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of an n-point production amplitude of the kind pro-
posed in Ref. 26. Now the constant C, in (4.8), is set
equal to zero and we also choose n(s) to be real from the
outset, corresponding to a narrow-resonance approxi-
mation; this guarantees that the n-point model can be
factorized, and that all parameters in the n-point
amplitude can be calculated from a knowledge of the
4-point residue. In this sense, the model constitutes a
"bootstrap" system with a degeneracy of states cor-
responding to n'. Initially, the model only contains
"tree" graphs, but by calculating the loop diagrams,
cuts in w(t) and n(s) will be generated, hopefully rein-
stating the correct analyticity properties for the 4-point
function, and by summing up all the loop diagrams a
complete unitarization of the scattering amplitude can
be accomplished. This kind of program has been at-
tempted for the n-point generalization of the Veneziano
model, ' but the simplest, single-planar dual loop con-
structed gives rise to an integral with an essential end-
point singularity due to the large degeneracy of the
states which circulate in the loop diagram. A somewhat
complicated and arbitrary procedure of renormalization

26 J. W. Moffat, Nuovo Cimento Letters 2, 773 (1969); A. O.
Barut and J. W. Moffat, Phys. Rev. D 1, 532 (1970).

'~ S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969);
K. Kikkawa, B.Sakita, and M. A Virasoro, Phys. Rev. 184, 1701
(1969).

has been introduced to deal with this problem. "In the
model proposed in Ref. 26, the treatment of the dia-
grams follows familiar methods of Feynman graphs,
and since the degeneracy of states in the model is only
e', there are no divergence problems in constructing
loop diagrams. Whether such a program can succeed in
analogy with quantum electrodynamics is still an open
question, but it is clear that a basic solution to the
inelasticity problem appears to be essential in strong
interactions. One interesting question arising in connec-
tion with such a method for unitarizing the model is
whether the corrected &ajectory will turn over at large
energies, in the way assumed for the n(s) in our model
for the 4-point amplitude, or whether it will rise indefi-
nitely to infinity. This is the kind of fundamental
question that could be answered by a basic treatment of
the unitarity problem.
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A model for meson-meson scattering satisfying the Mandelstam representation, crossing symmetry, and
Regge behavior and including a Pomeranchukon amplitude is applied to 7r-~ and E-~ scattering. Solutions
are found for the E'-x partial waves that satisfy unitarity approximately at low energies, give a satisfactory
fit to the on-mass-shell data, and predict scattering lengths consistent with current algebra. Apart from a
change in the coupling constant, effectively the same parameters are then used to predict the low-energy
m-~ scattering, and the solutions are found to satisfy unitarity approximately up to 900 MeV. The predicted
on-mass-shell results agree well with the available data. The general conditions below threshold for m-w
scattering that follow from crossing symmetry and positivity are well satisfied. The extrapolated ~-~ and
E-m amplitudes off the mass shell are found to agree satisfactorily with the data for ~N —+ w~N and
gN —+ E~& when a phenomenological form factor is used in the extrapolation. The total and differential
cross sections at high energy are found to have characteristic Regge behavior. The Pomeranchukon ampli-
tude produces total ~-w and E-~ cross sections consistent with factorization in the asymptotic region.

I. INTRODUCTION

A MODEL for x-m scattering has been developed by
one of us' in which the scattering amplitude

satisfies the following properties: (a) Mandelstam

*Supported in part by the National Research Council of
Canada.' J. W. Moffat, preceding paper, Phys. Rev, D 3, 1222 (1971).
This will be referred to in the text as Paper I. See also, Nuovo
Cimento 64A, 485 (1969).

representation; (b) crossing symmetry; (c) resonances
in all nonexotic channels; (d) Regge behavior in all
channels; and (e) the Adler condition.

The Pomeranchukon is incorporated in the model as
a nonresonant, diffractive background satisfying cross-
ing symmetry. The Regge trajectory corresponding to
the exchange-degenerate p f' mesons is assu-med to rise
linearly to high energies and then turn over and tend
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to a 6nite constant in the asymptotic region, In view of
the nonlinear nature of this trajectory, the model has
a Qnite number of resonances and daughters. The
amplitude describes a "generalized interference" model
and divers from a narrow-resonance model, such as the
Veneziano model, ' by possessing the unitarity cuts for
two-body scattering corresponding to the Mandelstam
representation. The Pomeranchukon amplitude, de-
scribed by background cuts consistent with Mandelstam
analyticity and crossing, falls naturally within the
scheme of such a model, and we find that it plays an
important role at low as well as high energies.

It is in the problem of spinless meson-meson scatter-
ing that we hope to find a complete solution; problems
such as parity doublets in fermion-meson scattering are
at present unresolved within a crossing-symmetric
scheme. However, the most difficult question we are
faced with is how to impose unitarity on the model
while preserving crossing symmetry exactly. The
difhculty arises because of the essentially nonlinear and
many-body nature of the unitarity equation. If a solu-
tion of the unitarity principle can be implemented, then
the model would conceivably represent a unique solution
for meson-meson scattering. In Paper I, it was shown
that by neglecting terms of order m ', and unitarity
effects, the model was consistent with the current-
algebra results at threshold provided the magnitude of
the scattering lengths was fixed by identifying the model
with the Weinberg' amplitude —consistent with (e)
above.

In the following, we apply the model to m-z and IC-m

scattering by searching for solutions that are approxi-
mately unitary at low energies. The parameters are de-
termined by seeking absorption parameters g that lie
in the interval 0~&q~& 1. This uniquely determines the
parameters for, say, E-z scattering, gives a good fit
to the on-mass-shell E-m data, and predicts E-m scat-
tering lengths in agreement with current algebra. With
eGectively the same parameters (apart from a change
in the coupling constant), the ~-7r scattering is then
predicted and found to be approximately unitary up
to 900 MeV, and to provide a good description of the
available low-energy data; the scattering lengths are in
close agreement with current algebra and chiral
SU(2)SSU(2). The general conditions on n'-m' scat-
tering obtained. by several authors below threshold are
well satisfied.

Because the calculations performed are only valid at
low energies —below the fo meson —or at high energies
where unitarity is not crucial, we included only one
satellite term. In order to extend these calculations to
the intermediate energy range, we must include the
co~, EK, and NX coupled channels and further satel-
lites. No attempt is made to carry out such a program
in this paper. We used the low-energy parameters to

' G. Veneziano, Nuovo Cimento 5'TA, 190 (1968).' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

predict the high-energy x-m and K-m scattering, in-

cluding the effects of the Pomeranchukon, and find
total cross sections of the expected magnitude in the
asymptotic region and differential cross sections with
the characteristic Regge behavior. Thus, low- and
high-energy meson-meson scattering are provided a
unified description within the model. A complete solu-
tion of the problem must await a satisfactory treatment
of the dificult intermediate resonance region.

The processes xÃ —+ x~N and EN ~ExN are
studied by extrapolating the ~-~ and E-x amplitudes
off the mass shell. In terms of a phenomenological form
factor, good fits to the data are obtained for the Chew-
Low extrapolations of the total and the diBerential cross
sections; also the on-mass-shell forward-backward
asymmetry is well fitted.

The paper is organized as follows. In Sec. II, the
kinematics and amplitudes for x-m and E-x scattering
are discussed; in Sec. III, the specific model for the
Pomeranchukon amplitude is presented. In Sec. IV,
the parameters for E-~ scattering are determined by
our unitarization procedure and the results are com-
pared with the data. The calculations for ~-x scattering
are then presented in Sec. V and the results are com-
pared with the low-energy data. In Sec. VI, the posi-
tivity and crossing conditions below threshold are
studied, and in Sec. VII, the o6-mass-shell calculations
are described for both ~N —+xxX and EN —+EON
scattering. The high-energy scattering predicted by the
model is then discussed in Sec. VIII. Finally, in Sec. IX,
we end the paper with concluding remarks.

