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Nonpolynomial Lagrangians with Derivative Interactions
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The techniques for computing S-matrix elements for nonpolynomial scalar-field Lagrangians with deriva-
tive interactions are presented. To second order in the interaction Lagrangian, it is shown that all the depen-
dence arising from the derivative part is completely separated out as operators acting on integrals identical
to those obtained in a nonderivative theory. The Fourier transforms of self-energy graphs for a class of non-
local interaction Lagrangians are taken in the massless case. The on-mass-shell contributions are determined
by the analytic continuation of the coefficients appearing in the series expansion of the Lagrangian. As
special examples, two Lagrangians which are isoscalar analogs of chiral SU(2) XSU(2) Lagrangians are
treated. The possible equivalence of on-mass-shell matrix elements for Lagrangians related by nonlinear field
transformations is discussed.

I. INTRODUCTION grangians. In Sec. IV the self-energy diagrams for these
Lagrangians are treated in two coordinate systems. In
both examples there arise additional ultraviolet in-
finities. These infinities prevent a direct on-mass-shell
comparison of the S-matrix elements in the different
coordinate systems. It is possible to obtain the same on-
mass-shell matrix elements only with a special choice of
the renormalization constants.

HE partial-summation method of Efimov' and
Fradkin' for treating nonpolynomial Lagrangians

has been extended by Delbourgo, Salam, and Strathdee'
to Lagrangians with derivative interactions. In this
paper we develop the techniques required for calculating
S-matrix elements for these Lagrangians.

We consider a one-component scalar-field Lagrangian
given by II. S-MATRIX ELEMENTS: SECOND-ORDER

PERTURBATION THEORYL(4,8„&)= ,' (a„y)—(a.„y):-,'~'. y'. +L;., (y, a„y), (1.1)

where the interaction Lagrangian is of the form

L; ($,8„$)=h: u(Q):+g: (8„@)(8„$)v($): . (1.2)

Following the discussion of Delbourgo, Salam, and
Strathdee, ' we derive in this section general S-matrix
elements in second-order perturbation theory for the
interaction Lagrangian (1.2). The matrix elements for
the nonderivative part of (1.2),

Here u(P) and v(p) are taken to be arbitrary functions
of P which have a Taylor-series expansion about /=0; g
and h are coupling constants. The normal ordering in
(1.2) is defined by expanding u(tf)) and v(P) and then
normally ordering each term.

General expressions for the S-matrix elements to
second order in L;„&are derived in Sec. II, and in Sec. III
we take the Fourier transforms of the self-energy graphs
assuming zero-mass fields. All the usual difFiculties' ' of
constructing field theories with nonpolynomial Lagran-
gians without derivative interactions are also present
here. In particular, the ambiguity arising from the
summation techniques cannot be completely eliminated
by unitarity and analyticity arguments. This is dis-
cussed in detail for the self-energy graphs.

Our future interest lies in comparing the predictions
of chiral Lagrangians in the so-called "tree approxima-
tion" to a field-theoretic approach where one computes
lower-order perturbation graphs (loops). The above
Lagrangian contains as a special case, when h=0, the
isoscalar analogs of chiral SU(2))&SU(2) meson La-
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(2.1)hL;(g) =h: u(g):,
have been derived by several authors' ' and in order to
extend their results to the interaction Lagrangian (1.2)
we first derive the S-matrix contributions for the
derivative interaction Lagrangian,

gL (%~A) =g: ~.4~.4 (4): (2 2)

The contribution from the product of L;(Q) and
Lr($, 8„$) can then be simply deduced by the same
methods and is given towards the end of this section.

For notational convenience we introduce the concept
of a "five-vector" defined by

(2.3)

The second-order term in the S-matrix expansion

Zn

(2.4)s=p —s&")
n

is given by

S&') =g' d'sgd's2T*(Lr(g)) (sg))Lr(y)) (ss))}, (2.5)

where the modified time-ordering operator T* is defined
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(T'(4'(+l)4'(2 2) })=~(»—~2) . (2.7)

usual we take the propagators to be regularized by
auli-Villars method or by an equivalent method,

we let the regulator mass M —&00 at the end. Ke do
not denote the regularized propagator by a diferent
symbol.

