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Shay and Good s wave equation is solved for a spin-1 particle with arbitrary magnetic dipole moment.
Simultaneous eigenfunctions of the following three operators are used: p„ the component of —iV in the
direction of the field; J„the component of xXp+s; and Rp the opel ator fol the square of the distance to the
center of the orbit in the projection of the motion perpendicular to the field. Explicit formulas for the allowed
energies in terms of the quantum numbers are found. Determination of the wave functions is reduced to a set
of linear algebraic equations.

I. INTRODUCTION

HE problem of finding the states of a particle
moving in a constant magnetic field has been

solved for many different situations. The non-quantum-
mechanical and the nonrelativistic quantum-mechanical
solutions have long been known. The relativistic
quantum-mechanical solutions for spin 0 and for spin
-,'with normal magnetic moment have been completely
worked out. Johnson and Lippmann, in particular,
have studied the spin-2 problem and reviewed the
earlier contributions. ' Recently the problem for spin —',
with anomalous magnetic moment has also been solved. '
In the present work the states of motion of a relativistic
spin-1 particle with anomalous magnetic moment are
found and discussed.

The spin-1 particle is described by the wave equation
given recently by Shay and Good. ' It is reasonable to

*Work done in part in the Ames Laboratory of the U. S. Atomic
Energy Commission. Contribution No. 2876.' M. H. Johnson and B. A. Lippmann, Phys. Rev. 76, 828
(1949); 77, 702 (1950).' I. M. Ternov, V. G. Bagrov, and V. Ch. Zhukovskii, Moscow
University Phys. Bull. 21, 21 (1966).' D. Shay and R. H. Good, Jr., Phys. Rev. 179, 1410 (1969),
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assume that this equation applies to a spin-1 particle
because it has so many of the correct properties. In
particular, it leads to an invariant way to take matrix
elements, and it allows for arbitrary magnetic dipole
moment and electric quadrupole moment of the
particle. However, although the deuteron in an external
electromagnetic field is a realizable experimental
situation, there are no available experimental tests of
what wave equation applies relativistically. Another
possibility, for example, is the Corben-Schwinger
equation4; it differs from the Shay-Good equation in
terms that depend quadratically on the external fields.

The method used here is to expand the six-component
wave function in terms of a coxnplete set of functions
that are simultaneously eigenfunctions of the following
three operators: p„ the component of —i& in the
direction of the field; J„ the component of x)& p+s
in the direction of the field; and Eo', the operator for
the square of the distance to the center of the orbit
in the projection of the motion perpendicular to the
field. The dependence of these functions on the cylindri-
cal coordinates r, y, and s is completely determined, and

4 H. C. Corben and J. Schwinger, Phys. Rev. 58, 953 (1940).
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when they are used the problem of finding the station-
ary-state solutions of the wave equation reduces to that
of solving a six-by-six set of linear algebraic equations.
It is not a matrix eigenvalue problem, but nevertheless
there are six normalizable solutions. Explicit formulas
for the energy values in terms of the quantum numbers
of the three operators are derived. The techriique is
general and can be applied in the spin-0 and spin--',

problems also, as reported in Appendices 8 and C.
The calculation is done for an arbitrary g factor of the

particle and it is interesting to ask if the results in any
way prefer a special value of g. In the nonrelativistic
problem for any spin, there is additional degeneracy
when g= 2. In the relativistic problem for spin —,', the
two spin orientations are degenerate when g=2 and
the helicity operator 0 m resolves the degeneracy. In
the present spin-1 problem, g=2 is again the special
value, but it only implies a partial spin-orientation
degeneracy and an operator that resolves the degeneracy
was not found.

II. NOTATION

The wave equation is

=0
where

W 'II »'Ire r«e+ Ir»7I »+2m +i g eX'y5 «eF»e

+ +6,eP, tttt ~v

right are the usual spin-1 matrices
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In these terms the y matrices needed are

+44

7'4=74*= ill'—,

y,, =P(5;,—s;s, —s,s,),
y5 '~= —6q'2IsI .