Sr; br;+i(2~)'——8(pr p;)Tr;—
and the scattering amplitude f(s,8) by

f(s,8) = (l/Sn. gs) 2'. (2.2)

The isotopic-spin amplitudes fr(s, 8) can be expanded
in a sum over partial waves:

arith

f'(s, 8) =P (2i+~)f,'(s)P&(cos8),
L=O

(2.3)

1

fP(s) = — fr(s, 8)Pt(cos8)d cos8. (2.4)
2 —1

In w-w scattering, t-.be partial-wave expansion of the

II. KINEMATICS AND SCATTERING
AMPLITUDES

We summarize for the sake of completeness the basic
kinematical notation and properties of the amplitudes
discussed in Paper I.Let us define the T matrix in terms
of the S matrix by
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isotopic-spin amplitudes is where Frc*(s,t) =F~*(t,s). The amPlitude F,r-'" is
uniquely determined by s-I crossing symmetry to be

fr(s, 8) = P (2l+1)fg(s)P~(cos8)[i+( —1)'+r], (2.5)
L=O

F,' '~'== ,'Fr-c*(s, t) ',—FJ—r~(u,t) . (2.12)

where the extra factor is due to Bose statistics.
We unitarize the partial waves fP(s) and set

f r(s) (~ rcoio(~ 1)
2$g

which implies that the elastic unitarity equation (for
the absorption parameter g equal to unity) is

Imf~'(s) =el fi'(s) I'. (2.7)

The total invariant amplitude is defined by

A (s, t,u) =F,,rco'(s, t,u)+P (s, t,u), (2.8)

where F, and F~+ denote the amplitudes for x-~ and
K-o. scattering, corresponding to p, f and K*, E**ex-
changes, respectively, while PI denotes the Pomeran-
chukon amplitude.

Amplitudes of definite isospin for m-~ scattering are
determined in the s channel by' '

Let us consider the Pomeranchukon isospin ampli-
tudes. We demand, as in x-m scattering, that the
Pomeranchukon is an I=0 object and, therefore,
P ='I'(s, t) and P ='I'(s, t) must have no poles in s. The
most general form we may write for Pr "' is

P ='~'=aA p(t, u)+bA p(u, t)
+cA p(u, s)+dA p(t, s) . (2.13)

Then P ='~' is determined from crossing symmetry to be

P ='"=o2[aA p(t, s)+bA p(s, t)

+cA p(s, u)+dA p(t, u)]
,'Pa—A -p(t,u)+bA p(u, t)

+cA p(u, s)+dA p(t, s)]. (2.14)

Absence of poles in P ='" implies that b =c=0.
Consequently,

P ='~' = (—'a ——'d) A p(t s)+(—'d ——'a) A p(t u)2 2 & 2 2 1 I (2 15)
P ='"=aA p(t, u)+dA p(t, s).

A, =' = ,'[F,(s,t)+F-,(s,u)] ,'F,(t,u)—-
+A p(t,s)+A p(t,u)+A p(u, s)

+A p(u, t)+3[A p(s, t)+A p(s,u)],
A, r=' =F,(s,t) F,(s,u)+A—p(t, s)

+A p(t, u) —A p(u, s) —A p(u, t),
A.'='=Fp(t, u)+A p(t, u)

+A p(t, s)+A p(u, s)+A p(u, t),

(2 9)

=A p(t, s)+A p(t, u) .

The crossing matrix relating s and t channels is

(2.16)

The Pomeranchuk theorem demands that P ='I'
=P ='" at asymptotic energies. Therefore, c=d, and
absorbing the remaining constant into A~, we get in
the s channel

p I=1I2 p I=3/2
8 8

where F,(s,t) =F,(t,s). Then various charged-pion
processes are given by

(w'n'~ n'm'} =-',A'+ ',A', -
fn."n. ~~+n. }=-',A'+ ,'A'+ ',A'--

o ~~+~o}=-,'(A'+A')
(n.+~ -+~'n'} =-,'(A' —A )

(m+n. +—& n.+s+}=A'.

(2.10)

The scattering amplitude is related to the ~-~ invariant
isospin amplitude A by

f'(s, 8) = (1/16~ps)A'(s, t,u) . (2.11)

In K-m scattering there are two values of the isospin
I=

~ and I=2 in the s and I channels. The absence of
exotic resonances in the I=~3 channel permits us to
write in the s channel

F,r="'=Frc~(u, t),
4 J. Shapiro and J.Yellin, Yadern. Fiz. 11,443 (1970) I Soviet J.

Nucl. Phys. 11, 247 (1970)); J. Shapiro, Phys. Rev. 179, 1345
(1969); A. Yahil, ibid. 185, 1787 (1969); C. Lovelace, Phys.
Letters 28B, 265 (1968);E. Del Guidice and G. Veneziano, Nuovo
Cimento Letters 3, 363 (1970).

(2.17)

Applying crossing gives

P]I='——0

P,r=o= —'+6l A (t,s)+A (t,u)]. (2.18)

Thus the total isospin amplitudes in X-x scattering in
the s channel are

A ='"=$Frc~(s, t) oF~~(u,t)—
+A p(t, s)+A p(t,u), (2.19)

A ='"=F&~(u, t)+A p(t&s)+A p(t, u) .
In K-m scattering the invariant amplitude is related to
the scattering amplitude by

fr(s, 8) =(1/Sees)Ar(s, t,u). (2.20)

In the model' the amplitudes F,(s,t) and Frc~(s, t),
including the first satellite, are given by

F,(s,t) = —yp(s) I'(1—n, (s))
&&Pw, (t) &')+d w, (t)"(') ']+(s~ t), (2.21)
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where the nonhnear trajectory n, (s), corresponding
to p fP -exchange, is given by

where

7[n, (s) —p] exp[ —
g&).,'(s)]

yp(s) =-
[1+xp(s)]" (2.23)

x,(s) =(4m '—s)'"/A. . (2.24)

The constants y, g, h., and q are positive and A. is chosen
large; in the calculations the specific choices of 6 and A.

are unimportant. The function w, (s) is given by

r&)~(s) =A+Bs+C(16m —s)'I (2.25)

As explained in Paper I, the analyticity requirements
demand that A&0, 8&0, and C&0. The function
rc),(s) associated with the satellite term will differ from
w, (s) because of the constant A. As the function
y„(s)=0 at s=m ', it follows that F„(m ',m ') =0 and
the Adler condition is satisfied.

The amplitude Fx~(s, t) is given by

Fx (s,t) = —~x*(s)r(1—x*(s))
X[r&) (t)~+*&~)+dry) (t)~x*&~)-&]

—v, (t)r(1—,(t))
&([r&))r*(s) ~&')+d~r&)gx~(s) p&') ']. (2.26)

The trajectory nx~(s) is

bs c)r'[(mx—+m )'—s]"'
nx" (s) =&)x'+ — — — -- = —— . (2.27)

(1+[((mx+m ) P —s)/Z])t Pj P

The condit)ons Renrc*(mx~') =1, nx*(mx') = p and the
knowledge of the total width of the K* resonance
determine the constants to be a~+=0.314, c~+=0.061
GeV ', and nx+(0) =0.28. Moreover,

7[ (s) ——,'] exp[ —g *'( )]
axe(s) = — — — — — —, (2.28)

[1+~x (s)]"
where

ex~(s) = [(m)r+m )'—s]"'/A. (2.29)

At the point s =u =m~' the trajectory satisfies
n)r*(mx') =

p and yx+(m)r') =0, so that Fx*(mx',m ') =0
and the Adler condition is satisfied. The function r&))r*(s)

is given by

r&)z&(s) =A+Bs+C[(mrc+2m )'—s]'t' (2 30)

' S. L. Adler, Phys. Rev. 13'7, B1022 (1965); 139, B163 (1965);
140, B736 (1965).

bs —cp(4m '—s)"'
c&p(s) =&sp+ = —= — (2 22)

(1+[(4m-'—s)/~]"') '

The condition Ren, (m, ') = 1, the Adler' condition
&r, (m ') =-,', and a knowledge of the total widths of the
p, f', and g mesons gives a=0.51, b=0.838 GeV ',
cp =0.107 GeV ', 6' '= 100 GeV; this leads to the inter-
cept n, (0) =0.48. Moreover,

where the cut begins at the first inelastic threshold
(mx+2m )'. The function wax~(s) associated with the
satellite term will differ from rt)rc+(s) by virtue of the
parameter A. The same parameter 8 is used in both
processes and is chosen to be the negative of the
universal Regge slope 0.84 GeV '. This gives the
correct s dependence of the amplitude at high energy,
(—s/sp) &'), as )B~ =1/sp.

