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Higher-Order Radiative Corrections to Eikonal Functions in Massive
Electrodynamics at Very High Energy*
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We show that the assumptions of an impact-parameter representation and energy-independent do/dt for
fermion-fermion scattering at high energy imply that the amplitude is proportional to square of the vector
form factors, multiplied by the bare eikonal functions, to all orders in radiative corrections without vacuum
polarization. This is done in the framework of massive electrodynamics. We explicitly demonstrate that
these two assumptions are satisned for some sets of graphs in the two-photon exchanged amplitude with
fourth-order radiative correction, where the radiative particle is taken to be a pseudoscalar in order to
simplify the algebra.

property displayed in Eq. (2). More precisely, we shall
show that in order to have an impact-parameter repre-
sentation and a constant differential cross section'
do/dt(t= k') in the leading order at high energy, Eq. (2)
is the natural requirement. We shall explicitly verify
that these two conditions are satisfied for some subsets
of fourth-order radiative graphs.

Effects of high-order radiative corrections were also
considered by Cheng and Wu4 and by Chang. ~ The
methods used by them are quite similar to each other.
It was concluded that if Z graphs were neglected, then
Eq. (1) would be the result. Cheng and Wu furthermore
claimed that if Z graphs were included, then one would
no longer have such a simple conclusion. In fact, there
would result in what they called a hierarchy of form
factors. ' ' Our conclusion therefore is at variance with
theirs, or perhaps we may say that eGects of their Z
graphs cancel out completely.

In Sec. II, we present a general argument that Eq. (2)
is necessary in order to have an impact-parameter
representation and a constant differential cross section
at very high energy.

In Sec. III, to support our argument, we explicitly
analyze a subset of graphs with fourth-order radiative
correction and two exchanged photons. A brief con-
clusion is given in Sec. IV.

I. INTRODUCTION

l
'HIS is a continuation of our study of effects of

radiative corrections on the eikonal functions in
massive electrodynamics at very high energy. It was
shown that' if lowest-order (second-order) radiative
effects are included, then the eikonal function for
&(P~)+e'(P~) ~ s(p~)+s'(P4),

F(k') = d'sic —'" *i

1
giq x~

(2m)' q'+ p' ie—exp —ice'

is changed into

E(k') ~ EB&,&sFg(k')+ix~,

(exes)

3&~,F2(k') j
X[&„,,F,(k )+z~„(~XI),~~ F,(k )jz(k ). (1)

In the above, k =p3 —pr is the finite momentum transfer,
and p is the mass of the vector meson. F~(k') and
F2(k') are the vector form factors conventionally de-
fined. The X's are the spin indices, and the Xq's are their
corresponding two-component wave functions.

When it comes to higher-order radiative corrections,
opinions diGer. In particular, it has been pointed out by
this author that, ' in the absence of vacuum polarization,
the leading term of the amplitude for n-photon absorp-
tion (emission) in certain sets of diagrams is proportional
to p p 'i.e.,

II. A SIMPLE ARGUMENT

Unless otherwise specified, effects of vacuum polari-
zation will be neglected in this section and in Sec. III.

What we want to do in this section is to show that
the n-photon absorption (emission) amplitude neces-
sarily has to have the property of Eq. (2) in order that
the scattering amplitude for e+e'~ e+e' satisfies an
impact-parameter representation and that its di6'er-
ential cross section do/dt becomes constant at very high
energy. The best way to present our argument is by way
of examples. We shall use some simple cases to illustrate

(2)aa al g Aan. . .Paln nP

It then follows simply from Ward's identity that Eq.
(1) will ensue.

It is the purpose of this paper to argue that in fact
all diagrams without vacuum polarization possess the

*Work supported in part by the U. S. Atomic Energy Com-
mission.

~ Y. P. Yao, Phys. Rev. D 1, 2316 (1970).The kinematics used
here is the same as those in the reference. Thus pI=p
p3 ——p+-', k, pp ——p'+-', k, p4 ——p' ——,'k, with p&= ((p'+-4k'+m')"
0, p)) p'&=((p'+4k'+m')'" 0 0 —p), and k&= (O,kl, k2, 0).
Dirac equation is (m+& p)u(p) =0, with &'=z, &I = —&I
+p+1+2+3— 75/' {+y+v) — 2gpv gpv —( 1 1 1 1) and eo

~ Y. P. Yao, Phys. Rev. D 1, 2971 (1970).

——,'k, 3 These two properties are also predicted by the prescription
~, 0, given by H. Cheng and T. T. Wu (see Ref. 4).
The 4H. Cheng and T. T. Wu, Phys. Rev. D 1, 1069 (1970); 1,

1083 (1970).
=1. ' S. J. Chang, Phys. Rev. D 1, 2977 (1970).

'H. Cheng and T. T. Wu, Phys. Rev. 184, 1868 (1969).
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how eikonal representation and constant differential
cross section emerge in massive electrodynamics. Then
we shall argue for the general case.

