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and the presently available data. "
(8.10)

IX. CONCLUSIONS

We have succeeded in ending solutions to the model
for E-~ scattering which are approximately unitary at
low energies and satisfy s-I crossing exactly; the

at this energy has the opposite sign, we do not have
strict factorization for the p contribution, as we already
observed in the x-m charge-exchange scattering. The
asymptotic E-w total cross section is 4 mb, which can
be compared with the value of = 11 mb obtained from
factorization using

on-mass-shell predictions were in satisfactory agreement
with the data, and the scattering lengths were close to
those obtained from current algebra. Apart from a
change in the over-all coupling constant, the same
parameters were then used to predict the low-energy

scattering and the crossing-symmetric solutions
were found to be approximately unitary up to 900 MeV,
and satisfactory 6ts to the available data (see Table V)
were found except in the case of the charge-exchange
data; however, the latter data are still open to question
due to the difhculty in measuring the cross sections for
this process accurately, and further experimental in-
formation is required. The predicted on-mass-shell
forward-backward asymmetry fitted the data very well,
and the predicted scattering lengths at threshold were
in good agreement with various analyses of the data
and the results of current algebra.

The general conditions below threshold that follow
from crossing symmetry and positivity were investi-
gated and found to be well satisfied. The calculation of
the high-energy x-m and K-x scattering showed that the
Pomeranchukon amplitude described the low- as well as
the high-energy region satisfactorily; the charge-
exchange scattering at high ener gy displayed the
"nonsense" dip correctly, and the total cross sections
were found to be of the order of magnitude expected in
the asymptotic region.

If we could succeed in extending the model to the
resonance region at intermediate energies by some
satisfactory procedure of unitarization, then we could
claim to have an approximate description of ~-m and
E-m scattering valid in the whole energy range, con-
sistent with the basic principles that we believe a
model of strong interactions should possess.
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The polarization of the recoil proton in the elastic scattering of unpolarized electrons and protons is cal-
culated to order a', retaining only the elastic intermediate state in the unitarity sum that occurs. The result
is therefore expected to correspond closely to the physical situation for electron laboratory energies up to
the region where pion production becomes important. Using the "dipole 6t" for the proton form factors
Q@ and G~, the maximum value of the polarization is found to be 0.03% for electron energies below 400
MeV. Above 10 GeV, the maximum elastic e8ect is ~1jo.

I. INTRODUCTION

'N the one-photon-exchange approximation, the scat-
' - tering of unpolarized electrons by an unpolarized

proton target gives no polarization of the recoil proton

*Now at the California Institute of Technology, Pasadena,
Calif. 91109.

(see Sec. &I, for example). Any nonzero polarization of
the recoil proton, transverse to the scattering plane,
must arise from interference of higher-order amplitudes
with the one-photon amplitude. We are interested in
the contribution from the two-photon-exchange ampli-
tudes of Fig. 1. There will be such diagrams for each
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allowed intermediate hadron state (p, 1V*, E*z., etc.),
and each of the corresponding amplitudes can contri-
bute to the polarization. It is not possible at present to
calculate exactly the total contribution of these dia-
grams, but there have been several theoretical attempts
to estimate the contribution from these inelastic inter-
mediate states. ' ' These calculations suggest that
hadronic effects do not enhance the polarization sig-
ni6cantly above its intrinsic order of magnitude n. De-
spite the smallness of the effect, it is of interest to cal-
culate, to lowest order in e, the contribution to the
polarization from the elastic intermediate state, using
the experimentally measured form factors Gz and G~,
in the proton electromagnetic current. This will be the
only contribution to the polarization at energies below
the pion threshold ( 140 MeV electron energy in the
laboratory), and will remain a good approximation until
pion production contributes noticeably to the cross
section ( 340 MeV). At high energies, this elastic con-
tribution will only be one of many similar contributions
from all the possible intermediate states.