Ar(t, s) =yp 8+X(s mpP)—
s' " x—R xq "~«) dpp

g x spj x'(x—s)
(3.2)

III. MODEL FOR POMERANCHUKON
AMPLITUDE

The requirements for a model of the Pomeranchukon
amplitude were discussed in Paper I. However, we find
it more convenient to use an alternative model for
Ar (s,t) in the present calculations. We must include
the Pomeranchukon contributions to the m-x and E-m
scattering for two main reasons:

(1) A Pomeranchukon is exchanged in the t channel
with I=O in both m-x and E-m. scattering; hence it
contributes a dominant term in the s-channel total
cross sections at asymptotic energies;

(2) In ~-pr scattering, the s-channel amplitude F,r='

(and in E-)r scattering the s-channel amplitude Frr~r ='")
is purely real for all s above threshold. This implies
that there is no scattering in these channels if unitarity
is satisfied, and this prediction is obviously wrong.
Thus, the Pomeranchukon must contribute an imagi-
nary part to these channels.

Let us consider the properties that our model for the
Pomeranchukon amplitude must satisfy:

(i) Unitarity demands that it have a positive imagi-
nary part in all partial waves from threshold, s=R, to
in6nity [where R=4m ' for ~-n. scattering and
R= (mrc+m )' for E sscattering]. -

(ii) The imaginary part must be zero at threshold.
(iii) The Pomeranchukon amplitude for any isospin

must become purely imaginary at high energies, and
must behave like (s/sp) ~&') as swapo, where sp 1 GeV'
and n~(t) is the Pomeranchukon trajectory.

(iv) The Pomeranchukon amplitude must satisfy the
Adler condition for both x-x and E-m scattering.

(v) It should have Mandelstam analyticity; in
particular, it should be cut in the region E&&s~& ~ and
should satisfy a dispersion relation.

Let us now proceed to derive A r (t,s). We require that

ImA ~(t,s) (s—R) (s/sp) N~&" '. (3.1)

We assume that AJ (t,s) satisfies a twice-subtracted
dispersion relation
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where D and K are the subtraction constants. In fact

A p(t, 0) =D K—mp',

A p'(t, 0)=K,

The evaluation of the hypergeometric function is
quite straightforward. For l s

l (R, F can be written as
a rapidly convergent Gauss series and A p(t, s) becomes

g~p«) —' s'
+

r(2 —np(t)) s, 't'&

1 t'sz
-p L3—n p(t)+pt]L2 —n p(t)+ps] ER

(3.8)
bgt

np(t) =1+
(1+l (16m.' —t)/L]'t'}'

(3.4)

For lsl =R, this sum can be performed explicitly. By
usingWe choose bp to be the universal value b~=b=0.85

GeV '. The turnover point sp=A is chosen to be the
same as for the p f' traje-ctory: 6't'=100 GeV. We find
that the calculations are insensitive to both b and b, ;
for example, a change in b from 0.4 GeV ' to 0.8 GeV '
changes the low-energy phase shifts by less than 10/q.

In order to evaluate the integral (3.2), we let
1/y= x/R. Then

r(&)r(v ——p)
F(;tt;y, 1)=

r(,—)r(,—p)
(3.9)

we get

Ap(t, R) =yp D+K(R —mp')

1 1 t'R~ "t'&-

pr r(3—np(t)) k sp)
(3.10)

1) Pt'& s'
Ap(tps) 7p D+K(s rlpp')+R—~ '" ' —

l

so] x Finally, for
l sl )R, we use the transformation formula

where mo=ptt for pr-pr scattering and mo ——mlr for K-pr p(tP) =yp D+ (s—~o')mgf
scattering. Then the Adler point corresponds to s =mo'.
Note that we have the option of making D and K
functions of t; however, this will not be required in
our work.

The Pomeranchukon trajectory is given by

This is the integral representation for the hyper-
geometric function

X (1—y)l 1——y l
y' ""'dy .

s ) ' F(ab')c~s
o ~ R ) - r(c)r(b-a)

(—s)- Fl a
r(b)r(c-a)

1—c+a; 1 b+a, —l-
s)

r(b)I'(c —b)
F(a; b; c,s)

I'(c)

tt '(1 t)' '(t1—ts) 'dt, —(3.6)

where Rec) Reb) 0. The latter restriction implies
a~&2, but this will be removed as discussed below.
Thus, we have

(-s)-PFl b;1 c+b;1 a+-b, ——
l

I'(a) I'(c—b) k s)

(3.11)

to perform the analytic continuation. By using the
Gauss series again, we evaluate these new hypergeo-
metric series (l1/sl (1):

1 1 t'R
A p(t, s) =yp D+K(s moo)+ ——

I'(2 —np(t)) pr ksp

Ap(t, s) =yp D+K(s rloo)—
R ' 's'F(1; 2 —np(t); 4 np(t), s/R)—

L2- (t)]L3— (t)]
(3.7)

ts~ - 1 tRq

~R) =p (n 1+pt)(n——2+g) k s )

(—$ '+P(&) (
1—— . (3.12)

sinprnp(t) 4 R E s
There are simple poles in (3.7) as a function of t for
n p(t) =2,3, . . . . Since no resonances have been observed
on the Pomeranchukon trajectory, we remove these by
dividing F by r(2—np(t)). F is cut in s in the region
R~&s~&00 and our representation above, including the
factor of 1/r(2 —np(t)), holds for all np and all s.

The cut in A p(t, s) is explicit in the term (—s/R)
The above formula is valid for all values of np(t),

including integer values; actually to show that the
apparent poles at np ———m (m= —1, 0, +1,2, . . .) do
not occur, we simply take the limit of the expression



CURRY, MOEN, MOFFAT, AND SNELL

as n~~ —nz, to give

Ap(t, s) =yp D+E(s m02—)

1 /so ii s m

r(m+2) (Rmfvr R ~ o n ~p8

R n pR m+1 pR m+2

X
(n —m —1)(n—m —2) s ks ks

(R) ( R R s s
+&~I

I I
1— — ——1 ln — . (3.13)

ks& 4 s ss"+' R R

Asymptotically, we have for s —+~ and fixed t

11R)p"&
Ap(t, s)=yp Es+ ——

I'(2 —np(t)) m so)

s 1 7r

X
R o.p(t)l op(t) —1] sinwnp(t)

X 1—— . 3.14

We recall that as n~ —+integer, the lower-order terms
in the sum cancel the apparent poles. In x-~ scattering
in order to increase the convergence to the Regge
asymptotic limit, we multiply the Pomeranchukon
amplitude by an over-all function,

amplitudes is a reQection of the fact that the
Pomeranchukon is an I=O object exchanged in the
t channel.

It can easily be shown that because np(t) has the
negative constant asymptotic value (3.19), the
Pomeranchukon amplitude does not violate the
Cerulus-Martin bound expl —gl sl C(t)] LC(t) a slowly

varying function of t] for large-angle scattering, s —+~
and t ~ —~ (I fixed).

