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Relativistic Kepler Problem
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Relativistic quantum field theory is used as a starting point to construct a classical, completely rela-
tivistic theory of planetary orbits.

INTRODUCTION

~CONSIDER a quantum field theory of three scalar~ fields if~(x), Pp(x), and A(x), where P& and Pp
are associated with particles with masses m1 and m2,
and A (x) is massless. Let the interaction Lagrangian be
gled&*(x)f&(x)A(x)+gpp*(x)pp(x)A(x). In a very good.
approximation —at least if g is small and in a region of
energies near threshold —the two-particle sector of
states having one massive particle of each kind, in
either a bound or a scattering state, can be described
by a relativistic Lippmann-Schwinger equation. ' ' Let
T be the relativistic scattering amplitude for elastic
scattering of the two massive particles from each other,
and let G be one of the two-particle free-field Green's
functions. Then it is possible to construct a potential
V so that the following equation is satisfied to all
orders of perturbation theory:

T= —V+VGT .
When V is approximated by the first few terms of the
perturbation expansion, then this equation can be
solved for T to give a nonperturbative approximation
for the exact scattering amplitude.

For the two-particle Green's function G, we take'

G = —iver(2) 6(1), 5= 2 pp(rpg)h (p p mp) .—(2)

The b function restricts the momentum of one of the
particles to the mass shell, so that the scattering
amplitude and the potential, as well as the two-particle
wave function tP(P&,Pp), need be defined on PrP=mP
only. For V we shall take the first term of the perturba-
tion expansion:

V =g'/(pg —pg')'. (3)

With this choice of G and of V, one easily obtains the
following equation for the wave function:

[(p—q)' —m, '—y/m~r]p =0,
where 1/m~r is the integral operator

(dq')
4(p, q) = x' —

—, ,4(p-,q')
m&r (q —q')'

and y= —g'/87r. The volume element is (dq) =d'q
X8(q' —mP)p(qp). The external and the relative coor-

~ C. Fronsdal and R. Huff, Phys. Rev. D (to be published).
2 C. Fronsdal and L.-E. Lundberg, Phys. Rev. D I., 3247 (1970).' Our choice is different from that of Bethe and Salpeter, and

our potential and off-shell T matrix are also different.

dinates and momenta have been defined as follows:

P P&+Pp~ q P&~

x x2 P —X1 X2 ~

(6)

(7)

The restriction PP=mP involves the relative mornen-
tum only, so that this condition becomes a subsidiary
condition:

(q' —mP)P =0 .

The dynamics is then given by Eq. (4) alone; this
equation can be derived from the Lagrangian

d'P(dq)4*1-(p)4,

(dq)$*2(pp —qp)P = 1,
p=0

and the expectation value of an operator A is defined by

(A) = (dq)$*2(pp —qp)A&
p=0

(12)

The wave equation (4) can be solved, and closed
analytic expressions have been obtained for the scatter-
ing matrix. 2

EHRENFEST FORMULA

To every quantum-mechanical operator there corre-
sponds a classical observable that will be denoted by
the same symbol:

A =lim (A).
h~0

(13)

The correspondence is a product-preserving linear map,
since

2 4'4'*2(Po qo) =1. —(14)

Poisson brackets between the classical observables

with

L(P) = (P—q)' —mp' —y/mar . (10)

On this basis one can develop' the entire axiomatic
structure of quantum mechanics, including the usual
interpretation by means of the conservation laws.
In particular, the normalization condition for bound
states is, in the c.m. system,
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are defined by

{A,B)=lim (iI'4) '((A 87) (15)
L„„=L„„*+s„„. (19)

defined on the surface q'=mj2 only. A partial definition
of y„ is provided by the total angular momentum tensor

and this correspondence is a Lie algebra homomorphism.
Khrenfest's formula for the time derivative of a

classical observable is easily derived in the usual way,
the Lagrange operator (10) taking the place of the
Hamiltonian. Let f(P) and 1P(P') be two wave functions
with slightly different four-momenta p and p'. Then

(dq)0*(p)I-(P) Ak(p')

+LL(p ),A7)4(p ). (16)

To lowest order in h this is the equation of motion:

2(pp —qp)A ={I.,A) = {p2 2pq+y/—mrr, A) . (17)

Note that the substitution p ~ 0 is to be carried out
after evaluating the commutator in (15). The dot
means, of course, the time derivative —the "time"
being t=t2, the variable conjugate to the total energy.