Expanding S&2) into normal-ordered products, one
obtains

(2 (4 p(»)4 v(+2) }) +pl, y2(+1 +2)

8 8

8$yy, BSgr
6(»—x2), (2.6)

such that the order of time ordering and di6erentiation where
is inverted in taking vacuum expectation values of the
following kind'

As
(2'*(~.(")~(")})=~, ( -")-= the P

X]p and

0"(sl) 4 "(s2) ~-( ) ~"(")
S&' =g' d'sld'22 p S~,.(~(si —s2)): —:+2S„+1,„,„(a(si—s2)):4„(sr)

m, n=o ~t g! mf e!
~"( ) ~"(") e"(s) V"( )+S.+, ..+„g (s,-")):~.(s ) ~,("):+2S-+...-(~(s -s )):~.(s )~.(s )

m~ n! m! e!
~"( ) d"( )

+2S +2 „,, „+1,„(A(sl—s2)):q4(sl)4, (sl) —4, (s2)
m!

0"(~i) ~"(")
+Sm+2, ~p;ny2, yg(6(sl s2)) ~ Qp(sl)kp(sl) 4'~(s2)4'~(s2) (2'g)

m!

The coefficient functions in the normal-product ex-
pansion (2.8) can be written in the form2

Taking Lz to be given by Eq. (2.2) gives

$1,~=0' t22, N=O

X
~
Lrg iM)Lz(42, N),

a)2, 1,)

L.(i. ) = 0-) ~'(~.), (2 14)

where 1& (i ) is the Laplace transform of 2&(p). Substituting
into Eq. (2.13), we obtain for the case of no external

(2 9) derived scalar lines

where

(2.10)

S...(~) = di id''2d'f'1(„&d'f'21„1 ( l 1) (—f'2)"—

The indices m and e refer to the number of external lines
(including derived scalar lines) at vertices 1 and 2 and

K, L are the five-vector labels.
Substituting the five-dimensional Laplace transform

Lz(t M) of Li(QM), w.here

X~(fr)~(f 2) ~'(t. ,) ~'(f ..)
~l 1 «~l l, u

Xexp(t 1+i 2+t 1 + lf 2+f1~ 2i 2+F 1 + 1, 20 2) ~ (2, 13)

Higher-order S-matrix elements can be obtained by a
generalization of this equation. The vector integrations
are performed by partial integration to give

Lr(4M) = d'i &M&e &MrNLz(t M), (2.11)
S;-(~)= «dt..(-i. )-(-i..)" (f ) O.)

Lr(yM) d'i &M&( i'M)Lr(i M)e —&M"M,

into Eq. (2.9) and noting that
X I 2&-&plv2&-iplv2+4, & i@i&& ,pi&2& ip2f i/ 2,

+6„18,„111„211„2(/if'2)'$e"' "' (2.16)

we obtain

S-x;.i(~) =

it& -+0 0

d i 1,Md i 2, N( ll, K) ( f21),
(2.12) =0

=I,„(6),

A id&2( i-1)"( f2)-"-
Xl&(h)r&(i 2)e""'

0 0

L ( )L ( ) ( r1 t ) (2 13)
where the operator 0 is defined by

p. T. Matthews, phys. Rev. 75, 1270 (1949); F. J. Dyson,
ibuS. 83, 608 (1951). +A„ih„l&„2&„2(8/r&&)'. (2.17)
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All other graphs can be derived in a similar manner
but they are more immediately obtained by partial
differentiation of S,„(h) with respect to the 6», 6.2,
and hp1, v2 propagators. From the general formula (2.9)
it follows that