We choose the subtraction and coupling constants
as follows: The coupling constant y~ is chosen to give
the correct magnitude of the total cross sections from
factorization arguments; this also gives the co.-rect I= 2

amplitude at low energies. The subtraction constant E
is chosen to give the I= 2 (I= ~3 for E+) phase shift at
low energies, and D is then calculated to give the Adler
condition

Pr(s, t,g) I.=„„~~,,= .=0 (X-~ scattering),

Pl(s, t, N) l,=~= = .~ ——0 (m.-~ scattering).

However, the basic restriction on the parameters yp,
D, and E arises from the unitarization procedure in

low-energy scattering.

IV. RESULTS FOR X-m SCATTERING
ON THE MASS SHELL

Let us begin our description of the results of the
application of the model with E-x scattering. We
unitarize the partial waves by considering the absorp-
tion parameters

e—&P (&)

A p(t, s)~ —— — — Ap(t,s)—
(1+I (16m 2 —~)/g]~&~}&~

I vFI =
I
1+2~qf '(~)

I
~

Here q is the magnitude of the c.m. 3-momentum

(4 1)

=y p(t) A p(t, s), (3.15)

where A and q are the same as in Eqs. (2.23) and (2.28).
Now A p(f, s) goes to zero for large values of t. This
means that for m-m scattering, in the s channel, for
s —+~ and fixed t, we get

1
q= ' (s'+mx'+m, '

2 s
2sm ' —2smx' —2m—'mlr')"' (4.2)

and the relationship between s,t, and the c.m. scattering

Pr A p(t, s)+A p(t, m), (3.16)
TABLE I. Values of parameters calculated

from unitarity considerations.

The trajectory np(t) has the asymptotic value

np(& ~) =1—bh= bA. —(3.i9)

The appearance of a signature factor in the s-channel

whereas for E-x scattering, we recall that

P ='~'=P ='"=A p(tys)+A p(t)N) (3.17)

is satisfied exactly. Thus, the common Pomeranchukon
contribution to all isospin amplitudes in the s channel
for s —+ and fixed t, in both x-x and E-m scattering is

yp(() sq~p"'pi+e ~~~ &"

(3.1S)
I'(2 —np(t)) so) E sinsnp(t)

Name

A
A1

Description of parameter

Over-all coupling constant

Exponential dependence of
amplitudes F, and F~*

Leading constant in m~'(t), m, (t)
Leading constant in satellite

functio~ xi~'(t), mi, (t)
Satellite coefBcient

Square-root coeKcient in
m~*(t) and mi~*(t)

Pomeranchukon coupling
constant

Pomeranchukon subtrac tion
constant

Parameters calculated
from unitarity

167 (for ~x-)
124 (for E+)

0.3

272

2.28—3.01 (for ~x)—2.96 (for Ew)
0.086 GeV '

0.60

—1.28 GeV '
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angle 0 is

cos0=
s'+2s(t ml—r' m~—')+(m~' m—') '

(4.3)
s'+mtr4+m, 4 2—smlr' 2—sm ' 2—mlr'm '

I.O

The S-wave scattering lengths are dehned by

rtr = lirn 8( Or(s)/q.
~~ (~~+m~) ~

(4.4)

0
0.5

The parameters are determined by demanding elastic
unitarity p& ——1 in all partial waves in the region 0

600
I

700
I

800
I

900
I

1000

(mlr+m„)'& s~& (mlr+2m )'

and nonviolation of unitarity p& ~&1 above the erst
inelastic threshold. This procedure determines the
values of the parameters shown in Table I. The I=~~
S wave depends almost entirely on the leading term
and not on the satellite and Pomeranchukon terms in
the low-|:nergy region. Consequently, p is determined
by setting go'"=0.83 at the mass of the E* resonance.
Unitarity determinations of g&~ are found to be very
insensitive to C provided C is small. It is necessary
that C be small in order to avoid high-spin "ancestors. " '
The contribution of the ancestors at the poles is (5%
for the unitarized solutions. The constants yj and E
are determined principally by unitarity in the I=~
S wave, although the Pomeranchukon also contributes
to the I=-,' S wave. The unitarization procedure is
sensitive to variations in d~. The Pomeranchukon sub-

M„, MeV

FIG. 2. Absorption parameter p&
01=~'~.

traction constant D is determined by the E-m- Adler
condition to be —2.55)&10 '.

The p& determined by the unitarization are shown
in Figs. 1 and 2 and can be seen to be very close to the
elastic solution below the erst inelastic threshold at
773 MeV. In Figs. 3—5, we display the E-m phase shifts.
The phase shift 50't' in Fig. 3 resonates at about
887 MeV close to the K* resonance in the 6~'" phase
shift in Fig. 4. The resonance in the 50'I' phase shift at
887 MeV is narrow with a width I'~*=60 MeV mea-
sured between 45' and 135' in the phase shift. We show
the world data for the E-m phase shifts including the
new data obtained by the Johns Hopkins group. ~ The

210—

I.O
I80—

g/p
I

0.5—

0—

1.0

150

120—
UJ
K
C9

O
90

00

60—

1"2
0

0,5

30

0 I

600

Il

)

700 800
I

900
I

1000

0
600

I

700
I

800
M„, MeV

900
I

1000

MK~, MeV

FrG. 3. Phase shift 5~ 0 'I~ as a function of the E~ mass. The
data are from Mercer et al. (Ref. 6).The down-up solution appears
to be excluded by these data (see text. )

FIG. 1. (a) Absorption parameter q~ ~
'" as a function

of the K~ mass. (b) gg p

'T. G. Trippe et al. , Phys. Letters 28B, 203 (1968);R. Mercer
et al. , Johns Hopkins University report, 1970 (unpublished); and
private communication.
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low energies and at the peaks of the cross sections
determined by unitarity.

The S-wave scattering lengths are predicted to be
l.5—

ug(2 =0.15m

u3(2 = —0.06m

which are close to the current-algebra predictions'

ag(2= (0.13+0.02)tv~

ug2 = —(0.07+0.01)m

(4.6)

(4.7)

o I.O
0

0,5—

1.5—

(a)

determined in terms of the experimental pion decay
constant f =(1.03&0.05)m + '.

V. RESULTS FOR ~-~ SCATTERING
ON THE MASS SHELL

We now consider the results obtained for low-

energy ~-~ scattering. All the parameters determined
by the E-~ unitarization at low energies are used to
predict the low-energy m-~ scattering with the exception
of a change in the coupling constant y. We therefore
predict the low-energy x-x scattering in terms of an
eGectively zero-parameter model, since the over-all
normalization constant y, determined for m.-x scattering
to be y =167, corresponds to y, '/4' =2.4. This value
is in agreement with Sakurai's' determination of

'/4~, which has an error of about 20%. The Adler

I.O

0.5-

2 l.5—
0

I.O

0.5

I I I I I I

500 500 700
M, MeV

I

900

Fro. 8. Absorption parameter q~ predicted for wx scattering as a
function of the ~m mass. (a) q~ Q

=Q. (b) g~ 1 . (c) g$ Q

= .

ioo—

75—

6

50—
b
K
N

25— r

—MOFFAT

n ——VENEZIANO—
I

1
LOVE LACE

I
I

condition determines the Pomeranchukon subtraction
constant D to be —2.64X10 4.

Figure 8 shows the predicted results for the absorp-
tion parameters go, g~', and qo'. The violation of elastic
unitarity between 280 and 560 MeV is less than 10% in
the I=0 5 wave and is negligible in the I=1 and I=2
waves. However, unitarity begins to be violated above
=900 MeV, particularly in the I=2 S wave. Thus, we
can believe the phase shifts up to about 900 MeV, since
small violations of unitarity were found to produce only
an error of 1 or 2 degrees in the phase shifts. However,
the cross sections are sensitive to g and violations of
unitarity may be expected to show up there (see Table I
for the parameters used).