Barut and Fronsdal' have calculated the polarization
in p-e scattering —i.e., for two structureless "Dirac"
particles —and Guerin and Piketty, ' who calculated the
contribution of two E* intermediate states to the pol-
arization in e-p and p-p scattering, also quoted one
numerical result for one particular case for the proton
intermediate state, using Clementel-Villi-type form fac-
tors for the proton. Here we present details of the cal-
culation of the elastic contribution to the polarization
in e-p scattering for arbitrary form factors, and give
results for a "structureless" proton and for a "realistic"
proton with the experimentally observed dipole form
factors.

Towards the end of this calculation, a paper appeared
by Arafune and Shimizu' which was also concerned
with the elastic contribution to the polarization in e-p
scattering. Because of certain approximations made in
their calculation, their results do not correspond directly
to the physical situation. This is discussed in detail in
the later sections.

VJe remark here that since we assume time-reversal
invariance for elastic e-p scattering, measurement of the
polarization of the recoil proton produced in the colli-
sion of unpolarized initial particles, is equivalent to

' S. D. Drell and M. A. Ruderman, Phys. Rev. 106, 561 (1957).
~ S. D. Drell and S. Fubini, Phys. Rev. 113, 741 (1959).
g N. R. Werthamer and M. A. Ruderman, Phys. Rev. 123, 1005

(1961).' D. Flamm and W. Kummer, Nuovo Cimento 28, 33 (1963).
~ F. Guerin and C. A. Piketty, Nuovo Cimento 32, 971 (1964).' S. D. Drell and J. D. Sullivan, Phys. Letters 19, 516 (1965}.' G. K. Greenhut, Phys. Rev. 184, 1860 (1969).
8 J. Harte, Phys. Rev. 1'll, 1832 (1968).This calculation uses a

specific bootstrap model for the vertex functions and suggests that
two-photon effects are surprisingly large at large momentum
transfer in this model.

9 A. O. Sarut and C. Fronsdal, Phys. Rev. 120, 1871 (1960).
«o J. Arafune and V. Shimizu, Phys. Rev. D 1, 3094 (1970).

FzG. 1.Two-photon-exchange
graph: shaded region indicates
excited intermediate state at
the nucleon vertices.

II. THEORETICAL FORMALISM

We use a covariant formalism similar to that used by
Bilen'kii and Semikoz'2 in their calcuIation of the asym-
metry in z-e scattering. Our notation is as follows (see
Fig. 2):

p'= p"=3P
where k and k' are the electron's initial and final four-
momenta, respectively. p and p' are the proton's initial
and final four-momenta, respectively. s is the covariant
spin four-vector of the recoil proton: It reduces to a
spatial unit vector in the rest frame. We define

Q=k+p, 6=k —k',
I'= p+p', E=k+k'.

The normal to the scattering plane can be de6ned
covariantly:

s"= e""~'k„kp'p, (eog2g=+1),

which reduces in the lab system to

&=M(kXk'), n'=0

This direction is taken to be the positive y direction, and
k, k', p', p are taken all to be in the xs plane. For pol-
arization transverse to the scattering plane, therefore,

Fro. 2. Electron-proton
scattering: notation

P p

«'R. H. Dalitz, Proc. Phys. Soc. (London) A65, 175 (1952);
L. Wolfenstein and H. Ashkin, Phys. Rev. 85 94/ (1952).» S. M. Bilen'kii and V. S.Semikoz, Yadern. Fiz. '7, 107 (1968)
Lsoviet J. Nucl. Phys. r, 79 (1968lj.

measurement of the asymmetry in the scattering of un-
polarized electrons by polarized protons. "

The plan of the paper is as follows. In Sec. II we give
details of our covariant polarization formalism. An ex-
pression for the elastic contribution to the polarization
is derived, using the unitarity relation. Section III con-
tains details of the claculations. In Sec. III A we brieQy
discuss the trace calculation —the results are given in
the Appendix. Section III B contains~a detailed expla- '

nation of the cancellation of the infrared divergence in
these polarization calculations, and Sec. III C gives
details of the form factor parametrizations and also a
discussion of the results of Arafune and Shimizu. Our
conclusions are summarized in Sec. IV.



A. J. G. HEY

we can define

Obviously,
s p=s k'=s p'=s. k=O.

(2)
Pn

FIG. 3. Elastic intermediate
state: notation.