2S„+1., n+r, v(h), and S~2, n+2., „p(d), where

8 8 8 8)S, (6) =exp 5 +6„2
-ting'1 ~4'2 ply'2, v — ~ t'1/

S +1,„., „+1(A)= S., „(A),
Bk„g

8
X L(41)Lr(42,N)

8/2 QI.=O; fg, N=O

Sm~1,p, n+1,„(A)= —S...„(6), df.dt.(-f )""(. f.—)"

8 8
Sm+2, pp; +n(&2) = Sm;n(t1) v

Bd„g Bkpg
(2.18)

Xu(f'1)v(f2) exp(f 1hl 2)

6„26„2I,„(6), (2.22)

Sm+2, pp; n+2, v(+) = Sm; n, (+) v

8A„g „2 Bkpg

u8'1) being the Laplace transform of u(&1),

Sm+2, pp;n+2, vv(+) Svn; (n+) ~

~~tttlvv2 ~~ pl, o2

In addition, there is the symmetry relation and

S,„„,„(a)= S„,„(S)
86„2

=26„2I„,„(6)

S~2,„+2 „,(6)=2g„,I„,„(h).

(2.23)

(2.24)
Smx., z(h) =Snr, , mrr(h). (2.19)

Performing the propagator differentiations which act
only on the 0~ operator, we obtain the following
formulas for all second-order contributions:

Sm, „;n (6)= [4hp1, .26,2

y2a„,a„,a„,(a/aa) jI.,
..(Is),

Svn, pp; n (4) =2gpp&vpkv2Im; n (&) v

Sm+1,p;n+1, v(+) 4[+pl, v2

+hp16„2(o/85) jI,„(6),
(2.20)

Sm+1, pp;n+1v(+) 4,gpp+v2Im;n (+) v

Sm+2, p p; n+2vv (+)=4g, p pgvvIm; n (+) ~

In practice it is also very useful to note the identity

S p1., 1—= (8/Bh)'S ,.P. (2.21)

We make the observation that all graPhs are rorttten in
the form of an operator acting on I, (6) integrals These.
integrals are identical to those 2ohich one obtains for
second-order diagrams with m exterea/ lines at one vertex

arId n at the other, Nsieg a eoederieati~e I.agrarIgiarl,
p Q).' ' Thus all the dependence coming from the derivative

part of the Lagrangian has been completely separated out.
To take into account the contributions from the

product of the two Lagrangians L;(&1) and Lr(qh, &2 „)
de6ned in Eqs. (2.1) and (2.2), respectively, we again
expand the modi6ed time-ordering operator into a
series of normal-ordered products. The corresponding
coef5cient functions in the expansion are S,.„(h),

There are also similar contributions with L;(p) and
Lr(pp, ppp) interchanged. The I,„ integrals are again
identical to those which occur, in second order, for a
nonderivative Lagrangian corresponding to a Lagran-
gian u(p) at one vertex and v(p) at the other. Both theI,„and I,„ integrals can easily be evaluated. ' ' For
the remainder of this paper we only consider the contri-
butions from the derivative-interaction Lagrangian.

We shall consider the case when v(tt) is a linear
combination of expressions of the form

(P a+r 1) (r——o.+—1)
~(4) = 2 (f2~2)". (2.26)

(tt-1) ~

Since e(p) is some linear combination of the 2o($2)'s, we
deduce that

(~)= 2 ()(f'~')"
r=o

(2.27)

where c(r) is a polynomial in r. It is now easily shown' '

~(&) = (f'4') /(1 fV)' — (2.25)

where n and P are integers. The restriction P&n)~0 is
also made since with this condition we shall see that we
meet no difhculties with over-all ultraviolet divergences.
We note that any expression of the form (2.25) can be
written as a sum of similar terms satisfying the condi-
tion P&a~) 0 together with a polynomial in $2. The
polynomial in @2 can then be treated separately.