Figure 9 shows the I=O S-wave phase shift as com-
pared with the data of Cline et al. , Walker et al. ,
Biswas et ul. , and Malamud and Schlein"; the latter do
not include I=2 scattering, so their results are not fully
consistent. We predict a resonant solution, of mass
and width

m, =725 MeV, F,=194 MeV, (5.1)

I

700
I

800 900
M, MeV

L
IOOO IIOO

corresponding to a fairly broad e resonance. The con-
tribution of the Pomeranchukon to the I=0 phase shift
is important, and causes a shift in the e mass and a
large broadening of the peak; this results in a broad

Fxo. 7. Same as Fig. 6 for the charge-exchange
cross section 2X0 (E+w —+ EQ~Q).

Q J. A. Cronin, Phys. Rev. 161, 1483 (1967).' J. J. Sakurai, Phys. Rev. Letters 1'7, 1021 (1966).

"D. Cline, K. J. Braun, and V. R. Scherer, University of Wis-
consin report, 1969 (unpublished); W. Walker et al. , Phys. Rev.
Letters 18, 630 (1967); N. Biswas et al. , Phys. Letters2'7B, 513
(1968); E. Malamud and P. E. Schlein, Phys. Rev. Letters 19,
1056 (1967).
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240-

2IO-

'+ CLINE et al.

WALKER et pt.

BtSWAS et ai.

Lovelace' gets

and

bpP(mrs) =43'

,p(ra„) bpe(~x)

(5.4)

(5.5)

l80-
MALAMUD 8 S

MOFFAT

90

VENEZIANO—

l50 LOVELACE
V)
LU

a l20
& o
CQ

with

up =0.19m

a~ =0.036m

u2 = —0.046@x

(5.6)

Figure 11 shows the I=1, I'-wave phase shift, the
usual p Breit-Wigner solution.

Our D, P, and higher waves are quite small; the D
wave is about 1 or 2 degrees at the p mass and there are
no observable effects due to high-spin ancestors in the
higher waves (see Table V).

At threshold, we predict for the x-x scattering lengths

ap/as = —4.1 . (5.7)

These results are close to the current-algebra values of
Weinberge and the predictions of chiral SU(2) SU(2)
which gives'

ol 400
I I

600 800
M~~, MeV

I

1000 ap ——(0.15+0.02) tpe

ap ———(0.04&0.004)m
(5.8)

FIG. 9. Phase shift b~ 0
= with the data of Cline et ul. , Walker

et a/ , Bipwap ef al , an. d Ma. lamud and Schlein lRef. hl. &he using the pion decay constant f,=(1.03& 0. 05)me+ '.
dashed line is I ovelace s E-matrix Veneziano solution (Ref. 8)' They are also consistent with the experimental value
the solid line is our fit.

(5 2)bpe(emir) = —12',

bpe(err) bp'(mx) =—+39',
giving

which is consistent with the results obtained from
EI,p —+2mp '4 Morgan and Shaw" predict on the basis
of a dispersion-relation calculation the results

lt'pP(es, x) = (33&5)', (5.3)

which compares favorably with our value ape(mx) =27'.

resonance near the p, as would be seen experimentally.
We have also plotted I.ovelace's solution, ' which gives
a broader resonance (I', =360 MeV) at the same mass.
His solution, however, results from a coupled-channel
approach (m~-+RE, ere.) using the E matrix, which
violates crossing symmetry.

Figure 10 shows the predicted I=2 5-wave phase
shift, together with Lovelace's result. The data are from
Baton et ul. "E.atz et ul. ,

" and Walker et cl "Up to
600 MeV, our solution is quite good; at higher energies,
however, it falls below the data points. At M =500
MeV, we predict

20—
V)

LU
43

l0-
C9
4J
CI

0

GO

-I 0

-20—

40—

ap/ap = —3.2+1.0,

+ $ BATON ET AL.

+- KATZ ET AL.

WALKER ET AL.

MOFFAT

VENEZIANO —LOVELACE

(5.9)

'~ J. P. Baton, G. Laurens, and J. Reignier, Nucl. Phys. B3'
349 (1967).

'3 W. M. Katz et ul. , in Proceedings of the ANL Conference on
m.-~ and E'-x Interactions, 1969, p. 300 (unpublished).

'4 G. E. Kalmus, in Proceedings of the ANL Conference on ~-w
and E-w Interactions, 1969, p. 413 (unpublished).

~ D. Morgan and G. Shaw, Phys. Rev. D 2, 520 (1970).

I

500
l

500
! I l

700
M ~,MeV

l

900
I

I IOO

Fza. 10. Phase shift B~ 0 ' with the data points of Baton et al.
(Ref. 12), Katz et ul. (Ref. 13), and Walker et al. (Ref. 11).The
solid line is our fit; the dashed line is Lovelace s fit (Ref. 8).
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TABLE II. Predicted scattering lengths (m ').

+ + SACI AY

SCHARENGUIVEL et ol.

a0 =0.19, a1 =0.036m ', a2 =—0.046
aI (2=0.15, a3)2 = —0.06

180—

I50-

V)
IJJ
UJ

l20-
C9
LLJ
CI

90

60-

MOFFAT

solution. These scattering lengths are consistent with
our results (Table II).

The other quantity of importance is

L= ~g (2ap —5ae), (5.12)

which can be evaluated by assuming that the x-m

t-channel I=1 amplitude satisfies an unsubtracted
dispersion relation. This gives'

ns 2

L——-- L2A p'(v, 0)
6tr e„.(v' —4tN ')

—5A p'(v 0)+32 t'(v, 0)g, (5.13)

I I I I

400 600
M~~, MeV

I

800
I I

1000

FIG. 11.Phase shift 8& &
' with the data of Saclay (Ref. 12) and

Scharenguivel et al. (Ref. 23). The solid line is our fit.

obtained from the x+x asymmetry" and from the
branching ratios'~

0 Ã 7l ~Ã 7f' o (tr+tr
——+ tr perp)

and (5.10)
o (tr+tr+ ~ tr+tr+) o (tr+tr- -e tr+tr-)

(5.14)2gP —5g2 ——18m 2ug.

The left-hand side gives 0.618 and the right-hand side
gives 0.653.

Our P-wave scattering length aj.=0.036m„' agrees
with the Morgan and Shaw" calculation

where v= (s—I)/2m . In Table III, we summarize the
results of several current-algebra and model evalua-
tions" of L. The poorness of iovelace's scattering-
length predictions is due to the violation of crossing
symmetry which the E-matrix method gives.

Ke also satisfy approximately the result Lpartial
conservation of axial-vector current (PCAC) and
linearity]'

ap = (0.16+0.04)m

ap = —(0.05&0.01)m
(5.11)

near threshold. The solutions of Morgan and Shaw. "
give

at ——(0.035&0.002)m

and also with the result

ay= (0.04+0.005)m, '

(5.15)

(5.16)

for all reasonable input forms for the phase-shift quoted by Olsson. "
TABLE III. Comparison of results of several evaluations of L.

Source

Adler (Ref. 5), Weinberg (Ref. 3)
Tryon (Ref. 18)

Morgan and Shaw (Ref. 15)

Lovelace (Ref. 8)
Morgan and Shaw (Ref. 15)

(Lovelace III)
J. Cronin (Ref. 9)
This model

0.10+0.01
0.11+0.01

0.10+0.01

0.15
0.11

0.09+0.01
0.10

-3.5—3.5

—3.2+1.0

—4.5—14.5

—3.7&0.8—4.1

Remarks

Amplitude linear about Adler point; PCAC
"Unitary, crossing-symmetric

numerical procedure"
"Unique solution to xm scattering"—

numerical unitarization of fixed-3
dispersion relations"Ematrix" on Veneziano coupled channel.