Admittedly, a more satisfying approach should be to
prove the two assumptions stated above. The author as
yet does not know how to go about this, except by means
of perturbation. This we shall do to fourth order in
Sec. III.

To begin, let us consider fermion-fermion scattering
with two photons exchanged but without radiative
correction. As is familiar by now, a labor-saving way to
obtain the leading term of the amplitude is to consider
first the partial amplitudes of two-photon absorption
(emission). Figure 1(a) gives

(~ 0)akak —e2g(P )+ay v"'N(p~)
ns+y (p+kg) ic—

ag a1

p4, A4

and

1 1 1
+ ——2n.ib(k'+k'), (4b)

p 'ky —16 p 'kg ze p

we 6nally obtain

FIG. 2. Uncrossed and crossed graphs for fermion-fermion
scattering with two exchanged photons.

~)IX3 ~

m p kg ie—
Similarly, Fig. 1(b) yields

(3a)

T2'—ie
m2

d2x&

(kM&o)' ' ~e
I ~o I rx1

~X2X4 ~

m —p'. kg —ie
(3b)

1X—
2

d T1
ei r1 ~ xg

(2m)' yP+p' —ie

d t'2

The scattering amplitude which corresponds to Fig. 2
1s

d4kg
~2 =&~XZX3~X2X4

(2~) 4 (k —kk)'+p' —ie k, '+y' ie—
pakpal 1 1

&&-', e' +—. „,„„,„)

ekrk a~ (5)
(2s)' r~'+p' ie—

where r& and r2 are transverse, i.e., they have only x and
y components. There are two salient features worth
emphasizing: (i) In Kqs. (3a) and (3b), the numerators
are one power higher in p or p' than the correspond-
ing denominators, and (ii) the existence of factors
1/(p k& ie) an—d 1/( —p' kz —ie) in Kqs. (3a) and (3b).

pak pal 1
Xe'

/
+

m kp' kg ie —p' kg ie)— — k+—

Upon using the identities

(4a)
1 1 1

+ = 2si 8(k' k-')—
p'kg —$6 —p'ky fe p— k

P

—+kk
2 1

(a)
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—-kk
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FIG. 1. Two-photon absorption and emission amplitudes
without radiative correction,

FIG. 3. Two-photon absorption and emission amplitudes with
second-order radiative corrections.
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I

Property (i) ensures that Eq. (5) is proportional to
P P'——22s, which in turn leads to constant do/dt
On the other hand, property (ii) is crucial in that it
allows us to use identities (4a) and (4b) to make the
integration with respect to the exchanged photons be-
come two-dimensional. This is the impact-parameter
representation.

These features are again borne out in the case when
e8ects of second-order radiative correction are included.

The absorption and emission amplitudes here include
the sets of graphs in Fig. 3(a) and 3(b), respectively. In
fact, individual graphs in each set have properties (i)
up to powers of In(p) and (ii). These ln(p) factors
cancel themselves in each set.

For the sake of completeness, let us illustrate how one
can obtain the corresponding term in Eq. (1), upon
showing that the absorption amplitude possesses the
property of Eq. (2). Figure 3(a) gives

d4q 1 1 1
(llI122) alai &425(p2) +2' pycI Vp

(22r)'i 225+y (P+-', k —
q) —i» m+y (P+kl q) —i» —225+y (P ', k —q) —i»—

~
7IJ5 p exp

225+'r ' (p+2k —q) —i» 225++
' (p+k2 —q) —1» 22$+r ~ (p+kl) —i»

+v"' — —
. v" pcsI

225+y (p+k|) i» —225+y (p+kr —q) i» —222+y (p+kr) —i»

+m"'- y' ya'1

222+r ' (p+k2) —l» 2r5+r ' (p+kl —q) —i» 222+r ~ (p —
2 k —q) 2»—

7" (—&~2) 25(P2), (6)
222+7'(p+k1) 2» 222+'r'(p+kr) —2» q +p —2»

where bm' is the second-order mass counterterm. Now,
if we accept

is the second-order electromagnetic vertex. It is clear
from the derivation that renormalization is not a
problem at all. Also, the radiative particle can just as
well be a neutral scalar or a neutral pseudoscalar.

In exactly the same way, we can show that the two-
photon emission amplitude with second-order radiative
correction is

(lM 2) a2al~xa2pal

then
pal

(M 2)""=(M ') "a(k +-,k)„. (7)
(p kl i»). —

To be more accurate, to have Eq. (7) as a true identity
we should show that we have not dropped terms pro-
portional to 6(P.k2). This was done in Ref. 1.Rewriting
the right-hand side of Eq. (6) in the form of Eq. (7),
and using the Ward identity

(~ 2)la2al~»225(p )/+2(k) ja225(p ) (10)—p' kr —i»

Equations (9) and (10) then trivially lead to the cor-
responding term in Eq. (1).The major merit of Eq. (7)
is that it allows us to cancel terms at the beginning of a
calculation. This fact must be appreciated if one realizes
the difhculty in extracting the first few leading-order
terms of an amplitude (not just the leading term).