Expanding 2o(qP) binomially, we have
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that for p(p) given by (2.27),

Ip; p(A) Q ci(r+yi)cp (r) (2r+ 2') !
r=o

From Eq. (3.1) it follows that

h„i(x) =—,'(4n)'6'x„,
a„i.p(x) = ——,'(4 )'a'(g, —4x x„/x')

(3.5)

h(x) = —1/4or'z',

where X2 = —Xo2 —X2.

We consider the interaction Lagrangian

(3.1)

gI-i(4»~A) =g: ~A ~A p(4): (3.2)

where p(P) is of the form defined in Eq. (2.27). The
second-order self-energy contributions Sl,.1, Si,„,1,
Si p, i „Sp,p Sp ~;p and Sp», p are given by (2.16) and
(2.20). Explicitly we have

8
Si,.i——0 Io; o(&),

86
8 8

~l, p; 1 4~pl, v2~v2 2~pl~v2~v2 Io; 0 ~
86

8)
~i, p, ; l, v 4 ~pl, v2 ~pl~v2 Io; 0 ~

Sp,. p
——OIp,.p(a),

X(f 2)r+n(f 2) r+pr (2 28)

where for later convenience we have distinguished be-
tween the two vertices by subindices 1 and 2. Ip~i; o(h)
is zero, and the general integral I2„+I„.~ can be obtained
by l differentiations with respect to 6 [Eq. (2.21)g.
Thus all second-order graphs may be derived from Eq.
(2.28) with use of the appropriate operators de6ned in
(2.20).

III. FOURIER TRANSFORMS

In this section we derive the Fourier transforms of the
self-energy graphs in the zero-mass case. As has been
discussed iri great detail by Efimov' and by Salam and
Strathdee, ~ the Fourier transform is 6rst taken in the
Symanzik region in P space (p'&0) and the results
obtained are then analytically continued to timelike
values of p'. For p'(0 one continues the propagators
6(g) into Euclidean x space. Hence, in the zero-mass
case, one obtains

where x=xl —x2. Hence the 0+ operator defined in Eq.
(2.17) takes on the following form:

8 8
O. = (4or) 45' 6+66 — +5'

Bd
(3.6)

Si; i(A) =—Si; i(D,f')

0+ Q c(y) 22y(2y) If4' 2~i
r=o

—(4or)4 Q c(y)22y(2y+2) ]f4rppr+o
r=o

(4oy)4 c4
—c(s) '2s

2z g slnws

X r(2s+3) (e+'.f4)'5'*+', (3.7)

where we have written the sum as a Sommerfeld-
Watson integral with the contour C taken counter-
clockwise around the poles on the positive 2: axis in-
cluding the point a=0. Details of such a procedure may
be found in Refs. 4 and 7. Volkov4 has discussed the
restrictions imposed on the coeKcients c(s)'.

The invalidity of Carlson's theorem for the formal
power series in (3.7) implies that the analytic continua-
tion of the coeKcients c(r)' from the positive integers to
complex values s is not, in general, unique. For example,
additional terms of the form

lim (2r) 'l (2r)!c(r)'l "'"=At (3.8)

d(r) sinorr 6"

with undetermined coefricients d(r) may be added.
Following Volkov, it is, however, possible in certain
cases to obtain a unique analytic continuation of c(r) .
For instance, the requirement

Sp,q; o =
l
4h, i,,oh.p+2hpih, p~.p lIp; o(~),

aai
Sp, „',o =2g»h pphopI p; o(~)

where, from Eq. (2.28),

Io, p(h) =P c(r)c(r)(2r)!f4"AP"
r=o

Ip, o(g) = fio g c(r+1)c(r)(2r+2)!f4'g"
r=o

where f'= fiofoo.