KINEMATICS

The external variables of the system, which are
constants of the motion in the absence of external
forces, are the total linear momentum p„and the total
angular momentum L„„.We work in the c.m. frame, in
which p=0. Four-momenta q„and p„—q„are ascribed
to the individual particles, so that no portion of the
linear momentum is "carried by the interaction. "
The total energy pp measures the binding energy, and

q defines the state of motion of both particles. No
additional energy variable is required —hence it is
quite appropriate that qo is fixed in terms of q. In the
classical theory positive and negative energies are
uncoupled and qp ——+ (q2+m12)'12.

The external position coordinate x was originally
associated with particle 2, and the interpretation of
a =x2 as position coordinate for particle 2 is easily
xonfirmed by the equations of motion:

which shows that the time derivative of x is the velocity
of particle 2. The "time" is the 0 component of x„;
it is conjugate to the total energy.

The internal position coordinate y„ is not unambig-
uously defined, By taking x2„as the external position
coordinate, we have put particle 2 in a privileged
position, and the presence of particle 1 is felt only
through the interaction. The coordinate y„ is rep-
resented in the quantum theory by the symbolifiB/Bq",
but this is not an operator since the wave function is

Here I„„*=—P„2:„+P„p,"„ is the external or "orbital"
part of the angular mornenturn, and

~~v = —
ql yv+qvyf (20)

yp =5$y q "SIJ4„+CIA, , (22)

where c„ is an arbitrary vector parallel to q„. The
motion of particle 1 is not subject to a complete and
unambiguous determination. We have put ourselves
in the role of an observer that travels with particle 2,
and all measurements of the whereabouts of particle 1
must be done by means of signals that propagate with
finite velocity. The world line can be determined, but
neither the position x~ nor the "time" xylo is unambig-
uously defined. This point is often overlooked and has
led to much confusion. Recognizing that the time
dependence of x» is partly conventional, we are free
to resolve the ambiguity to suit our convenience. The
lack of complete predictability of x» was built into the
theory from the beginning, by restricting p1„ to the
mass shell. As was explained by Dirac, 4 the time
dependence of the coordinates is determined only to
the extent that the momenta are unrestrained.

In view of the indeterminacy of the relative coor-
dinate, it is clear that the potential cannot be given as
a function of y„. In the quantum-mechanical formula-
tion the potential is given as an operator 1/r, and the
classical potential is given in terms of the classical
observable r. It is not necessary to have an intuitive
definition of this quantity, but we do have to know all
the Poisson brackets in which it is involved, and this
requires that we know a number of commutators in
the quantum theory. Note that r is a Lorentz-invariant
quantity; in the nonrelativistic limit it is just the
spatial separation between the particles, and in the
relativistic theory its properties are derived directly
from the "one-graviton-exchange" potential of quantum
field theory. The required commutation relations can
be summarized as follows. ' Define

s„4—— s4„m1 —'(q"s„——.+2ikq„), (23)

s„p= sp„rq„, s42 = s44
——m,r . —— ——(24)

'P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva
U. P., New York, 1964).

is the internal or "spin" part. The operator s„„ is well
defined and corresponds to a well-defined classical
observable, and (20) serves to define y„. Note that if

y„ is defined by (20) and x1„=x„+y„,then

&pv= (—P1p+1v+P1v2'lp)+ (—P2p2'2v+P2v2 2p) v (21)

so that the total angular momentum is ascribable to
the motion of the two particles and the interaction
does not carry any angular momentum either.