With this experience, we proceed to ask. ourselves:
What can be expected in general of a two-photon absorp-
tion amplitude which should possess properties (i) and
(ii)? We want to construct a tensor of second rank, with
indices 0.2 and o.~. We shall first overcome the spin com-
plication. The following high-energy approximations are
very useful:

. , (g)
2N+y (p —-', k —q) i» 225+y (p+kr —q) —i»—

we see a great amount of cancellation; at the end we
have

pal
(~ 2) a2al~»2N(pl) L+2(k) fa2N(p )

p k2 —i»
where

(9)

y. (-,'k+k )
222+y (P+k2 q) i» — — m+y (P ,'k q) ——i»— —

1

LA'(k)$ '=e'
d'q 1

yP y&2

(22r)'i 222+y (p+-', k q) i»——
1

X 7p
25+r' (P 2k q) 2» q +jk 2»

Nzs(P»)V *254(P2)=Rill
m

Nxl(P2)r ''r5Qxl(P2) ——2 Xxsa'BX52 l
n$

(11b)
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&&8(ps)0 *"+„Nzi(pi)=— x&3(&Xa)sxx» (11c)
m

p+-k
Jl, 2

where i=1, 2 and a is a 6nite four-vector. If a„=p„,
then we can reduce by using the Dirac equations.
Finally, we note that from experience no two exchanged
photon indices should stand next to each other; terms
of such arrangement will be of order 1/p smaller than
the others, i.e.,

terms with 0~2 & or g ' ' are negligible. (11d)

Because of the Dirac-matrix considerations just pre-
sented, and because the vector e»""p„(ki)„kq can al-
ways be reduced by the Dirac equation and the iden-
tity e»'"= —y& antisym(y~'yi'y"y~), we conclude that
the vectors available to carry the indices ni and 0.2 are
k&, k, and p. Besides, only one scalar of order p can be
formed, namely, p ki. (We remind ourselves that the
kinematics is so chosen that p k =0.) For example, to
have a numerator of order p', we must choose from
p~", (p k&)k~", and (p k&)kp". Clearly, property (ii)
makes the denominator proportional to p k&. The only
combination of the numerator which can give us prop-
erties (i) and (ii) is p~&p~'. All the other choices for the
numerator will cancel the denominator factor p ki —ie

/ /r r /r /
/ /// /// /r ////

r r rr/ r

k~

—+kk
2

Fzo. 4. 1V-photon absorption amplitudes with general
radiative corrections.

and, consequently, will not lead to an impact-parameter
representation.

We thus prove that to satisfy properties (i) and (ii),
the two-photon absorption (emission) amplitude must
be proportional to p 'p~'. We shall verify this explicitly
for some parts of fourth-order radiative correction in
Sec. III.

Now, for the n-photon absorption amplitude of Fig.

&'-6m'

):-6m

(aj

FIG. 5. These sets of diagrams, which contain parts of fourth-
order radiative correction to the two-photon absorption ampli-
tude, cancel each other in the leading order of P.
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{e)

(c)
FIG. 6. Diagrams which give nontrivial fourth-order radiative correction to the two-photon absorption amplitude.

4, property (i) remains. Property (ii) becomes (ii ) the
existence of the factor

purpose of this tedious calculation is to show that in
applying Eq. (7), we will not inadvertently pick up or
drop extra terms proportional to 8(p ki).

There are two types of graphs' which need to be
considered for the two-photon absorption amplitude
with fourth-order radiative correction (Figs. 6 and I).
It is not difficult to show the leading order O(p) of the
first type of graph shown in Figs. S(a)—5(c) cancels out
completely. The second type will be of principal concern
to us. They are drawn in Figs. 6(a)—6(f). We have
grouped them in such a way that they will lead to
vertex corrections shown in Figs. 7(a)—7(f), respec-
tively. The essential difference between Figs. 6(a)—6(c)
and Figs. 6(d)—6(f) is that the latter are planar. We can
show that the property of Eq. (2) is possessed by Figs.
6(d)—6(f) and, consequently,

p'ki —zc p'k i—M

in the amplitude. This allows us to use the identity

=(2si)" i8(p ri) b(p r„), (12)

where per means permuting the n —1 r„„.. ., r„„,
variables n(n —1) ways among r&, . . . , r„.This identity
makes the fermion-fermion scattering amplitude satisfy
an impact-parameter representation.

One can then follow the same argument for the case
when n=2 and conclude that the n-photon absorption
(emission) amplitude must be proportional to p~" p~'.
After the usual manipula, tion, we will be led to Eq. (1).