Note that this definition of the normal to the scatter-
ing plane is opposite to that of the Basel convention,
according to which the normal should be defined n~
~kXp'. Here we have defined the normal using the

initial and final momenta of the same particle (as used
in Ref. 13).The transition matrix element is defined by

Sq; hq;+i——(2or)4b'(p+k p' k—')E)—N, Tg;, (3)
with

M)s q
"' ( Mu) "'

po'ko'J (poko~

%e use the metric, spinor normalizations, and Dirac
matrices of Bjorken and Drell. '4

For spin-~ —spin-~I elastic scattering, the T-matrix
element can be written

Tg, u. (k')u~(——p')ORu. (k)u„(p), {4)

where OR is a matrix in the combined spin-space of the
electron and proton, and u~(p), etc. , are the usual Dirac
spinors. %ith the assumption of parity- and time-rever-
sal invariance, 5R can be written in terms of six scalar
amplitudes. "The transverse polarization of the recoil
proton is given by

Tr(~,sA(P')A(k')BRA(P)A(k)BR]P=
TrLA(P')A(k')BRA(P)A(k)OR]

On making an expansion of OR in powers of n,

K=Ki+Ko+
Eq. (6) gives immediately that ORi=ORi. It is then easy
to prove (essentially using the fact that K+=K where
Ka has the y matrices written in reverse order), that
the lowest-order contribution to the polarization results
from an interference between 5R~ and OR~.'

IoP =TrLyosA(p')A(k') (ORo —BRo)A(p)A(k)ORi]

d'k d'p
= (+i) (2or)'8(Q —p„—k„)AT„'

(2n )' (2.or)'

XTrtposA(p')A(k')K,

XA(p„)A(k )ORiA(p)A(k)ORi], (8)
where

Io= Trr A{P')A(k')BRiA. (P)A(k)ORi]

and we have used the unitarity relation for (ORo —ORo).
This is the basic expression for our polarization calcula-
tions. OR& is just the one-photon-exchange amplitude
for e-p scattering and is given by the Feynman rules"

The standard form for the proton current r„(iP) is'i

where yok acts only in the Proton sPin-sPace. A(P), etc.,
are the positive-energy projection operators A. (p)
= (P+M)//2M. Unitarity of the 5 matrix gives the
following condition on OR:

where

LG~(A') —G~(A')]
r„(A)=G (A)v„— P„

2M(1+ r)
=A {A')y„+B(A')P„, (10)

A(k')A(p') $K—OR]A(k)A(p)

= (+o)g(2~)'S'(P+k P„—k„)A „o—
XA(k')A(P')KA(k„)A(P„)ORA(k)A(P), (fi)

where only the elastic intermediate state has been in-
cluded in the unitarity sum, and four-vectors k„and p„
of the intermediate electron and proton, respectively,
have been defined; see Fig. 3.

For the two-particle intermediate state,

d'k„d'p„

(2or)' (2m.)'
"T.Powell et al. , Phys. Rev. Letters 24, 753 (1970).
14 J. D. Bjorken and S. D. Drell, Relativistic Quan&vs 3IIe-

chanics (McGraw-Hill, New York, 1964).
~' The covariant M.-function approach for fermion-fermion

scattering is treated in all generality by B. H. Kellett, Nuovo
pimento 56A, 1003 (1968). References to earlier work are given
there.

r = Ao/4Mo. —
Thus the traces now factorize into traces in the electron
and proton spin-spaces:

Trf~,sA(p')A(k')K, (A,o)

XA(p.)A(k„)K,(A,o)A(k)A(p)K, (Ao)]

{ee~)' 1 1
T,"" T „„„(11)

A'Bromo' (2M)o (2p)'
where

T"" =T L(&'+»"(&-+ )."{&+»],
n„„p

—Tripos(P'yM) r„(Ao')
X(P +M)r. (A)')(P+M)r, (A')],

~6 The Feynman rules are given for 8-matrix elements in Ref.
14:The T-matrix element is extracted according to the definition
in the text.