' A. Salam and J. Strathdee, Phys. Rev. D 1, 3296 (1970).

with 0&~a(2 and A)0, determines c(s)' uniquely and
sets d(s) —=0. Condition (3.8) determines a class of non-
local interactions' and, with our restriction that c(r)
is a polynomial in r, the Lagrangians (and in particular
the chiral Lagrangians) which we are considering fall
into this class. In the case of more general coefFicients,

(3 4) the presence of the terms d(r) sinsr LV would lead, after
taking the Fourier transforms, to an undetermined
entire function in the energy for the self-energy graphs.
These coeKcients d(r) clearly play the role of an infinite
set of renormalization constants. It is of prime im-
portance that these are identically zero for nonlocal
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D(p', s) =i d4x e'&'A'(x)

—(16s)-' —p' '—'
(3.10)

sis s 1'(s)1'(s—1)(16 ')
valid initially in the strip 0(Res&2 and outside it by
analytic coritinuation. ln order to take the Fourier
transform of S~,.r(h, f'), the So—rnmerfeld-Watson con-
tour is deformed to lie in the strip 1&Re(2s+3)&2
along the imaginary axis. This can be done without
picking up additional pole contributions since no over-
all ultraviolet divergences are present. One obtains for
s= p'&0 and in the Ref4)0 half of the ( f4) plane—

F(s, f4) =i d4x e—'&*S~,~(h(x), f4)—
= —Skag'

c(s)'2s

+,„sinxz sin2s s I'(2s+2)

( S 2z+I

Xf"I (3»)
(16s'

where —1&Rem& ——,'. %e next collapse the contour
back around the positive real axis and pick up the
residues of the first- and second-order poles to obtain

F(s, f4) = —c(0)'s—

(2r —1)c(r —~ )2f4" s
+8m' P (—)"

s=o (2r) '

" (—)"(2r)c(r)' f's&'" —s).—s Q ~

—', lnf'+ln
(2r+1)! 16m') 16m2

1 1
+ ——inc(e)2 (P(2r+2)+ ——. (3.12)

2 ds 2r

interactions (3.8), in particular for chiral Lagrangians
which are not written in exponential coordinates.

%e also point out at this stage that with our re-
strictions on c(r) we can show, by treating the divergent
series in (3.7) as an asymptotic series, that the ultra-
violet behavior is given by the pole at r = —1,

Sj;g(A) —(4s )42c(—1)' 6/f4
+O(h—') as 6~~ . (3.9)

Hence it is lower than 52 and therefore the S matrix has
no over-all ultraviolet divergence.

The integral (3.7) has a cut in f4 from 0 to +00. The
Fourier transform will 6rst be taken for negative values
of f4 and, the result then analytically continued. to
positive physical values of f' with an averaging pro-
cedure determined by unitarity. For the massless case
the Fourier tiansform of 5'(x) is given byr

The second equation in (3.14) follows from unitarity.
Thus

n = ,'(1 -ib),—P =—,
' (1+ib), (3.15)

where b is an arbitrary real constant. Therefore the
Fourier transform of the self-energy diagram S&,)(h) is

given by

F(s,f4,b) = —c(0)'s

8 '
. . (.+1)s(!r+l)

(
j's)+'

+t; — c(—')' —b8s' P
fR .=0 (r+2)! 16''

(1r)s( )' f's)" ( sf')——sg —
f

in[
s=& (2r+1)! 16''J 416m'

1 1
+ ——inc(e) ~ —)P(2r+2)+ —,(3.16)

2 t& z=g 2r
'

where f'=+(fPf22)"
The amplitude F(s,f4,b) may be written in the form

F(s,f4,b) =F&(s,f4)+bFg(s, f4), (3.17)

where F2(s,f') is an entire function of s. In the limit
s —& 0, i.e., on the mass shell, one obtains

while

8%3

t)F2(s,f') =0 c(—-', )' at s=0,
2

Fi(s,f4) =0 at s=0.

(3.18)

(3.19)

Similarly the p-space contributions from 2S&,„,&(h)
and S) „,) „(d,) can be evaluated and are found to be

4F (s,f',b) and —+4F (s,f4,b), respectively, where

F(s,f4,b) is as given in Eq. (3.16). Thus the contribu-
tions from these two graphs cancel. %e stress that
without our restrictions on c(r) this relation is not
necessarily valid.