(M,4) p~ i=-e'n(p, )LA4(k) g '~n(p, )
(p ki —ie)

i=d, e, f. (13)

e 1
Z&EP (&i+ "+& )3
PBI' p'rye zr. p'—fvi+' ' +p't'v„ i 16—

III. FOURTH-ORDER RADIATIVE
CORRECTION

We explicitly verify in this section that the two re-
quirements of impact representation and constant
differential cross section and, consequently, the prop-
erty of Eq. (2), are satisfied by (at least) some of the
graphs with fourth-order radiative correction. Another

The graphs that require much more effort to tackle are
those in Figs. 6(a)—6(c). We shall analyze explicitly
graphs shown in Fig. 6(b).' To begin, let us redraw

7 We have not drawn the diagrams which require mass re-
normalization on the external fermion lines. They reduce to the
lower-order cases we considered before in Ref. 1.' Figure 8(b) was singled out by Cheng and Wu in Ref. 6;
they claimed it led to a hierarchy of form factors.
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them in Figs. 8(a)—8(c) and label their momenta and
Feynman parameters. Substantial amounts of algebra
will be saved by assuming that the radiative particles
are pseudoscalars with coupling gysfp and mass X.
One can convince oneself that this does not change the
essential points of our argument. Figure 8(a) gives

d4/1 d4l2
=g' X6 t dX1 dX5dy1dy2

(2m) 4i (2n.)4i

g a2a1aXs(1-$1- -yl-ys), (14)
D '

where

N. 2 '=u(P3)ys(m y rs)y—s(m. yr4)y—'

X(m —y rs)y '(m —y rs)75(m —'Y rl)'Ysg(pl)

k
)i &'T

I
r&, xz

I
I

y I,' 1"4, X4k'2; ~a ——k
k

24 222 1
Yg, Xg ka~, —+k~

S1,$1 k, rs, X2
3 2

l
l

r, , x&

p

k

I
r~, Xs

I
3'2,y2 '„, r xa

5

r, , x,

(b)

and

D, =yl(sl +X )+ys(ss +X )+P $*(r, +m') is—

We introduce the following variables:

~& = t&+l1, ~2 —~2+l&+lg ~3 ~3+l].+l2,
r4=/4+ll+l2 r5=4+l2

$1—$6 l1, $2 —t7 l2
&

J
JJ

I
I
I
I

SZ XI '
3I
Is
I

I
sl

I
l
l
5
5

'~
5

Tg, X5

Tg, X

rg, x2

F'), Xg

with (c)

FIG. 8. Redrawing of Fig. 6(b). The radiative particle (dashed
line) here is taken to be a pseudoscalar in order to simplify the
algebra.

ts ~ '(p)ys(yl+xl+$2+$3+$4)+$1($2+$3+$4))
—kl[$3(yl+xl))+-,'k)(ys+2$2+$3)
X(yl+»+*2+X3+$4) (xl+2xs+x3)

X($2+$3+$4))), (15e)

and

Il ——6 '(Pgl(ys+$2+$3+$4+$5)+$5($2+$3+$4)]
—kl/xs(ys+$5)) —

—2,k[(yl+$3+2$4)
X /2+$2+$3+$4+$5) —(*s+2X4+*5)

X ($2+$3+$4))) . (15a)
f4=~ '(P(ylys —xlxs) —klLxs(yl+ys+»+$5))

I2 =Aa (P(yly2 $1$5) kl($3(yl+y2+$1+$5)) +-'kL(yl+xl) (y,+2xs+xs)+(ys+xs)
2k)(ys+$5) (yl+$3+2$4)+(yl+$1)

X(xl+2xs+xs))), (15d)
X(xs+2x4+xs))), (15b)

&3=~. '(P(yly2 $1$5)+kl[(yl+$1)(y2+$2+$4+$5)
+ (y2+$5)($2+$4))+2k&(yl+»)(y2+$2 $4)

+(ys+xs)(xs —yl —x4))), (15c)

~.= (yl+$1) (y2+$2+$3+$4+x5)
+ (ys+*5)(*2+*3+*4).

(a} (b) (c) There are similar expressions for t6 and t7, but since they
will not appear later on, we do not write them down.
In terms of these variables, the denominator function
can be written as

(d} (e) (&}

FIG. 7. Fourth-order vertex correction.

D, = (yl+$1+$2+$3+$4)ll'+(y2+$2+$3+$4+$5)12
+2(xs+xs+x4) ll. ls+2p kl

Xh, 'xs(ylys xlxs)+ f, i»,—(16)—
where f, is a function of the masses, k, and kl, inde-
pendent of p kl.
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We shall add and subtract terms to write in which we have introduced the simplihed notations

d4/g d4l2
=g — -- Xg l dxq dh5dgjdy2

(27r) «i (2v) «i

where

pal Q IX«

X&(1—»— —y —y )——
p k« ie —D.'

+S ~&~& (17)

Also,

y (kg+-', k).
p k« —ie

where

d'l d'l
g XQ ~ d+1' ' 'd+5dpld$2

(2«r) «i (2«r) «i

Iaido,

iaXb(1-»-" -yi-y2) —,(ig)
pkg —tc D

X.""=u(ps)y5(m —, y. «)»(m —y «)V"
X(m —y r,)[y.«P k,—P «y (k,+-,'k) j

X(m —& r2)»(m —y r&)y&u(p«) .