~7 Form factors Fq and Pm and their relation to Gg and G~ are
defined, for example, in Ref. 14, p. 245.
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and we have defined

62=k' —k, P,=p'+p~,
61=k—k, P1=p+p .

III. CALCULATIONS

A. Trace Calculations

The traces were evaluated in covariant form before
attempting the integration. Using the shorthand nota-
tion A =A (6'), A1=A (hP), and so on, there are eight
separate contributions to the proton trace arising from
the eight combinations AA~A~, BA jA2, etc. The actual
trace calculation is quite straightforward although very
long and tedious. To simplify the calculations, terms
proportional to the square of the electron mass p' have
been neglected. The explicit results are given in the
Appendix, together with some useful trace identities.

In general, the A and 8 terms of the proton current
have a diferent LV dependence, and all eight terms must
be integrated separately. In Ref. 10, A and 8 were taken
to have the same 6' dependence: The three "A'8"
terms, and the three "Ah"' terms could then be added
together before integration. The reported experimental
behavior of G~ and G~" does not suggest that A and 8
have the same 6' dependence.

As a check on our calculations, the result of Ref. 10
was verified by adding the three "A'8" terms and the
three "Ah"' terms. "This result is a special case of our
calculation" which applies for any LV dependence of Gz
and G~.

The denominator trace is just that involved in the
Rosenbluth cross section.

B. Integrations and Infrared Divergence

The integrations are most easily performed in the
c.m. system (see Fig. 4).The ir, k' plane is the scattering
plane and, in general, k is not coplanar with k and k';
furthermore,

k+p=k +p„=k'+p'
and ~ir~ = ~k'~ = ~k

~

=k for elastic scattering; also,

iP = —2k'(1 —s), where k k'= k's= k' cos8. (12a)

Similarly,

Ap = —2k2 (1—s1) and hp = —2k2(1 —s2), (12b)

"J. G. Rutherglen, in I'roceed&sgs of the International Syns-
posiurn on Electron and Photon Interactions at High Energies,
Lieerpoo/, England, 1969, edited by D. W. Braben and R. E.
Rand (Daresbury Nuclear Physics Laboratory, Daresbury,
Lancashire, England, j.970).

'~Note that the symmetry of the integral has been used to
simplify one term in the expression quoted in Ref. 10 as being
the result of the trace calculation.

'0 The term proportional to A IA2A is the trace required for the
polarization of two Dirac particles with no anomalous magnetic
moments. This term was also calculated keeping the electron
mass terms, to compare with the result of Ref. 9. The expression
obtained for the polarization in this case is identical with the
result of Barut and Fronsdal except for the over-all sign. We
believe the sign given here to be correct.

k'= (w, k')

k = {w,k) —
p = {E,-k}

p'= (E,-k )

Fro. 4. Notation for the c.m. system.

where

and

s2 ss1+ (1—s ) I (1—s ) ~ cosy

k.= (k,e,,y) —= (k,n„),
sy= cos8y, 32= cosg2.

(12c)

With the aid of the 8 function, the intermediate-state
integration reduces to an angular integration in the c.m.
system:

Q (22r)484(Q P„k„)—cV ' ——+ dQ„.
(22r) 2(E+cv)

We require integrals of the form

F(6P ~22)
dQ„

2+ 2
(13)

where F is some known function of h~' and 5P. All the
required nontrivial integrals can be obtained from the
basic unitarity integra12'

Ty) T2&1.
(2 1 sl)(22 s2)

(14)

2'See, for example, Appendix E of H. Burkhardt, Dispersion
Relation Dynanrics (North-Holland, Amsterdam, i969).