Here we point out that the original x-space sum (3.7)
contains only odd powers of 6 while the evaluation of
the Sommerfeld-Watson contour integral, after taking
the Fourier transform, also yields terms arising from
initially nonexistent even powers of 5. The mathe-
matical reason for this is that the Fourier transform
(3.10) of h*(x) has itself simple poles at the integers
2 =2, 3, 4, . . . , and therefore changes —as a renormaliza-
tion—the original simple poles under the Sommerfeld-
Watson integral (3.7) into a series of double poles while
introducing simple poles for the even powers of h.

Analytic continuation of F(s, f') to—positive values
of the coupling constant f' from below and above the
cut in the f' plane determines the physical amplitude to
be

F(s,f4,b) =nF(s, f4e' )+—PF(s, f4e ' )—, (3.13)

where
n+P = 1, Re(n —P) =0. (3.14)
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The self-energy contribution Sp, p(h) is a p'-inde-
pendent constant. From Eqs. (3.3), (3.4), and (3.6),

Sp. p(Q) =fi O~ P c(r+1)c(r)(2r +2)!f"d,"
r=o

The Lagrangian can be shown to be equivalent to a
free-6eld Lagrangian. If, therefore, we wish to require
that the sum of all second-order self-energy graphs
vanishes on the mass shell for zero-mass particles, then
this implies

bF&(f')+G(f4) =0 at s=0 (3.27)=fiP(4pr)4 P c(r+1)c(r)(2r+2)(2r+3)!
r=o and allows the ambiguity parameter b to be uniquely

Xf '5"+ (3.20) determined as

The asymptotic behavior for large 5 is given by the
coefficient at r = —1 and normally gives a behavior
which would lead to a logarithmic divergence. However,
because of the factor 2r+2 which has arisen by applica-
tion of the 0' operator, the asymptotic behavior is lower
than 6'. Performing as before the Fourier transform by
Sommerfeld-Watson technique, only the energy-inde-
pendent term has to be taken into account. We im-
mediately obtain the expression

G(f4) = (1 6ir/PfpP) c(0)c(—1) (3.21)

for the Fourier transform of Sp, p(h). We note that here
no ambiguity parameter arises.

The contribution from Sp „,p(h) always vanishes
trivially in x space since it is of the form

(3.22)

2~(0)~(-1) f'
1 2 22

(3.28)

It is seen that zero self-energy (to second order) on the
mass shell implies, in general, b/0. An extremely
interesting point to note is that the coefFicient c(—1)
appearing in the numerator of the expression for b also
appears in Eq. (3.9) for the leading term in the ultra-
violet behavior of Si, i(h). For the scalar part of the
Lagrangian given by Eq. (2.25), we see that this co-
eKcient c(—1) always vanishes if P —2)~ n~& 0, i.e., for
a theory where the scalar part of the Lagrangian M 4

or better applying the usual power-counting method of
Dyson.

When the self-energy graphs contain additional ultra-
violet divergences, then it is not possible to deduce from
Eq. (3.27) a unique value for b This w.ill be the case for
the chiral Lagrangians.

where
(3.23) IV. CHIRAL LAGRANGIANS AND

ULTRAVIOLET INFINITIES
and. the integral (3.22) then vanishes by symmetry.

Finally we have

Sp,», p(A) =2g»16prPf&P P c(r+1)c(r)(2r+2)!
r=o

Xf4rgpr+p (3 24)

which again exhibits no over-all ultraviolet divergences.
Taking the Fourier transform, we obtain the expression

We now apply our results to chiral meson Lagrangians
without isospin which are of the form

where g(Q) is a metric on the circle S'. We consider two
diferent coordinate systems on S'. Coordinate system I
is obtained by restricting the coordinates of the plane R'
to a circle of radius 1/X, giving