In the following, our effort is to show that S
vanishes to order O(lnp). Now, the coeKcient of 2p kq

in D, tells us that the best high-energy behavior (p ~0«)
of 5, ' 'is obtained bysetting xe—0.9Let us then inspect
the structure of Ã ' ' ', bearing this in mind. We 6rst
look at terms without internal integration variables.
By pushing y p to act on the Dirac spinors, we can
easily show that

u(pg)(m+7 tr)(m y t«)y (m. 'r —t,)p y- .
(kr+ ', k)(m y t2)(m+-y tg)—u(p, )

-=u(p3) [(m—ma&+c&y. k)(m —c«y. k)

+a«m(m ma5 c&y k)+2a«—b5p k—«j
Xy '2a«P k~P '[(m cd k)(m —ma&+c«y —k)

+a2m(m ma« c«"—r k)+—2a2b«p k«ju(p&)

=u(ps)(m+y. t5)(m —y t«)y 'p. k&(m —y ta)

Xy.«(m y t,)(m+—y )t(u&p) +O(p'),

9 To extract the high-energy behavior of an amplitude, we follow
the work of P. G. Federbush and M. T. Grisaru, Ann. Phys.
(N. Y.) 22, 263 (1963); 22, 299 (1963); J. C. Polkinghorne, J.
Math. Phys. 4, 503 {1963);4, 1396 {1963);and G. Tiktopoulos,
Phys. .Rev. 131,480 (1963); 131, 2373 (1963).

N."=u(ps)y, (m yr, )—»(m yr«)—y «

X(m y—ra)y (k«+2k)(m —y r2)y«

X(m —7 rz)»u(P«);

in words, the fi.rst term of 3E, 2 ' is obtained from Kq.
(14) by replacing y & by

t« ——ag(p ——,'k)+bgkg jc«k,
t2 =a2(p ——,'k) +b2kr+c2k,

4 =a,p+b, ki+c«k,

t« a«(p——+,'k)+b-«k«+c«k
p

t5 a«(——p+ ,'k) +—b«k g+c5k .

(
y&+x&+x2+x3+x«

~2++3+~4

x2+xa+x«

$2+&2+&3+&4+&5

(
cos8 sin8) X«cos8 X2 sin&,

X —s1118 cos8I —Xr sln8 Xp cos8)

We do not write down the eigenvalues A, ~ and X2, since
we do not need them for the following discussion. Then,
for example,

—u(p8)y t2y (t«+t2)y"(m —p t~)y"p
~ kl(m r ' t2) (m+y ' tl)u(p1)

=[—sin8(cos8 —sin8) jtr"+cos8(cos8+sin8) l2"j
X2a~p 'p k«u(p«)y '[(m cd k)(m— ma«+c~—y k)

+ma~(m maq cry k)+2a~—b&p k—«ju(p&)+O(p')——u(p«)y. t2y (t«+t2)y~'(m —y t~)p"y (k«+-,'k)
X(m —y t2)(m+y t«)u(p«).

As another example,

—u(p8)v t2(m —v t«)y"r (t«+t2)y"p
k, (m y t,)(m+y —t,)u. (pg)

=[—sin8(cos8 —sin8) t«"+cos8(cos8+sin8) l2"j
Xa«p «p k«u(p«)y"[m'(1 a,)+mc,y k-
—m(1 —a«)cd k+c~c2k'+agm(m —ma« —cry k)

+2a2bgp kg$u(pg)

Note that a2bqp kr and a«bsp k«are eifectively of
order O(1) because the combination a2b&=xa(y&y2 x«x—&)

=a«b& will reduce the power by 1/p. The terms in
1V, '~&~' independent of t2 are therefore of order O(p');
that is, the order O(p') terms cancel out completely.
Taking into account the factor 1/(p. kr —ie) in front of
I/D r and that 1/D, ' itself will provide us another
power of 1/(p k& —i«) when we apply the standard
technique to extract the high-energy behavior, we see
that their -contribution to S, 2 & is of order 0(lnp),
which can be discarded.

To look into terms with internal integration (t)
dependence, we shall perform the rotation
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and therefore
N, ' ' '=O(p')

S 2 4=0(lnp),

which can be discarded. It is also clear that

M. 2 &=O(plnp).

In the following, the procedure of extracting the
high-energy behavior of a graph is almost the same as
above. In order not to tax the reader's patience, we shall
not present the details.

We shall analyze Fig. 8(c) next:

u -- =g4C

d4~& d4l2

)(5! dx~ ~ dx5A~dy2
(2 )lri4(22r)4i

g txacxI

Xb(1—x,— —x,—yl —y2)
D,' 2p kl —i5

in which

(20)

1V, ' '=u(P5)y5(m yr5)y5(—m yr4)y '(m ——y r2)

Xr5(m 7rl)y5L—m y(P+k—l)]y"u(P1)
and

D, =yl(sl'+X')+y2(s2'+X')+g x;(r,'+m') i5, —
i=i, 2, 4, 5.

and

—u(P5)y l, (m —y t4)y. 2y (l,+l,)P.4y

(kl+-,'k)(m y—t2)(m+y tl)u(pl)—[—sin8(cos8 —sin8)ll"+cos8(cos8+sin8)l2"]
Xa4P 'p 'u(p5)y (kl+2k)[m'(1 —al)+mcly k

m—(1 al—)c2y k+clc2k'+aim(m m—al cl—y k)

+2a2blp kl]u(pl) .