In our case we require limits such as T& ——T2 ——1, where
the integral diverges. As usual, a small photon mass X

must be introduced into the photon propagators; the
limit X ~ 0 then gives rise to infrared divergent terms.
However, it can be shown that there is no infrared diver-
gence in the polarization. This is easy to show if we
assume that A and 8 are constant; the traces can then
be added and reduced to the result of Ref. 10.This result
can be written in the form

T,T„=(skk'k„)H+hph22(skk'p) J, (15)

where H and J are polynomials in Ap, 62', k.p, etc.
The symbol (abed) is used here as a shorthand for
Tr(&2abcd) In the uni.tarity integral (13), the J term
clearly gives no divergence. For the JI term, using the
identity (A3) of the Appendix, we obtain a factor

P 2++ 2 g2]/g 2g 2

in the integral. Now, for example, as 5P —+ 0, 5&'~ 5'
and the divergence is cancelled. This result can of course
be verified by detailed integration using the photon mass
X. Thus there is no singularity from the H term also,
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I'Io. 5. One- and two-photon
exchange diagrams for an elec-
tron scattering in a potential.

and the total result is finite. "For our case, where an
explicit (different) d2 dependence is taken for A and 8
(see Sec. III C), the trace cannot be written in the form
of Eq. (15). However, if we consider the terms not of
the form of Eq. (15) and evaluate the integrals using a
finite photon mass A, in the photon propagators, in the
limit A. —+ 0 the divergent terms cancel explicitly.

The explanation" for this cancellation of the infrared
divergence is most easily illustrated by considering the
analogous problem of the polarization of an electron
scattered by a potential. Again, the lowest-order pol-
arization arises from an interference of the first Born
amplitude with the two-photon-exchange amplitude
(see Fig. 5). Dalitz'4 has shown that the infrared diver-
gence in the two-photon graph can be isolated into a
term proportional to the first Born amplitude. To this
order in n, the divergence acts like a phase factor for the
first Born amplitude, and it is precisely because of this
that there is no divergence in the polarization. In the
two-component spinor formalism (totally relativistic,
of course),

T~; x~~~x, ,

and we make an expansion of M in powers of o, ,

The infrared divergent term in M&') is purely imaginary
in this case and proportional to M"). Thus we may
write

2illr 2 =Q2~ (2)+ZA2y() 2)~(1

where 3f) (2) is finite and (((()P) is a scalar function of X'

which diverges as X —+ 0. Therefore we have

3E=uM "'[1+in/()~')]+ Q'3II); (') .

Now M can be written

3E=F+Ze nG,

where m is the normal to the scattering plane.
Consequently,

ilII(i) —f(i)+i(r. ng(i)

M) ( )=f' )+i(r ng( ).

The polarization is sensitive to the relative phase of J
and G and since the divergent phase factor is the same

for both f(') and g"), there is no divergence in the po-
larization to order o,'.

jP~o3 Im[j(i)g (2)++g(i)f(&)]

For the nonstatic case, Tsai" has shown that the in-

frared divergent part of the two-photon-exchange graph
is still proportional to the first Born term. Consequently,
the argument will be the same in this case. Cahn and
Tsai" have recently given a similar explanation for the
cancellation of the divergence in inelastic e-p scattering.
A different explanation, which we believe is inade-
quate, '~ has been offered by Barut and Fronsdal. '

C. Results

The numerical calculations were carried out using the
usual experimental parametrization of the two form
factors

with

This is the so-called "dipole fit" and "scaling law" for
Gg and G~ which is believed to be a good representation
of the experimental data. " Experimentally, /=0. 71
(GeV/c)'.

With this form, after using partial fractions, the inte-
grals can be performed analytically and finite expres-
sions obtained after explicit cancellation of the infrared
divergent terms. The explicit expressions are too long
to be given here: they were programmed and the po-
larizations calculated using a KDF9 computer.

In the figures, the full line curves represent the po-
larization calculated using the experimental form fac-
tors, i e , P= 0..7.1. The broken-line curves represent the
polarization obtained for Gg&(LP) = 1 (P= ~). This can
be considered as some sort of "pointlike" limit for the
proton, although such a limit is rather arbitrary. We
note here that if we take as our pointlike form factors
the definitions Fi(LP) =F2(LP) = 1, then we obtain the
zero in the polarization noted in Ref. 10. Their approxi-
mation is equivalent to parametrizing the form factors
F& and F& by a dipole formula

Fi (g2) F2 (g2) GD (Q2)

The graphs, Figs. 6 and 7, show, respectively, the
behavior of this elastic effect with respect to the c.m.
scattering angle for various electron lab energies, and

'~ A similar argument has been applied for the inelastic inter-
mediate states where, in the limit of zero electron mass, current
conservation restricts the trace to be of the form of Eq. (15).
This is shown in the paper by Guerin and Piketty (Ref. 5), but
there is a misprint in ..Eq. (12) of their paper where a term like
the J term in Eq. (15) of our paper has been omitted. I thank Dr.
Piketty for a private communication concerning these points,
and am informed that the term omitted in Eq. (12) was not
omitted in their calculations.