H(s, f') =s2bsc(-', )c(——,')f /fi'P (3.25) (4.2)

which clearly vanishes on the mass shell. All final re-
sults are to be evaluated with fiP= fpP. Then with the
definition f'=+(f 'fp')" it follows that

f'/f'=&1 for f'&+0, i=1, 2. (3.26)

Thus the self-energies from all second-order diagrams
fox Lagrangians falling into the class that we have
considered may be simply determined by substituting
into Eqs. (3.16), (3.21), and (3.25) the coeKcients c(r)
appearing in the expansion of p(qh), the scalar part of the
Lagrangian. Let us remark that the use of the
Sommerfeld-Watson method in taking Fourier trans-
forms of divergent series, especially with reference to
Eqs. (3.21) and (3.25), has a formal character. However,
the results given here can also be obtained using other
methods. '

Coordinate system II yields

L (4) =p: i!A'i7A': (4 4)

by the transformation

(4.5)

and is the stereographic coordinate system on S'. In the
case of chiral SU(2)XSU(2), these two coordinate
systems are gen. eralized to coordinates on the three-
dimensional sphere 8' embedded in the Euclidean
space E4.

It is known that in the massless case, scalar Lagran-
gians of the type given in (4.1) can be reduced to the
usual free massless scalar-6eld Lagrangian
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where Note that, with X'=4K', the S~, ~ on-mass-shell contribu-
tions are equal in both coordinate systems.

To consider the interaction Lagrangians (4.10) and.
4.6

(4.11), we need only evaluate the additional contribu-
The Lagrangians L' and L"may be generated from the tions resulting from the subtraction of the free part from
free Lagrangian L(f) of Eq. (4.4) by the respective the total Lagrangian. Explicitly, the scalar integrals for
transformations the interaction Lagrangian reduce to

and
P= —(1/X) sin '(XP)

P= (2/X) tan —'(-'Xy) .

(4.7)

(4.8) I2 2(a) =g c(r)2(2r)!f4"62" 1,
r=o

These transformations from a free-field theory are of
course not possible for the chiral SU(2) &(SU(2) theory,
The two Lagrangians L' and L" are also related by a
coordinate transformation of the Geld since Lagrangian
I."()b) can be obtained from the Lagrangian L'()t)) by
the transformation

Subtracting from the total Lagrangian the free part, one
obtains the following two interaction Lagrangians:

and

(4.16)

I2, 2(A) =fP g c(r+1)c(r)(2r+2)!f'6' —fl2c(1),
r=O

where the additional contributions from the free part
are just the single terms subtracted off from the infinite
sums. These sums simply yield the results already given
in Eq. (4.15). Applying the appropriate operators as
defined in Eqs. (2.16) and (2.20) to obtain expressions
for the x-space second-order contributions, we see that
the additional terms only contribute to Sl „ l „(6),
S2,2(h), and S2,„„., 2(h). The respective expressions for
these additional terms are

1I -4"( AK) =2:(~A)(~A)l —1:, 411
k(1+K',2) 2

where

S l,p; l, r (+) +pl, v2 y

S'2,.2(6) = —2fpc(1)5„2,„26„4,„2

= —6fP (42r) 4c (1)h4,

(4.17)

(4.18)

8
L;„,"(K2)= K2I. 4'( —K')

BK
(4.13)

This relation would allow one to deduce, in perturbation
theory, all the Green's functions of L;„&" to any order
from the corresponding Green's functions of L;„&' and is
one of our reasons for having distinguished between the
couplings arising at each vertex.

We see that in both coordinate systems the total
Lagrangians can be dealt with as special cases of Sec.III.
Simply by noting that g'(P)~M ' and g"()f))~M ', we
can immediately tell that the b-independent contribu-
tion to the on-mass-shell self-energy, i.e., that of 52.o,
will be zero for coordinate system II but nonzero for
coordinate system I. Explicitly, the respective coeffi-
cients and couplings are

c'(r) =-' f2 —f2 y2
(4.14)

c (r) =2(r+1), fP= fP= —K

and from Eqs. (3.18) and (3.21) the second-order
contributions for the total Lagrangians are

S'(s=0 )),') =2 b/ lr+)4)4r'/X'

S ($=0q K ) =Sr'b/2K' (= b2/4rx') .