Using the high-energy approximations of Eqs. (11a)—
(11d), we can easily show that

P"u(P )y (k +-'k)u(P )=P k u(P )y"u(P )

and

P"u(P5)y. (kl+2k)v ku(P1) =P.k»(P5h "v.ku(pl)

As a result,

—u(P5)y l2(m y t4)y"y—(/1+/2)y 'P

kl(m y t—2)(m+y t,)u(P,)
u(P5—)y l2(m y t4)—ya2y (ll+l, )pa&y (kl+-,'k)

X(m —y t2)(m+y tl)u(P1).

In an entirely similar fashion, we can show that all the
other terms of E,'"2 & with internal integration depend-
ence cancel to order O(p'), i.e.,

with

tl h. '{P[yl(y2+$2+$4+$5)+$5($2+$4)]
+kl[yl(y2+$2+$4+$5) +*4(y2+$5)]

—2k(x4y2 —x2x5) ), (21a)

t2 =a {p(yly2 —$1$5)

+k1[(yl+x4) (y2+$5) +*4(yl+$1)]
——,'k[x4(y2+x5)+(x4+x5)(yl+xl)]), (21b)

t4=6, '{p(yly2 xlx5)—

+kl[(yl —x2) (y2+*5)—(yl+xl) (y2+$2+$5)]
+2k[(yl+xl)(y2+x2)+(y2+x5)$2]), (21c)

t5 ~ {P[y2(yl+»+$2+$4)+$1($2+$4)]
kl(y»2 $1$4) 2k[(yl+»)(y2+$2)

+y2(x2+x4)]), (21d)
and

~.= (yl+») (y2+$2+$4+$5)+(y2+$5) ($2+$4) ~

The denominator can be expressed as

D = (yl+$1+$2+$4)ll +(y2+x2+x4+x5)l2
+2(x2+x4)ll l2+2p klan [xlyl(y2+$2+$4+$5)

+x2yly2+xlx4x;]+ f, i5, (22)—

where, again, f, is a function of the masses, kl, and k.
It is obvious that as p550, the dominant behavior
comes from end points.

De6ning

N, a2=y5(m —y r5)y5(m —y r4)y (ma2yr2)—
Xy5(m —y rl)y5, (23)

we write

N,.2.1=24(P5)N 2[m —y (p ——2'k+kl+2'k)]y"u(pl)
=——u(P5)N. "v (kl+lkb"u(pl)

+2p 'u(P5)N, 2u(pl). (24)

The second term already has the desired property,
namely, it is proportional to p '. Our task now is to
show that the 6rst term is negligible. To facilitate sub-
sequent discussion, we split this term into three parts:

u(pl) N, ay (k1+—-,'k) ya'u(pl)
=E;2 4+8;2.4+8;2al, (25)

where the first term has no l dependence, the second is
proportional to /2, and the last is proportional to (/2)2.

It is a matter of tedious algebra to show that

The following changes of variables are introduced:

rl tl+/1 f2 t2+ll+l2

« =~4+~i+~, &5 =4+~,
$$ $6 lJ y $2 —k7 l2&

and

g aual g(pl)

g2a2a4 =/2O(p2)

g5a2al = (/2) 2g(p)

(26a)

(26b)

(26c)
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Then we look at

I&—— d'l&d'l2 dx& dx5dy &dy2

X8(1—xz — —xz —yz —yz)

Ry'' 1
X-

D.' 2p kz ze—

o(p')

2p kz ie—
dxy ' ' dx5dyydy2

X5(1—xz — . —xz —yz —yz)

whereto

X—,(27)
(2p kzQ, (x,y)+f, is)z—

Iz ——O(lnp), (29)

which means R~ ' ' can be neglected. We then take up

4.(x,y) =~ L»yz(yz+x2+xz+xz)
+xzyzyz+xzx4x;7. (28)

The integral over the Feynman parameters gives 1/p',
up to powers of inp. To see this, one observes that one
has to set at least two Feynman parameters near zero
to have vanishingiy small @(x,y). Thereupon,

R2a-2a1 by defining

I2 —— d'l&d'l2 dx& .dx5dy&dy2

R a2a1

X~(1 x1 ' ' ' x5 yz-yz)
D,' 2p kz i~—

O(p')
dxj ' ' ' dx5dyydy2

2p kz —ie

X&(1—xz — —xz —yz —yz)

1X-- (30)
2p. kzp, (x,y)+f,—ie

The integral can at best be of order 1/p, again up to
powers of in(p). As a result,

Iz =O(lnp), (31)
and R2 ' ' can be neglected.

In order to discuss R3 2 j, one should either introduce
regulators or cutouts in the l integration. It is not hard
to show that again R3 2 & gives negligible contribution.

We may mention in passing that M, 2 ' is also of
order p in(p).