III. SIMULTANEOUS EIGENFUNCTIONS
-OF P,) J,) AND Rp2

The operators are p„
~z =&py yp»+s»

The problem is to find the stationary-state solutions
of the wave equation, meaning those with time depend-
ence e '8'. With only the static magnetic field con-
sidered, ~4 is I)/Bt —and may be replaced by iE
The equation for the stationary states is then

L(1+p)(~ m —E') —2t)(s m)'+2EpiI. m

+2m' —(P+X)es B]/=0 . (4)

The vector potential A which is used is ( 2By, -,'Bx, —
0). This gives the field B=(0,0,B) in the 3-direction.

is the wave equation operator. Here m is iB/Bx» an—d
—eA and F p is the field tensor ~o'= xo'+yo',

Fg = eggBk, F;4 ———F4; ———iE;.

where p is —i%', and where

xo ,'x+p„/eB, ———

y, = lX —p./eB .
(7a)

(7b)

The Latin indices run from 1 to 3 and the Greek indices
from 1 to 4, with x4=it. Factors of c and h are omitted
and e is considered to be a positive number. The
constants X and q are real and adjust the sizes of the
intrinsic moments. From former work' it is known that
the particle's g factor is 2(1+X). The I7 term does not
contribute in the present problem when the field is
constant. The wave function has six components, acted
on by the 6X6 p matrices.

Properties of the matrices are summarized in Ref. 3.
It is convenient to work in terms of

Usefulness of the operators xp and yp in this type of
problem is well known. Classically, xp and yp are the
coordinates of the center of the circle that the orbit
makes when projected on to the xy plane. In cylindrical
coordinates r, y, and s, the operators have the forms

8
P 2

Bs

8
J,= i +s„—

8p

1 t'1 8 8 1 8 x 8

e'B'kr Br I)r r' Brp' eB Bp

r2

+ —, (9)
4

where 0 and 1 on the right-hand side are the zero and and it is evident here that they commute.
unit 3&(3 matrices, and the components of s on the As is easily verified, simultaneous eigenfunctions of
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the three operators are To simplify one writes s ~ as

p, tr /VZ 0
s 22= 2r+/v2 0 2r /v2

0 tr+/W2 —p, .
—(y/2)+(j/2)1 —8+& ~ ~ps(p —s) 0

,
csp PJ

C2p p/2J —tt (p)ezttp

c3p
—(p/2) —(1/2)1 —p—1 f 'tgs (/+1 )pV J

e—&p/2)+&pgz-
C4p

—(p/2)+0/2)1 —p+& & &ps(p—&) q
ipse

r2p tt/2L ——
«(p)Et tz

t-, 4p
—&p/» —o/»L —p—4

(p)E'&l +» ~'

(10) where

g+ xg&ZSQ

/t18 1 8
2

=E+'&~ ——a — W 'ieBr ~-

Liar ra2 )where the c's are constants, p is 2eBr', and L„p(p) is
the Laguerre polynomial in the notation of Magnus,
Oberhettinger, and Soni. ' The quantum numbers
label the eigenvalues in the following way:

8
i t/p, „—„=—Pzfpz„„, (11a)

tIIjs

A pzttzt t (11b)
EBZ,y„,„.=(2n+ 1)P„,„. . (11c)

28 18
=E'"(2EBp)"' ——~—

i ap p a4

The properties of the Laguerre polynomials lead to
the result

Qp @2+0 I P+g&P 0'
n

8- ~ bp-~/'I. „-~e'~~ ~-(p/2)+sygz

C
—&»2& 0/»L, —~-&g'&l +»&'. P 5

Lp,@+i(EB)i/2bjp—(p/2)+(&/2)L„—p+ist/tt —i) 4

i (eB)"2—(n /4+1) a+—i (EB)"cjp ""L "e*pp'
i (eB)i/2 (n—/4)b p,rjp (p/2) u/2)L—„tt i—Et(/t+i) p- —

cs (p/2&+zpzz —(12)

Here p„may be any real number, positive or negative;
p may be any integer, positive or negative; n=0, 1, 2,
. . . , if /t(0, and n=/4+1, p+2, /it+3, . . . , if /4)0.

IV. ALLOWED VALUES OF ENERGY

The solutions of Eq. (1) for constant magnetic field
are postulated to be of the form

(E
—z/2 —/t/2L —ttEt p)

E zEt— =fPz2+EB(2n 2p+1) /(e—'/'p ""L Pe'"") (13)
where the c's are to be determined. It is necessary that
these functions satisfy Eq. (4).

Consequently it is found that Eq. (4) is verified
provided that the c's satisfy the algebraic equations

-eB(2n —2p.—) +3)
+p,'—E'+2m~

0

—(p*+E)' —»{eB)'"(p.+E} 2eB

eB (2n —2@+1)
+P,2—E'+2mm

0

0 2z (eB)"2(n—p,+1)
X(p,+E}

eB(2n —2@+X—1) 2eB(n —p)
+p,'—E'+2m' X {n—p+1)

2eB eB (2n —2p, —X+3}
+p 2 E2+2yp

0

—eB (2n —2p+1} 2i{'eB)"~(p,—E)
+p 2 E2

—2z (eB)"'(n—p,) —(p,—E)
X(p.—E)