(4.12)

Note that the two interaction Lagrangians are also
related by differentiation with respect to the coupling
constant. We have

S 2,) „,o(h) = 2g„.fpc(1)h—),2ISp2

=2g»fP (42r)'c (1)I) 2. (4.19)

Here we notice the appearance of ultraviolet diver-
gences. In Eq. (4.18) there is a quartic divergence and
in Eq. (4.19) a quadratic divergence. In removing these
divergences finite parts will remain, which we denote by
c4 and c2, respectively. Thus the Fourier transforms of
(4.17)—(4.19) together yield the following additional
contribution to the self-energy:

S (s) =s+c4+c2s. (4.20)

Thus, on the mass shell we are left with the unde-
termined constant c4 arising from the removal of the
quartic divergence. Clearly this constant is not neces-
sarily the same in both coordinate systems. Hence Eqs.
(4.15) must be amended to

S'(s =0 y') =24r2b/!)2+44r2/!)2+c4,

S"(s=0 )) 2) =22r2b/X'+c4',
(4.21)

V. CONCLUSIONS

We have explicitly given the techniques required to
calculate second-order diagrams for nonlinear scalar
Lagrangians with derivative couplings. The on-mass-

which are the final on-mass-shell second-order self-
energies.
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shell contributions to the self-energy for the massless
case are determined by the analytically continued ex-
pansion coefficients c(s) at the critical points s= —1,—~~, 0 and yield for a theory with no over-all ultraviolet
divergences the general self-mass contribution

Sx' 16~'
BP,'= —g' f/ c(—2,)'+ c(0)c(—1)

(f 2f 2)1/2 f 2

where b is a real parameter. Restricting ourselves to the
class of nonlocal interactions considered in this paper,
it is clear that the second-order self-mass bp, ' will be an
invariant for those field transformations

which leave unchanged

c(——')'

(f 2f 2)1/2

c(0)c(—1)
and

f2'

In general, however, there are additional ultraviolet
divergences which introduce extra renormalization pa-
rameters and then this statement becomes more
complicated.

In the case of chiral Lagrangians, the 6nite self-energy
graph S1,1(h) gives the same result on the mass shell for
both coordinate systems; the invariance of c(——,')2/
(f1'f2')'" is quite remarkable. However, the S2.,0(h)
graphs are infinite. Hence in this model, using the
Efimov-Fradkin method of partial summation of pertur-
bation theories, the theorem of Coleman, Wess, and

Zumino, ' that coordinate transformations leave in-
variant the on-mass-shell results of S-matrix elements
with a fixed number of loops, cannot be checked
directly because the S-matrix elements are infinite to
each order in I;„&(1'). This theorem must be imple-
mented by the requirement of a coordinate-independent
choice of the parameter b and the renormalization
parameters. Coordinate independence to second order
can be guaranteed by a suitable choice of the renormal-
ization parameters c4 and c4'.

The techniques developed here can be extended to the
physically important self-energy diagrams of chiral
SU(2) XSU(2) Lagrangians. This will be dealt with in a
forthcoming paper.

1V0//, added i22 proof We w. ish to point out an un-
resolved problem, concerned with the possible connec-
tion of the normal ordering prescription that we have
employed to the recent work of Charap. He deals with
chiral Lagrangians which are not normally ordered and
shows the necessity of modifying the P' product to
obtain the correct Feynman rules. This problem is
being examined.

ACKNOWLEDGMENTS

The authors wou1d like to thank Professor Abdus
Salam, Dr. R. Delbourgo, Dr. J. F. Boyce, and J.
Sultoon for helpful discussions. One of us (Q.S.)
acknowledges the Science Research Council for a re-
search studentship.

' S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 1V'7, 2239
(1969).