In the above consideration of M 2 & and M, 2a',

we have not attempted to extract the exact coefficients
of the terms of order p In(p) and p. That would be in
fact too complicated.

Now~ we add Maa a and M a2a

d4lz d4lzN(Pz) 1 1
p5 +5 . 7'

(2zr) i (2zr) i m+y. (p+zk lz) ie —tn+y ~ (p—+zk —lz —lq) ie—
1

p1

X— y (kz+-'k) +5
zzz+y (P+kz —lz —lp) ie- zzz+y (p ——',k —lz —lg) ze zzz+—y (p —-', k —lz) ze—

1 1 d4lj d4l2

X
l12+y2+Zq l22+X2 —Zq p kz —zc

p5 +5
( 2)z'ri (2zr) 'i zzz+y (p+ ,'k l,) ze-— —

1
X +5 "yzzzpz

zzz+r ~ (p+zk —ll 12) —zc zzz+r' (p jkz lz lz) zE zzz+7 ~ (p+kl ll) 1E

1
X +O(inp),

lzz+gz ie l '+7—1' ie—
in which we have written 3f 2 ' and M, 2 ' both in momentum space. Now, we employ the Ward identity, Kq.
(8), twice to rearrange terms and write

pap

zz(pz)
p kg —ie

1

d4lg d'l2
p5

(2zr) 4z (2zr) 4i

Y5 . 7" V5N(pz)
zzz+'r ~ (p+2k lz) zt zzz+p' (p+zk —lz lz) zE zzz+'r ' (p+kl 11 lz) zE

1 1
(32)X y (kz+-', k) zz(pz)

ZZZ+y (P+kz —iz) i& — ZZZ+y (P —zk —lz) i& lzz—+X'—ie lz'+l1'

i&T-

' hee last equation is evidently symbolic. There are extra factors of the Feynman parameters in the integrand. We have
been careful to ascertain that, after scaling and integrating with respect to certain sets of variables to extract the leading behavior,
the remaining integrals are finite.
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Then

(~24) 5a2al —~ a2al+kl calla 1+~ a2al

«xi

where

. ~(P8)[&4(k)]5"~(pl)+S""
p kl —ie

d4/1 d4/2
S~&~&= — g4 — X6t dX

p kl —ie (22r) 4i (22r) 4i

where

4 (x,y) =x8(yly2 —xlx5)

+x2[yl(y2+X8+x4+x5)+x4x5j (36)

and f is again independent of P kl and the i' s.
As before, we separate the numerator function into

three parts:

alt a2al +l—a2al+g2a2al+g3a2al (37)

with

++2~1

Xdxedyl4fy25(i x ' ' ' x5 yl y2) (33)
D7

where 81~'~' has no l dependence, g2 2"i is proportional
to i' and 83a2 ' is proportional to (i') A substantial
amount of algebra shows that" "

1Va2 '=24(P8)y5(223 —y. r5)y5(233 —y r4)ya'(m —y r8)

&&&5(233—v r2)[p (kl+2k)v" —P"v. (k+2k)j
&((233—y. r1)75N(P1)

and
g, a2a4 =pO(P8)

aild

8; =[y,y, —x,(xl+x2) j[x8(yl+xl) —X2X4]O(P')

+o(p'), (38 )

(38b)

D =yl(sl'+X')+y2(s2'+X')+ P x,(r,'+233') —ie.
Jl'8 2"——(P) 'O(p') . (38c)

The momenta and Feynman parameters are those
labeled in Fig. 8(b). [A4(k) j5 ' is the fourth-order vertex
function of Fig. 7(b). We shall show tha. t S 'a' on the
right-hand side of Eq. (33) is small compared to the
first term. As usual, we make a change of variables:

rl $1+11 r2 $2+E2 r8 i8+/1+l2
r4=/4+ii+/2, r5=4+E2,

$1 f6 l1~ $2 "7 ~2y

where

/1=AD '(p[yl(y2+x3+x4+X5)+X5(x3+X4)j
kl[X2(y2+X3+X4+X5) +*8(y2+X5)j

——,'kL(yl+X2+x4) (y2+X8+x4+x5)
+(y2 —x4) (x8+x4)g), (34a)

i2 5 (p[yl(y2+X8+g4+g5)+$5(g3+g4) j
+kl[(yl+Xl) (y2+X8+X4+X5)+X4(y2+X5)j

+2k[xi(y2+*8+*4+*5)+*8X5—y2X4j), (34b)

4 =&-'(P[yly2 X5(xl+X2)j+kl[(yl+xl+X4) (y2+x5)
+X4(yl+»+X2) j+2k[(yl+*1+*2)(y2 X4)

—(yl+x2+x4) (y2+x5) g}, (34c)

4 ~ (P[yly2 X5(XI+X2)j kl[(X2+X3)(y2+X5)
+x8(yl+xl+X2) j+ k[(xl+x3) (y2+X5)

+(y2+x8) (yl+xl+x2) j), (34d)

4 =~ '(pL(yl+»+*2) y2+(*8+*4)(y2+xl+X2) 7
kl[X3(yl+xl) —g2X4j+2k[(y2 Xl)(X3+X4)