» I thank Professor R. H. Dalitz for a helpful discussion of his
paper (Ref. 24).

24 R. H. Dalitz, Proc. Roy. Soc. (I.ondon) A206, 509 (1951).

25 Y. S. Tsai, Phys. Rev. 122, 1898 (1961)."R.N. Cahn and Y. S. Tsai, Phys. Rev. D 2, 870 (1970).
'7 4Ve are concerned here with the imaginary part of the infrared

divergence of the two-photon-exchange amplitude. This is propor-
tional to the one-photon-exchange amplitude, and is merely the
second term in the expansion of the Coulomb phase factor, which
is well known in the nonrelativistic limit and arises because of
the infinite range of the Coulomb Geld. The soft-bremsstrahlung
diagrams discussed in Ref. 9 are irrelevant for this type of diver-
gence; the cancellation of this divergence in the lowest-order
polarization is because the phase factor is spin independent.
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FIG. 6. 103)&polarization vs c.m. scattering angle 8 for various electron lab energies (E,). Full curves: p =0.7 1.Broken curves: p = 00 .

with respect to electron lab energy for a fixed scattering
angle.

IV. CONCLUSIONS

It is to be emphasized that these calculations are ex-
pected to correspond closely to the physical situation
up to electron energies where pion production becomes
important. Using the dipole form factors suggested by
experiment, the maximum value of the polarization is
found to be 0.08% for electron energies below 400
MeV. %'e note that at 105 MeV, the maximum value is
about 0.07% compared with 0.06% in Ref. 10 and
0.13% quoted in Ref. 5. The effect of the anomalous
magnetic moment can be seen by noting that at 100
MeV, a "Dirac" proton with a di'pole form factor gives
a maximum polarization of 0.02%%uo compared with

0.07% as calculated above.
The calculated maximum elastic effect rises to about

1% at 10 GeV and remains approximately constant for
increasing energies. This value of 1% is to be compared
with a maximum value of 0.6% obtained in Ref. 10
(which they state is not reliable). At 10 GeV, there will,
of course, be many other intermediate states contribut-
ing in the unitarity sum for the polarization, besides
the elastic state. Guerin and Piketty' have found that
the contributions from E~ resonances could be of oppo-
site sign relative to the elastic contribution. If this is
indeed a general feature, there could be considerable
cancellations between the contributions from the various
intermediate states, and consequently the elastic con-

tribution may represent a reasonable order of magni-
tude estimate even at high energies.

A polarization of the order of 1% is probably too small
to be measured with present experimental errors. To
date, experimental data""" exists for electron lab
energies up to 18 GeV and for momentum transfers up
to about 2 (GeV/c)'. The measurements appear to be
consistent with I'=0."It is to be noted, however, that

1Q~P

8 ~

6 IO IO l8 22 26 gp

ELECTRON LAB ENERGY (GeV)

FrG. 7. 10')&polarization vs electron lab energy in GeV, for
axed c.m. scattering angle 8. Full curve (P =0.71):e=50'. Broken
curve (P= ~}:8=100'.
"H. C. Kirkmann et a/. , Phys. Letters 323, 519 (1970)."It may be remarked that since there are in principle six

independent amplitudes for electron-proton scattering, from a
strictly logical point of view, I' 0 does not preclude the possi-
bility of sizable two-photon-exchange amplitudes since cancel-
lation may occur. The question of a complete set of experiments
to determine the two-photon amplitudes uniquely is discussed in
Ref. 32 (below).
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the cross sections for inelastic e-p scattering in the so-
called deep inelastic region'0 appear to show that reso-
nance contributions are not the most important": thus
the possibility exists that in some kinematic region the
polarization may be much larger than-the elastic effect.