As above, with Lovelace's phase shifts

Chiral Lagrangian model
Evaluated from scattering lengths

' L. J. Gutay, F.T. Meire, and J. H. Scharenguivel, Phys. Rev. Letters 23, 431 (1969).' D. Cline, K. J. Braun, and V. R. Scherer, in Proceedings of the ANL Conference on ~-~ and E-7f Interactions, 1969, p. 179
(unpublished).' K. P. Tryon, in Proceedings of the ANL Conference on x-3- and IC~ Interactions, 1969, p. 665 (unpublished). See also J. B.
Carrotte and R. C. Johnson, Phys. Rev. D 2, 1945 (1970).

'9 M. G. Olsson, Phys. Rev. 162, 1338 (1967).
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However, most experiments have been done at too low
a beam energy with few events and lack of statistics.
The competing E* formation causes problems, and
since different experiments quote varying fractions of
E*'s, violently different cross sections are quoted by
different groups because of the smallness of the absolute
cross section. Morgan and Shaw" use the experimental
points in Fig. 14 as evidence for a broad I=0 S wave,
not resonating until 900 MeV or higher (between-down
solutions I and II). If this interpretation is correct, then
no model with an e daughter of the p can fit the data.
The phase shift has to remain around 90' to reproduce
the data in Fig. 14, but in our model it rises through
180' rapidly giving the dip at 800 MeV. In fact, our fit
has the typical broad resonance shape, as we should
expect.

Much the same remarks apply to Fig. 15, which
shows the ratios of cross sections

Rt =0 (n-+tr -+ 7retre)/o (7r+m.+~m-+tr+),
(5.18)

Re ——0 (tr+tr ~ eretre)/0 (tr+tr —-+ tr+s.-) .

The dip we find in the charge-exchange cross section is,
of course, faithfully reproduced in Fig. 15. The data
dip in R2 because the tr(tr+tr -+tr+tr ) is resonating;
in R~, 0 (tr+er+) is not, so there is no dip. Morgan and
Shaw conclude that!Ie'(m, ) = —15' is favored from Rt.
We get tte'(m, ) = —27' and hence fall below the data
points (data from Cline et al. 'r).

The asymmetry parameter is dehned by"
I' 8 — ' do (cose) da ( c—oso)

dcoso = ——=—
P+8 II dQ dQ

trr, (5.19)

where a& denotes the total cross section. By using

doldQ=
I
f'(s, cos8)

I

'
=

I
2 P (2l+1)Pt(cosg) ftr(coso) I

', (5.20)

we get

Ii —8
=4 Q Q (2l+1)(2l'+1)f)(s)fp*(s)

p+g

X dxP' (x)Pv(x) —Pt( —x)P (—x)] (5 21)

Next we substitute for one of the P~ 's in terms of

t1tt (—1)~(21'—2X)!x'-»
Pt(x)=2 —,—,

&=It 2'!I.!(l' —X)!(l' —2X)!
(5.22)

Pt(x)x'-'"dx

(ger) 2—'+'" '(1+l' —2)I,) I

I'(1+-', l' —X—-', l) I'(-', l' —X+-', l+-', )
Then with

where
I

—2lg is the largest integer & ~~1, and we use the
integration formula

this gives

["'
I ( 1)"+(—1)'+'+"+'j(2l' —2X)!(gÃ)2'~ "' '(1'g1 —2X)

~t(l' —&) Il'(-,'l' —,'l —X+1)l"(-'ll+-'1—Z+-e)

F—8
=4 p p (2l+1)(2l'+1)f (s)f e(g)g ./0

l

(5.24)

(5.25)

For 3 =3, this is zero; also it is symmetric in I and I'. Thus,

P 8(2l+1)—(2l'+1) ReLft(s) ft *(s)g=8 P—
&+8 t'«16er P$" (2l"+1)

I fp (s) I'
(5.26)

If we integrate over the azimuthal angle and neglect D
and higher waves, we get

P 83ReLf~(s) fe*—(s)]
(5.27)

P+& Ife(~) I'+3lfi(~) I'

0.8

0.:6—
F-8
F+8

$ SCHARENGUIVEL et el.

Figure 16 gives the on-mass-shell asymmetry
parameter for m.+x as a function of M . The data of
Scharenguivel et al. are shown for comparison. "This
prediction acts as a check on the phase shifts, especially
50'. We observe that our 6t is very good. Also plotted
are the 6ts of Arnowitt" and Wagner "

OA—

0,2—

l I

4 6 8 l0 l2

$2im~

—
M OF FAT

"." ARNOWITT

——
WAGNER

l4 l6 l 8 20

2' F. Wagner, Nuovo ( imento 64A, 189 (1969)."J. Scharenguivel eI, al. , Purdue University report, 1970
(unpublished).

~ R. Arnowitt, in Proceedings of the ANL Conference on m-71.
and E~ Interactions, 1969, p. 619 (unpublished).

FIG. 16. On-mass-shell asymmetry parameter (F—B)/(F+B).
as a function of the ww mass. Data from Scharenguivel et al. (Ref.
23). The solid line is our 6t; the dashed line is Wagner s single-
channel Veneziano (IC-matrix) model (Ref. 22); the dotted line
is a hard-pion current-algebra model due to Arnowitt {Ref. 24).
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VI. POSITIVITY AND CROSSING-SYMMETRY
CONDITIONS BELOW THRESHOLD

TABLE IV. Conditions (Refs. 25 and 26) on
2o( 0 0 0 0)=—fo«for 0&s&4(~n =1).

Ao(m. ohio ~~o~o) = fooo. (6.1)

General conditions on the m-x scattering amplitude
for the process ~ x —+x'x below threshold have been
derived by Martin" and others" from crossing sym-
metry, unitarity, and the existence of a twice-subtracted
dispersion relation for the amplitude. We should expect
to satisfy all of these conditions, because the model
satisfies the correct analyticity properties, is crossing
symmetric, and satis6es approximate unitarity; how-
ever, these conditions are a useful consistency check on
our amplitude.

Let us write

Condition

(1) fo«() &fo«(4)
(2) unique minimum in f000(s)

between 1.29 and 1.7;
i.e., dfo (s)/8's&0, 0 « s &~ 1.29

dfpo'(s)/ds) 0, 1.7 « s ~&1.76
(3) dfooo(s)/ds)0, 2&s&4
(4) fooo(0) ~& fo"(2(1+1/~))
(5) d' f"(s)/ds')0, 0&s&1.7
(6) t'000&(0) &—~4/2 fo (4)

-fo"i2)-fo"ip)]
4

(7) fooo(0) 5 fo00(S)IS

yes
yes minimum

at 1.67

yes
yes
yes
yes

yes

SatIsfied Remarks

In Fig. 17, the S-wave amplitude (6.1) is plotted be-
tween s =0 and s=4m '. We see that fo" has a unique
minimum between s=1.29m ' and s= 1..7m '. In
Table IV, we list several conditions on fo", which show
that these rigorous requirements are fulfilled by the
model.

VII. OFF-MASS-SHELL BEHAVIOR

We now discuss the behavior of the model when one
of the pions is extrapolated off the mass shell in both
x-m. and E-m scattering. This enables us to pass into
the physical region for the processes mX~mwE and
ES—+KxE assum'ng the validity of the one-pion-

excha, nge (OPE) approximation (see Fig. 18). Our
on-mass-shell comparisons with the data also assume
the validity of OPK, since this is how the data are
obtained.

We assume that the off-mass-shell dependence of the
amplitude is contained in the implicit dependence of t

and I on the extrapolation, except for a possible form
factor which is equal to unity on the mass shell.

I.et us consider the xE~xwN system first. Our
kinematical variables are de6ned in Fig. 18 and we
follow the notation and derivation of Ferrari and
Selleri. '~ For the xw system, we have

0.04

A, (HH-~'~4}

s = (q,+ko —q,)'= (k&+ko)',

t= (k~ —qg)',

u=(ko —qr)',

(7.1)

0.03—

0.02

and qr+qo ——k&+ko+ko. For the orÃ system,

W'= (qg+qo)'= (kr+ko+ko)'. (7.2)

We define —6' as the (mass)' of the transferred pion,
i.e., as the momentum transfer from the nucleon to the

0.0 I—
ql

0
0

I i

2$2fN~'

W2
~' = (k,-q, }?