The solution of (20) is
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h4 ——(p2+m+m )/P,
hp +(1+h4')——'"=2mipp/P .

Finally, define space vectors L, A, and B by

(29)

(30)

Then

PSAB)SCD7 2'h(gACSBD+gBDSAC

gADSBC gBCSAD) i (25)

where the indices take the values 0, 1, 2, 3, 4, and 5,
and gAB is diagonal with signature + +.
In the classical theory the second term in (23) is
dropped, and (25) is turned into an expression for the
Poisson bracket by striking the factor ik.

From the definitions one can derive a number of
kinematical identities, most compactly summarized
as follows:

g (SACSBD+SBDSAC)+2'h'gCD =0, (26)

pABCDEESABSCD =0 . (27)

It is convenient to re-express these identities in terms
of the following quantities. First, let m+ ——m&~m2,
and m 2&p2(m+2. This is the domain of stationary
orbits; there is no difhculty in a parallel discussion of
asymptotic orbits. Next, let

P=+L(m ' —p')(p' —m ')7'~' (28)
and

q„. The interpretation of the auxiliary variables A and
B will result from the equations of motion.

2miprp(pp —q,)q„=—&S„4, (45)

2mi(pp qp)—s~4= (p'+m+m )q„—2mi'p„, (46)

and of course p„=L„„=O. The complete dynamics
includes in addition the equation

L(P) =P2' —m2' —y/mir =0, (47)

which is the analog of the nonrelativistic E—H=O.
Equation (34) shows that all the events take place in a
plane that is normal to the constant vector L. From
(44)—(46) it easily follows that A is a constant; this
is the relativistic analog of the Runge-Lenz vector. 5

From the kinematical identities one now sees that the
vector B moves on an ellipse with major axis parallel
toA;if

then

Bi=8 A/iA~, 82 ——aiBXA~/iAi (48)

(Bi/22) 2+ (82/L) 2 =1, (49)

DYNAMICS

Taking a number of diGerent choices of A in Eq.
(17) and using (25), one easily obtains

(pp —
qp) x2 = —q, mif (pp qp) r—=ppspp, (44)

L; =e,,Is,I,
A i =A, psi4 —X4$;p,

~i =Xpsi p ~4$i4 ~

Then Eq. (27) reduces to

(31)

(32)

(33)

where 1. is the magnitude of L and n is the "principal

quantum number":

ri —+ (A2+ L2)112 (50)

Equation (47) gives the numerical value of 22:

L q=L-A=L. B=O,
BXq = (hpqp —h4mi)L,

(34)

(35)

AXB = —sp4L,

A Xq = (h pm i —h4qp) L,
while Eq. (26) becomes

(36)

(37)

A'= sp4'+r'(h4qp —hpmi)', (38)

B'= sp4'+r (h pq
—

p h4mi)', (39)

and the equations for the orbit and the hodograph:

22= y/P . — (51)

We now determine the motion of particle 2.
From Eqs. (44)—(46) one easily finds that x2

+(2mi/P)B is a constant. Hence x2 moves on an
ellipse. Taking the center of the ellipse as the origin of
the coordinate system we get

x,= —(2mi/P) B . (52)

The foci of the orbit are at the points x2 ——& (2mi/P) A.
Next we may notice that

2 (x2 nA) Xxp =mr L/pp(p' —mi —m2') =const, (53)

L2 $2+y 2 g2

q A= (hpqp —h4mi)sp4,

B= (h pmi h4qp)sp4, —
(41)

(42)

2m] p m+m-
Q=

ppP p' —mi' —m2'

(40) provided the constant n has the value

(54)

A B=r'(hpqp —h,mi) (hpmi —h4qp) . (43)

The content of this section is completely independent
of the potential and could be taken to describe the
kinematics of two particles in general. The complicated
set of Poisson brackets and kinematical identities is
not ad hoc; it generates itself from the variables r and

Hence the areal velocity is constant if seen from the
point x2=Q.A. This completes the determination of the
motion of particle 2.