Pote added im proof. Two-photon-exchange effects in

elastic electron-proton scattering have recently been
discussed by U. Gunther and R. Rodenberg LAachen
Tech. Hochsch. report, 1970 (unpublished)) and by
G. Leibbrandt ~uovo Cimento 69A, 153 (1WO)1.
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'5'e require to evaluate the trace product T,T„
= T,&"p.='».,„„where these traces are defined in Sec. II.
The trace products TI-Tvrrr are defined by the
ex@ansi('n

2'' p=-'f A-'2'r+~2~ tf-Trr+&Pt&& rrr

+~". 2A jA Trv+3 2ErETv+ J oA rL 2 vr

+132J3r+Ivzr+ J32f t«2 vrrr ~ (A1)

&'(skpk. ) =~P(skk'p)+ (2«p) (skr„'k„)

It'(spk'«. ) =& (»k'p)+(2« p+~2) {srk'k )
m'( «k'k. ) = (2«„.p) (s«k p)+ {2k.p) (sp««„)

+(2« P+ iP)(»P«.), (A2c)

(A2a)

(A2b)

In the calculation, the following trace identities are
useful (we have made the approximation k'=k"=0,
E2= —6') '

and finally
APPENDIX ~'(Q k)(~t'+~e' —~')

(skk'p) (A3)(skk'k„) =
In this appendix, we summarize the results of the

trace calculation together with some useful identities.
&fore details of these calculations and of the integrals
may be found in Ref. 32. As a shorthand notation, we
use F

41P= 6'LE'Q' —4(Q k)2$

or ease of integration, it is convenient to write the
results in terms of (skk'«) and (skk'p) —Eq. (A3) gives
us some freedom in the actual form of these results.

The results of the trace calculations may be written
in the foll wing form:

g (gp) =g„g (Lg) =A, etc. ,

Tr(p, abcdj= (abed)

a'TN err(skk'k )+&——rr(skk'P)

gr ——Simp(2k p) (ht'+&2') —~'~t'j,

Tv

bvrrr =0-
'0 F. J. Gilma, n, in Ref. 18."A recent paper by E. D. B1oom and F. J. Gilman LPhya. Rev. Letters gg, 1 t4O (type)) j appears tn cast a

elusion.
appears o cRst soIHe doubt on this con

» P. J. 6, Hey, D. Phil. thesis, Oxford, 1970 I'unpublished).

br ——16$I~g'~2'

g„=2{(ht2+Ae')L4M'(4k P—6') —6'(8k P)j—(4k P+6')4D'Q'}
Trr

k» —2L4a, 2a, '(4M' —6')+6'(8k P) (4k P+a') j,
arrr=2(2k P)L4Q2ht2+43P622 4heQ2 (Sk'P)(4k'P+d2)j,

b„,=2L&,. (8~+8k P)-~ {Sk P)(4k P+~)j
tr, =2{(4k p+a')L42'Q'+(4k p)'j+4a'Q'(2k p)+a, '4M'(2k p —a')+a, & 4Q&{2k.pggr)}

Trv
grv=2Lhtahe'(8k P+SM'+46')+Ate(8« P)(4k P+6') —d'{8k P)(4k P+6')j,
&v=~{2(4k pea')pgk p(4k pea')+4M2amj+at2 (4k.pea&) SQryspLSk. p(4@.r 2q2) S~:qq
f =~$46,ea,e(Sk p+SN')+4622(Sk p)(4k p+6')1

&„=~{2(4kp+a&)LSk p(4k p+a')+4M'a&jga, 2LSk p(4M2 2S2) m2Z2—j+q,2—(4k pgg) Sn i. .
Tvl M f~

bvr =uL4a, 'a, '(Sk p+m')+4a, '(Sk p)(4k p+a') j,
gvrr =kg {6' SQ' L (Sk ' p+6')+(6t'+ 52')j}

Tvrr
b„,=u{—2S' {Sk.p)L(Sk p+a')+(~, '+a, '-)]},

„,=a (4k p+4M')L(2(4k. p)'+4Q'a')+4Q'(a, '+Z, )„i,