0 0

c2

—»(eB)»~(p, -E)—(p.—E)'

eB (2n —2p, +1)
+p,~—E'+2m~

0 eB (2n —2p+X —1} c6
+p,2—E~+2m~

0

2j(eB)U2(n —p+1) —eB (2n —2@+1) 2i (eB) I'(pz+E)
X(p,—E) +p 2 E2

2eB (n —y) —2z (eB)112(n—p) —(p +E)
X (n —p+1} X (p.+E)

=0. (14)

The allowed values of the energy are obtained by
setting the determinant of the coefFicients equal to
zero. It turns out that one of the following equations
must apply:

E2=p,2+)m4 —4(EB)2(1—X)2j '(m'+m4eB
X (2n —2/4+1) ——m (EB) (1—X) (3—X)1, (15a)

82=P 2+m2+eB(2n 2/4+1)+ '(e—B/m)2(3 -X)—
', (eB/m) (3 X)(4[m2+—eB(2—n 2/4+1)j-

+(eB/m)2}'" . (15b)
' W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and

Theorems for the Special Functions of j/Iathematica/ Physics
(Springer-Verlag, New York, 1966).

Either sign may be used in the second equation. Either
sign is allowable in taking the square root of E', so
there are altogether six solutions of the problem (for
fixed quantum numbers p„ /tt, and n) corresponding to
three spin orientations for the particle and three for
the antiparticle. For a choice of E, one can in principle
solve Eq. (14) for the c's except for a normalizing factor.
The solution is complicated, but the problem of 6nding
the stationary-state functions is solved in the sense
that it is reduced to a set of linear algebraic equations.

V. DISCUSSION
There is a degeneracy in the coordinate dependence

of the states; the energies depend on e and p, only in
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the combination (2n —2@+1). This is the quantum-
mechanical generalization of the classical result that the
energy E is (m'+p '+~ 'e'B'A)" where A is the area
of the orbit in the projection perpendicular to the s
axis. Thus one finds from the dehnitions of ED and J,
that

sr[(x—xo)'+ (y —yo)o] =7r[Roo 2(e—B) '(J,—s,)] .

Therefore, the operator

A =n.[Roo—2(eB)—'J,]
is the area of the orbit, with an additional spin contribu-
tion. Eigenvalues of A are oi(eB) '(2)o+1—2/i). Except
for spin complexities, the energy depends only on p, and
the area of the orbit projection.

The nonrelativistic approximation applies when the
energies p.'/m and eB//r/ are small compared to the
rest energy m. On taking the positive roots of E' to
first order only, one finds, as approximations to
Eqs. (15),

and are not stationary states of the problem at any

g value.

APPENDIX A: NONRELATIVISTIC PROBLEM

Here the wave equation is

where the Hamiltonian is

H= (2//o)
—

'oo oo—g(e/2//o)s 8 .

One can use the operators P„J.,=xP„—yP„and Roo

[still defined by Eqs. (6) and (7)] to settle the coor-
dinate dependences. The simultaneous eigenfunctions
are

—i/) m~/21 ml (/)—)—oimipg (p/2)+io—zz
gtsmlA 7

and the eigenvalue properties are

eB
E=m+ p, '+ (2m+1 —2/i),

2m 2m

1 eB
R =/I+ p.'+ (2&+1—2/ )

2m 2m

(16a)

8
)pogooo pz4'pgmtni,

Bs

LA'o. ) =m4'o* )

DOBRO'0 o.ml o = (2/i+1))Po. m)o

eB—(g —2) (a1) . (16b)
2m

E'=pp+m'+eB (2n 2/i+1), — (17b)

and the ~ sign drops out of the second equation. The
states that in the nonrelativistic limit are spin-up and
-down, m, =&1, are the ones that are degenerate at
g=2. At g=2 in the spin-~ problem the degeneracy is
resolved by the operator e ~ as reviewed in Appendix C.
In the spin-1 problem the operator s.~ commutes with

P„J„and Roo, so that simultaneous eigenfunctions of
these four operators may be found. However, in
contrast to the spin-~ problem, these simultaneous
eigenfunctions do not satisfy the wave equation (4)

The & sign in Eq. (16b) is the same & as in Eq. (15b)
and X has been replaced by 2g —1. By comparison with
the nonrelativistic problem, Appendix A, one sees
that the level of Eq. (16a) is for m, =0 and those of
Eq. (16b) are for m, =&1.

