical results
without any further assumptions.

Let V(n, m) be the set of all n-tuples (xi, . . . ,x„) of
m-vectors, no two of which coincide.

F(nm) = {y=(xi,. . . ,x„);x, =(x,', . . . ,x") and x;Wx;) .
We observe that for e& 2,

V(n, i) is not connected,
Y(n, 2) is multiply connected,
l'(n, m) is simply connected. ; m&3.
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For a physical system of n distinguishable particles,

X= I'(m, 3) .

For a physical system of n indistinguishable particles,

X=V(e,3)/S .

The quotient space X is the set of equivalence classes of
points in F(n,3) under permutations belonging to the
symmetric group S„, and is given the identification
topology under the natural projection p: I'(e,3) —+ X.
We observe that S„acts effectively on V(e,3); that is to
say, given any point yQ Y and any element o.&S ex-
cept the identity, then n(y) Wy (this is true because we
have excluded points of coincidence). Because Y(e,3) is
simply connected and S act effectively, (I'(e,3),p) is a
universal covering space for X and the fundamental
group of X is isomorphic to S„."There are only two

Peter Hilton, Algebraic Topology —An Introductory Course
(Courant Institute of Mathematical Sciences, New York Univer-
sity, New York, 1969), p. 67.

9Edwin H. Spanier, Algebraic Topology (McGraw-Hill, New
York, 1966), pp. 87—89.

scalar unitary representations of the symmetric group.

D'(n) =+1 for all n,

D'(n) = &1 according as n is an even

or odd permutation,
+Bose Q Dl(~)+a

+Fermi —P D2(&)Isa
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The Photon as a Composite State of a Neutrino-Antineutrino Pair
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The possibility that the photon may be a composite state of a neutrino-antineutrino pair has been ex-
amined from 6eld-theoretic considerations on the basis of the photon-neutrino weak-coupling theory. It
is shown that the difficulties which generally crop up in quantum electrodynamics to describe a photon as
a composite state of an electron-positron pair using the Z3=0 condition are avoided in neutrino dynamics
(photon-neutrino weak interaction). In view of this, we conclude that the photon may be taken as a com-
posite state of a neutrino-antineutrino pair when the composite character is described by the vanishing of
the wave-function renormalization constant and the nonvanishing of a certain composite coupling constant. .

I. INTRODUCTION

~ ~HE possibility that the photon may be a composite
state of a neutrino-antineutrino pair was first

suggested by de Broglie. ' However, this simple picture
of the photon was found not to obey Bose statistics
because of the underlying Fermi statistics of its compo-
nents. In fact, if two such photons were in the state
with momentum p, two-component neutrinos (and
antineutrinos) of these photons would be in the state
with the same momentum k. In view of this, Jordan'
suggested a model of the photon, composed of two
neutrinos each being a superposition of states with
different momenta. This assumption, with the proper
choice of the superposition coefficients, provided the
correct statistics for the theory. After this, Kronig'

' L. de Broglie, Compt. Rend. 195, 862 (1932); 199, 813 (1934).
2 P. Jordan, Z. Physik 93, 464 (1935).' R. Kronig, Physica 3, 1120 (1936).

succeeded in constructing the photon 6eld out of that
of neutrinos. However, Pryce4 has shown that the
Kronig theory is not invariant under the group of
spatial rotations about the direction of the photon
momentum as an axis.

In recent times, several authors revived the discus-
sions on the neutrino theory of photons. Barbour,
Bietty, and Touschek5 argued that a photon in neutrino
theory is always longitudinally polarized. Ferretti sug-
gested that the photon be considered as a limiting
state of a bound system of two nonzero mass particles
with a given angular momentum when the binding
energy as well as the mass tends to zero. Perkins'
considered the usual four-component solutions with

4 M. H. L. Pryce, Proc. Roy. Soc. (London) 165, 247 (1938).' I. M. Barbour, A. Bietti, and B.F. Touschek, Nuovo Cimento
28, 453 (1963).'B. Ferretti, Nuovo Cimento 33, 265 (1964).

~ W. A. Perkins, Phys. Rev. 13'7, 31291 (1965).