+(yl+xl+X2) (y2+X8)j}, (34e)

(y2+x5)(*8+X4)+(y2+X8+X4+X5) (y1+x1+X2)

and similar expressions for t6 and t7. The denominator
function becomes

(yl+X1+X2+X8+X4)il +(y2+X8+X4+X5)E2

+2(X3+X4)ll l2+2P k,h 'y(x, y)+f ie, —(35)—

where ni=x's or y's.
The conditions

4(x,y) =0,
~0!i

(4&)

y(x, y) = (yl+x5)x2 ——0
BX4

'~ Since we can always use the Dirac equations to reduce the
y p factors in y t5 and y. ti, we see that the leading behavior of
E~s~~ must be due to the p dependence of t2, t3, and t4. The co-
efFicients of these p factors I Eqs. (34b)-(34d) J are all proportional
to yi and x5. Therefore we can conclude that x&—0 and x&—0 will
give the best high-energy behavior of 5~2~~.

"It may be of some interest to mention that had we not
combined p (ki+—', k)y ~ and p~~y. (ki+-', k) in the definition of
E 2~~, each would have given terms of order Py&y&

—xs(x&+x&)g
XPga(yi+gi) —gsg4$0(P )+0(P4), O(P )l and O(P8) (l ) .

One can then show that the end-point contribution
(x2=0, x3—0) and/or (yl—0, x5—0) will give

Sa'a'(end points) =O(ln(p)), (39)

which is negligible. Note that the combination of the
coefticients in front of O(p') in Eq. (38a) effectively
reduces its contribution by order 1/p. We do not need
regulators to make the contribution due to 83 2"'

. firiite here.
Our major concern at this stage is whether the leading

contribution to S 2 ' may come from some interior
points of the Feynman parameter space since 4t (x,y)
is not positive semidefinite. ln other words, we are
worried whether on some hypersurfaces we can factor

@(x,y) =4 1(g y)42(x y) (4o)

such that pl(x, y) and &2(x,y) vanish simultaneously
and that they both change signs in the neighborhood. of
these surfaces. This will give rise to pinches in the
integration contour and will enhance the high-energy
behavior of an amplitude. A necessary condition for
for this to occur is
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8
P(x,y) =yj(x2+x3) =0

8/2

will imply (ye=0, x~=0) and/or (x2=0, x~=0). How-
ever, this is just the case we investigated before, which
leads to Eq. (39). There is no pinch there.

One may also argue that g(x,y) cannot produce
pinches because we know of no way to draw Fig. 8(b)
as a product of two nonplanar graphs, which is essenti-
ally the content of Eq. (40).

We then conclude that

P~1
(~ ') ' '=@(P )L~ (&)1 '&(P ) . . (42)

(P kg —ie)

There is in principle no difficulty in following this
line of reasoning to analyze Figs. 6(a) and 6(b). Since
the algebra is involved and, above all, since our intention
is only to illustrate that nothing unexpected occurs
along the way as to invalidate our argument of Sec. II,
we shall not pursue this task any further.

Our method of analysis here is based on the conven-
tional way of extracting the high-energy behavior of
graphs. The extra essential ingredient we put in is to
combine terms in such a way that the unwanted terms
(e.g. , 5, ' ' and S ' ') vanish in the leading order. On
the other hand, Cheng and Wu' used "old-fashioned"
perturbation techniques and came to a different con-
clusion. We have not subjected the same set of graphs
(Fig. 8) to an analysis in their framework to see how
cancellation occurs. Interested readers are invited to
undertake this task.

IV. CONCLUSION

We have argued that, for massive electrodynamics at
very high energy without vacuum polarization effects,

if the assumptions of an impact-parameter representa-
tion and energy-independent der/dt for fermion-fermion
scattering are accepted, then the scattering amplitude
will be proportional to the square of the vector form
factors, "multiplied by the eikonal function LEq. (1)g.
We have explicitly demonstrated that these assumptions
are fulfilled in certain sets of diagrams, in particular
those in Fig. 6(b). These assumptions can also be realized
if one accepts the prescriptions of Cheng and Wu. 4

As we mentioned in Sec. II, a more challenging prob-
lem is to prove these assumptions by some different
means. However, it is also the author's conviction that
since they have been proved up to fourth-order in
radiative correction, it is unlikely that the situation
will go awry in higher orders.

We applied the implication of Eq. (1) to the p-p
scattering data, " and qualitative agreement was
reached. The vector meson was taken to be the ~
meson, since it is the lowest-mass particle with the
quantum numbers we want. A natural query is how
important are the vacuum polarization effects? Work
along this line was carried out by Cheng and Wu" and
Chang and Fishbane. "The unfortunate aspect here is
that we do not know how to relate the quantities appear-
ing in their formulas to experimentally available
quantities, whereas the possibility of a pure theoretical
calculation seems to be rather remote. In view of this
remark, we are inclined to take Eq. (1) as a first ap-
proximation to the physical reality.
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