Fzo. 17. S-wave amplitude for 7i-ohio —& wo~o from s=0 to s=ke„'.
» A. Martin, Nuovo Cimento 5V'A, 393 (1967).
2' A. K. Common, Nuovo Cimento 63A, 482 (1968); O. Piguet

and G. Wanders, Phys. Letters 30B, 418 (1969);A. P. Balachan-
dran and J. Nuyts, Phys. Rev. 1'V2, 1821 (1968};A. P. Balachan-
dran and M. L. Blackmon, Syracuse University Report No. NYO-
3399-223, 1970 (unpublished). G. Auberson, G. Mahoux, O.
Brander, and A. Martin, Nuovo Cimento 65A, 743 (1970). R.
Roskies, Phys. Rev. D 2, 247 (1970).

qp

FgG. 18. Kinematical quantities used in the extrapolation of the
exchanged pion o8 the mass shell. qI, q2 (k1,k2,k3) are the incident
{final) four-momenta; 8" is the ~(gI) 1V(q&) c.m. energy squared;
s is the c.m. energy squared for the 2~ —& 2w system. —c9 is the
(mass)' of the exchanged pion.

~7 E. Ferrari and F. Selleri, Nuovo Cimento 24, 453 (1962).
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(W' —m~' —m. ') '
P~.b'=I

2m~ )(g2 ~S) (~1+~2 gl) (7.3)

pion. Thus, 6'= —m ' corresponds to being on the are given by
mass she11 and

Other quantities of interest are the pion laboratory
momentum p~,b and t and I as functions of 6'. These

t=2(3m, '—s —6')+2q, nqoff cosH
~

e = ', (3-m, ' s—6—') 2—qo„going cos8,

(7.4)

—MOFFAT
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FIG. 19. Off-mass-shell extrapolations of the cross section for ~ ~o-+ w m-0 as a function of r9/ns ~. F{~',s) = {q,ff/q, )opf f. We have
averaged P over the energy region indicated in each graph. The data are from Baton et al. {Ref.12).The dashed line is„%agner's (Ref.
22) Gt; the solid line is ours.
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where

(On =4 {I

g ff —[s'+2(A' —m ')s+(m '+A')']/4s. (7.5)

50

MOFFAT

We multiply the partial waves fi by the form factor
exp[ —p(A'+m„')], where p is a constant. Wagner"
has jus tified the use of this phenomenological device
as allowing for the Reggeization of the virtual pion
setting

p=u ' In(W'/Wo')

so that the form factor has the form

(7.6)

(+72/gj' 2)—ar'{4~+m'i) (7.7)

However, we should expect from the slope of the pion
trajectory that S'o'= 1 GeV'. But Wagner" uses
8'o' =0.3 GeV' and, therefore, makes this par ticular
justification of the form factor suspect.

Following Ferrari and Selleri, 'If we extrapolate the
formula for the elastic cross section:

o (s,A') =16m Q (2l+1) exp[ —2P(A'+m ')]

N)
(5

E

CL

I—

0,5-—

—-VENEZIANO -WAGNER

+ JACOBS

X I pi(~, A ) I
(7.8)

off the mass shell. The partial-wave amplitudes o8 the
mass shell are dered by

1

fir(s, A') = — d cosg fr(s, A' )Pi(cose). (7.9)
2 -1

We then average (7.8) over small regions of s, and
compare the results with the Chew-I ow extrapolation
data of Baton et ul."Figure 19 displays the fits of the
present model and also Wagner's fits using the
Veneziano model. We used P=2.8 GeV ' in all our ~~
fits, whereas Wagner uses P as an adjustable parameter,
changing it slightly from the Chew-Low extrapolation
to the diRerential cross section. Both models fit the data
quite well, although in view of the arbitrariness of the
form factor employed in the fits the significance of the
results is not entirely clear.

The differential cross section do/dA' is the quantity
measured in the reaction xX—+ ewe; it is extrapolated
to give the total cross sections, In terms of partial
waves, it is calculated to be

d2o I G 2 '{ A2$1/2

dA'ds 8s miI{'Pi,b') (A'+m ')'

I I
O'IO 2

i I I I I I I I I

6 8 I 0 l2 I 4 I6 I 8 20 22
D'/ M'

FIG. 20. Differential cross section da jdb, ' for ~ p ~ 7I-+x n,
averaged over the p region. The solid line is our 6t; the dashed
line is Wagner's (Ref. 22). The data are from Jacobs {Ref. 28).

50 -.

IO—
Op

JD
E

MOFFAT

—VENEZ I A NO —WAGNER

+ JACOBS

However, in both our case and Wagner's calculations,
the normalization is not quite correct. We must use
G ii'/4m =20 instead of 15, and Wagner uses G N'/4m

=15 for one fit and G ~'/4m =8.8 for the other one.

Xexp[ —2P(A'+m. ')][1+(—1)'+']', (7.10)

where G ~'/4nis the ~&V. coupling constant. We then
average this over the p region and get do/dA', which is
plotted in Figs. 20 and 21, and compared with the data
of Jacobs, "and Wagner's fit."Again the fits are good.
"L. D. Jacobs, LRL Report No. UCRL 16877, 1966 (un-

published).

0.5-

O. I

0 2
I I I I I I I I I I

4 6 8 Ig l2 l4 I6 IS 2022

FIo. 21. Same as Fig. 20 for 71- p —+ z. ~ p.
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Fro. 23. Same as Fig. 22 for Pq,b=3.5 GeV/c.

FrG. 22. Differential cross section d'0/d'5' for E'+p -+ E*(890)6++
—+ E+m b,++, averaged over the resonance. The data are from
Trippe et al. (Ref. 6). The solid line is our 6t. The kaon lab energy
is Pi,b=3.0 GeV/c.

Let us now consider the process EiV —+K~X. We
examine the cross section do/dA' for the reaction
X+p +E+7r 6++—and assume, as before, that the
reaction is dominated by the OPE mechanism. The
momentum transferred to the kaon, squared, is denoted
by t, and the c.m. energy squared in the E+vr system
is s. The coupling between the p, ~, and 6++ is as-
sumed to be of the form

(7.11)

In the Ferrari-Selleri'~ formulation the quantity of
interest is the summation over spin states of the
expression

(q —p) "(q—P)"L~(P)~(q)(~.(P)~.(q))'], (7 12)

where q" and p& are the 4-momenta of the proton and
the 6++, respectively. Within an over-all constant

factor, the spin summation of (7.12) gives

8 m„'+Ma'+6')

3 2 )
8 m„'+Ma'+6'

+ = — +m~Ma
3M'' 2

(Ma' —m„'—6' '
Xl - — - - (7.»)

2
Then do/dA' is given by

do G as P expL —2P(h'+m ')]'
db, ' 4s (P&, )'(6'+m ')'

4~
Q(v' ) 2 (2t+1) I f (,~') I'd (7 14)

km„'Ma' l

Here Q is the c.m. 3-momentum in the X-~ system and
P~,b is the magnitude of the incoming E momentum in
the E plab system. T-he constant p is chosen to be
p=3.8 GeV ' and G a'/4s. is a dimensionless coupling
constant G a'/4~=0. 44.

The relation between 6' and cos0 is

s'+s(2t 2m +rhea—' m')+(m—rc'+g')(mx' m')—
coso=

X(s, mac', —6')X(s,mx' m ')
(7.15)

where
X(a,y, s) =x'+y'+s' —2xy —2xs —2ys. (7.16)

The oG-mass-shell partial-wave amplitudes are found
from (7.9), where the relationship between cosa and 6'
is given by (7.15).

In Figs. 22—25, we show the predictions compared to
the data of Trippe et al 'using p=3.8. GeV ', and we
see that the Qts are satisfactory.