5 The following manipulations were greatly facilitated by a
comparison with the work of G. Gyorgyi, Nuovo Cimenti 53A,
717 (1968).
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p —mr —m2 2po)B+ iA.z)mph'
(56)

This shows that particle j. also moves on an ellipse,
with foci at x~=(p' —mP —m22&2mrpo)A/mrs. The
areal velocity is constant if seen from the point x&

——PA,
where

P= (p'+m+m )/poI' . (57)

fhere is one linear combination of x~ and x~ that is a
constant of the motion, namely,

(p —my —m2 )xg+2mr xr

p +m+m—

4ppmr' —A, (58)
P(p'+m+m )

and this may be called the center of mass. Notice that
five points that coincide in the nonrelativistic theory
are slightly separated; they are a focus of each ellipse,
the two points from which the areal velocities are seen
as constants, and the "center of mass. " Note that
these results depend on the choice c„=0 in Eq. (22).
One benefit of this choice is a very nice formula for
the potential, namely, r'= —y„' or

1/r =t:—(»—»).'7 '"
= 1/L( ,—xx,)'—(tg —t2)'7'~'. (59)

Note that t=t2 and that tj is a known function of t,
given by

ty —t =m& 'q "so,=m]. ~04 (60)

and the solution of Eqs. (44)—(46). The reality of r is
of course guaranteed by the equations of motion, but
the result that the relative position coordinate is
spacelike (y„'= —r'(0) carries no absolute significance
since it depends on choosing the "gauge" in which
c„=0. It is our opinion that the .ambiguity in the

We have stressed the ambiguity that exists in
defining the space coordinates of particle 1, represented
by the term c„ in (22) about which we know only that
it is parallel to q„. We now choose c„=0because it leads
to simple formulas, but no intuitive reasoning can be
applied to the coordinate x~„ that is obtained in this
way. Thus

yp= ($1—x2)p=ml rt spy= ml sv4

ol

definition of the relative coordinate is intrinsic to the
problem and that some works have been hampered by
imprecise formulations following from overlooking this
important point.

CONCLUSIONS

Motivated by entirely different considerations, we
have stumbled on a theory of classical relativistic
mechanics of two interacting particles. Unlike previous
works, ~' that were formulated entirely within the
classical framework and started with intuitive argu-
ments concerning the nature and the properties of
the coordinates, the theory presented here was derived
from quantum field theory. This allows a determination
of the potential to any desired accuracy and guarantees
the relevance of the theory for actual physical phenom-
ena, but it does not necessarily conform to any a priori
ideas that one might have about classical relativistic
mechanics. In a future report' we intend to build up the
same theory by intuitive classical arguments —this
will allow a detailed comparison with other ap-
proaches, ' although an appeal to quantum field theory
will always have to be made to determine the potential.

So far, the following features have emerged. There
exists a special potential for which the orbits can be
determined analytically. This potential is a natural
extension of the Newtonian 1/r potential and is
directly related to the one-graviton-exchange potential
of quantum Geld theory, and the corresponding orbits
are ellipses. Corrections to this special potential come
from the tensor nature of the gravitational field as
well as field-theoretical effects that are analogous to
the fine structure of hydrogen. The field-theoretical
corrections include nonlinear effects such as must be
included if Einstein's theory of gravitation is treated as
a spin-2 field theory in Rat space. In a future work we
plan to evaluate the advance of the perihelion of
Mercury and draw the parallel between this and the
fine structure of hydrogen.

' K. P. Wigner, in Proceedings of the First Coral Gables Conference
on Fundamental Interactions at High Energy (Freeman, San
Francisco, 1969).' D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev.
Mod. Phys. 35, 350 (1963).

8 A. Schild, Phys, Rev. 131,2762 (1963).' C. Fronsdal, UCLA Report, 1971 (unpub]ished).