For a de6nite coordinate dependence, as specified by
the quantum numbers p„p, and I, and a definite energy
sign, one can ask whether further degeneracy may
occur in this problem. This does happen in the non-

relativistic and spin-~ problems, as reviewed in Appen-
dices A and C, in which cases the further degeneracy is
complete at g=2. In the spin-1 problem there is a
partial further degeneracy at g=2, l), =3; Eqs. (15)
then become

R'= p '+ [1—(eB///i')']-'[/a'+eB(2N —2/+1)] (17a)

In this case m=0, 1, 2, . . . , if m~(0 and e= m~, mg+1,
m~+2, . . . , if m~&0. The Hamiltonian can also be
expressed as

1
P= p, '+

2m

e 8 e8 ge
Eo' ——I,— S B.

2m m 2m

Accordingly, the stationary-state solutions are

4'o, m(mews, &

where x, are the eigenfunctions of s, with eigenvalues
m, = —s to +s, and where the allowed values of the
energy are

1
p 2+

2m
(2/i+1 —2m/ —2m, )

2m

VVhen g=2 the energy depends only on the quantum
number 2n+1 —2p, where p= m~+m, .

APPENDIX B: SPIN-0 PROBLEM

The wave equation is

(~ x +m')/=0.
Stationary-state solutions for the constant-magnetic-
field problem are
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where
HP =i8////r/t,

H=a pp+Pm —(4m) 'e//Pe 8,
and ~ is g—2. A convenient choice of matrices is

/0 eq /1 0 / e Oq

0)' Eo -1' (0 )

where the allowed energy values are given by

E'= p.'+m'+eB(2n+1 2—m/) .

APPENDIX C: SPIN-~~ PROBLEM

The wave equation for the constant-magnetic-held
problem, with Pauli anomalous moment term included,
1s

The simultaneous eigenfunctions are

C1P
—(p, /2)+(1/4) J —I/t+1/2 f 3ei(p,—1/2) q/pe

C2P
—(p, /2) —(1/4)I —

t/t,
—1/2 f 5 i(t/t+1/2) y

e—(p/2)+&P &

(z/2)—+(i/4}1, —n+i/p( X z/n —i/2)z
CBp

~C4p
—(p, /2) —(1/4)J —p,—1/2 f 'i i(p+1/2) y

Their eigenvalue properties are

8
4'iz*un =pzi/'/zg n z

Bz

~z4'pznn =////'yznn z

eBRp'/Iz„, n„= (2n+1)/P„,„„.

(C1)

where e on the right-hand side are the Pauli matrices.
The stationary states for this problem were found by
Ternov, Bagrov, and Zhukovskii2; their results are
reviewed here for comparison with the spin-1 case.

The operators that settle the coordinate dependence
are p, and Rp', as defined by Eqs. (6) and (7), and

Jz —Spy gpz+ p&z ~

Now the following ranges of the quantum numbers
apply: p=~» ~2, ~2, . . . ; v=0, 1, 2, . . . if p& —2;

The substitution
= py, /zne

reduces the problem of finding stationary-state solutions
to a system of linear equations,

m —(aeB/4m) —E
0
pz.—i(2eB)'/'(n —/a+-')

i(2eB)"'
p

0
—m —(//eB/4m) —E.

0 pz
m+ (/ieB/4m) E i (2eB—)'/ —(n /i+ p)—

i(2eB)'/' —m+ (//eB/4m) E—
pz 0

C1

2 0
CB

C4

(C2)

Then the determinant of the coefficients gives the
allowed energy values. The result is

E'= p '+([m'+eB(2n 2///+1—)j'"&KeB/4m}' (C3)

where either sign on the right-hand side is allowed and
where independentJy either sign of square root of E2 may
be chosen. Thus there are four energy values for each
set of allowed values of p„ //, and n.

The nonrelativistic limit of the energy formula is

eB eB
E=m+ —-p, '+ (2n —2p+1) —~ (+-', ) .

2m 2m 2m

Thus the & sign in Eq. (C3) corresponds to m, =Hip
in the nonrelativistic limit.

When I~:=0, g= 2, there is the further degeneracy and
the energy formula simplifies to just

E'= pzp+mp+eB(2n —2/i+1& .

In this case the operator 0.~ provides a convenient
additional label. ' It commutes with p„J„Rp', and H
(when g=2), so it must also be possible to arrange
the solutions of the problem as eigenfunctions of
e pp. One introduces the functions /P~, „„„asthe special
case of the functions P„,iwnhe thne c's are restricted by

ir Wrz unz/ /'pn unz/ ~

The eigenvalues are easily found to be

g= &Ppz'+eB(2n 2/+1)]'/'—
and the constants to be related by

cp/ci=c4/cp=i(2eB) '/'(p, —r/) .

Stationary-state solutions of the problem when g=2
are then determined up to a normalization constant by
the quantum numbers p„p, n, sign of p, and sign of E.
Equations (C2) simplify in this case to give simply

c///ci=i/ '(E—m) .