VIII. HIGH-ENERGY' BEHAVIOR

In view of the success of the model in describing
low-energy ~-x and K-m- scattering, it is interesting to
study the m-m and E-x total cross sections and the m-z

differential cross sections at high energies.
Let us consider the asymptotic behavior of the x-~

amplitudes. The amplitude F,(s,t) has the following



CURRY, MGEN, MOFFAT, AND SNELL

5.0 66V/c

behavior in the s channel for s—+ and t 6xed:

F' As(t, s)+As(t, N)=6'(t, s). (8.2)

This follows by virtue of the result that for s~~ and
f hdtv

Az(N, s) =As(N, t)=0,
A s (s,t) =A g (s,l) =0. (8.3)

0.5-

E

ba"o a

0,2-

Therefore, the 1soapm ampllrucles f have 'the followmg
asymptotic behavior in the s channel for s+~ and
$ Axed:

inc p(t)

X — +6'(t,s),
sinn. n, (t)

0.2 0.6

FIG. 24. SRIDC as Fig. 22 for PI b=5 GeV/c.

asymptotic behavior as s—+~ for 6xed t in the s channel:

@
—im ap(t)

X —+6'(t,s), (8.4)
sinmn, (t)

F,(s,l)~0.
The Pomeranchukon amplitude has the asymptotic

Since the term 5'(t, s) eventually dominates as s in-
creases, the amplitudes will become isospin-independent,
as they should be.

The diQerential cross sections are given by

I5.0 GeV/c

w 0.5—

E

b%~ ~0.2

OA
6 (Gev. )

Fgo. 25. Same as Fig. 22 for P~„b=13 GeV/c.

By using the optical theorem, we can relate the total
cross section to the imaginary part of the amplitude in
the forward direction'.

kr
os = —Imfr(s, 0) .
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TABLE V. Predicted resonances.

Name JP
Mass (MeV)

Theory Expt.
Decay
mode

Partial width (MeV)
Theory Expt.

f
g

gt

0+
1
2+
3
1
0+

0+
1+
0
1+

725
765

1285
1671
892
887

710
765&10

1264+10
1650+20

891.4+0.6
?

194
120
112~
18.
57
60

140-450
125&20

&130
&120

50.1+0.8

~ C@culated in the narrow-resonance approximation.

In Fig. 26, we show the diGerential cross section for
charge-exchange scattering at several values of s. We
observe that the ghost-eliminating zero in the residue
at t= —0.5 causes a dip at this value of t, and there is
also a dip near t=0 due to the zero in the residue at
t=nz '. The dip at t= —0.5 becomes more pronounced
as the energy increases because the signature factor
becomes exact only at ininite energy. There is no zero
at t= —0.1; this zero would be expected to occur if
factorization were valid and the crossover in xX scat-
tering were caused by the vanishing of the non-spin-Rip
residue for the p trajectory. The differential cross
sections for the elastic x-x processes are shown for
s=40 and 80 GeU' in Fig. 27. These cross sections are
structureless, as would be expected, due to the domi-
nance of the Pomeranchukon amplitude at these
energies.

0.1

a + ——r + += —0.5 mb.

Because experimentally

o -„—g +~=1.5 mb

(8.8)

(8 9)

IQ.O —(7r'7r'-7r' p }dt

(m'vr -7r'7r )
do.

Figure 28 shows the total cross sections for m-x

scattering at high energies. The asymptotic limit of the
cross sections is =8 mb for all charge states; this can be
compared to the value of =13 mb obtained from
factorization using

&wN /&NN (8.7)

and the presently available data. " The contribution
from the p-Regge pole is determined by the result
at s=20 GeU'.

1.0

0.01
80 GeV

E O.OOI

b'0 'U

hl

C9

E
( Ir 7r ~7r 7r 7r m' 7r- 7ro)

1.0

O.0OOI

I I I I I I I I I' 0 0.2 0.4 0.6 0.8
-t (GeV )

I I I I

1.0 1.2 1.4

I I I I I I I I I I I I0.000010 0.2 0.4 0.6 Q 8 I 0 I 2
-t(oeV~}

FrG. 26. Differential cross section da/dt for m+~ —+ mIIxII as a
function of t, for s= 12, 20, 40, 64, and 80 GeV~.

FxG. 27. (a) do jdt for w+w+-+ m+m+ (solid line), m+x ~ ~+~
(dashed line) for s=40, 80 Gep'. (b) d~/df fop g0~0~ ~0~0 ~+~0~ m+x~ for s=40, 80 GeV'.

~ S. V. Allaby et ul. , Phys. Letters 303, 500 (1969).
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—'jr 7r ~ 7r 7r
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FxG. 28. Total cross section oz for x+m.+ (solid line), and the
elastic cross sections for x+m. (dashed line), and ~o~o, ~+~o {dash-
dot line) as a function of s.

0 Ks &KN&~N &NN

and the presently available data. "
(8.10)

IX. CONCLUSIONS

We have succeeded in ending solutions to the model
for E-~ scattering which are approximately unitary at
low energies and satisfy s-I crossing exactly; the

at this energy has the opposite sign, we do not have
strict factorization for the p contribution, as we already
observed in the x-m charge-exchange scattering. The
asymptotic E-w total cross section is 4 mb, which can
be compared with the value of = 11 mb obtained from
factorization using

on-mass-shell predictions were in satisfactory agreement
with the data, and the scattering lengths were close to
those obtained from current algebra. Apart from a
change in the over-all coupling constant, the same
parameters were then used to predict the low-energy

scattering and the crossing-symmetric solutions
were found to be approximately unitary up to 900 MeV,
and satisfactory 6ts to the available data (see Table V)
were found except in the case of the charge-exchange
data; however, the latter data are still open to question
due to the difhculty in measuring the cross sections for
this process accurately, and further experimental in-
formation is required. The predicted on-mass-shell
forward-backward asymmetry fitted the data very well,
and the predicted scattering lengths at threshold were
in good agreement with various analyses of the data
and the results of current algebra.

The general conditions below threshold that follow
from crossing symmetry and positivity were investi-
gated and found to be well satisfied. The calculation of
the high-energy x-m and K-x scattering showed that the
Pomeranchukon amplitude described the low- as well as
the high-energy region satisfactorily; the charge-
exchange scattering at high ener gy displayed the
"nonsense" dip correctly, and the total cross sections
were found to be of the order of magnitude expected in
the asymptotic region.

If we could succeed in extending the model to the
resonance region at intermediate energies by some
satisfactory procedure of unitarization, then we could
claim to have an approximate description of ~-m and
E-m scattering valid in the whole energy range, con-
sistent with the basic principles that we believe a
model of strong interactions should possess.
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Contribution of Elastic Intermediate States to Polarization of the
Recoil Proton in Elastic Electron-Proton Scattering

A. J. G. Hzv*

Department of Theoretica/ Physics, University of Oxford, Oxford, England

(Received 9 November 1970)

The polarization of the recoil proton in the elastic scattering of unpolarized electrons and protons is cal-
culated to order a', retaining only the elastic intermediate state in the unitarity sum that occurs. The result
is therefore expected to correspond closely to the physical situation for electron laboratory energies up to
the region where pion production becomes important. Using the "dipole 6t" for the proton form factors
Q@ and G~, the maximum value of the polarization is found to be 0.03% for electron energies below 400
MeV. Above 10 GeV, the maximum elastic e8ect is ~1jo.

I. INTRODUCTION

'N the one-photon-exchange approximation, the scat-
' - tering of unpolarized electrons by an unpolarized

proton target gives no polarization of the recoil proton

*Now at the California Institute of Technology, Pasadena,
Calif. 91109.

(see Sec. &I, for example). Any nonzero polarization of
the recoil proton, transverse to the scattering plane,
must arise from interference of higher-order amplitudes
with the one-photon amplitude. We are interested in
the contribution from the two-photon-exchange ampli-
tudes of Fig. 1. There will be such diagrams for each


