3 MODEL FOR =n-7w

of an n-point production amplitude of the kind pro-
posed in Ref. 26. Now the constant C, in (4.8), is set
equal to zero and we also choose a(s) to be real from the
outset, corresponding to a narrow-resonance approxi-
mation; this guarantees that the #-point model can be
factorized, and that all parameters in the #-point
amplitude can be calculated from a knowledge of the
4-point residue. In this sense, the model constitutes a
“bootstrap” system with a degeneracy of states cor-
responding to 72 Initially, the model only contains
“tree” graphs, but by calculating the loop diagrams,
cuts in »(f) and a(s) will be generated, hopefully rein-
stating the correct analyticity properties for the 4-point
function, and by summing up all the loop diagrams a
complete unitarization of the scattering amplitude can
be accomplished. This kind of program has been at-
tempted for the #-point generalization of the Veneziano
model,?” but the simplest, single-planar dual loop con-
structed gives rise to an integral with an essential end-
point singularity due to the large degeneracy of the
states which circulate in the loop diagram. A somewhat
complicated and arbitrary procedure of renormalization

26 J. W. Moffat, Nuovo Cimento Letters 2, 773 (1969); A. O.
Barut and J. W. Moffat, Phys. Rev. D 1, 532 (1970).

27 S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969) ;

K. Kikkawa, B. Sakita, and M. A Virasoro, Phys. Rev. 184, 1701
(1969).
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has been introduced to deal with this problem.?® In the
model proposed in Ref. 26, the treatment of the dia-
grams follows familiar methods of Feynman graphs,
and since the degeneracy of states in the model is only
n?, there are no divergence problems in constructing
loop diagrams. Whether such a program can succeed in
analogy with quantum electrodynamics is still an open
question, but it is clear that a basic solution to the
inelasticity problem appears to be essential in strong
interactions. One interesting question arising in connec-
tion with such a method for unitarizing the model is
whether the corrected trajectory will turn over at large
energies, in the way assumed for the a(s) in our model
for the 4-point amplitude, or whether it will rise indefi-
nitely to infinity. This is the kind of fundamental
question that could be answered by a basic treatment of
the unitarity problem.
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A model for meson-meson scattering satisfying the Mandelstam representation, crossing symmetry, and
Regge behavior and including a Pomeranchukon amplitude is applied to =-r and K- scattering. Solutions
are found for the K- partial waves that satisfy unitarity approximately at low energies, give a satisfactory
fit to the on-mass-shell data, and predict scattering lengths consistent with current algebra. Apart from a
change in the coupling constant, effectively the same parameters are then used to predict the low-energy
w- scattering, and the solutions are found to satisfy unitarity approximately up to 900 MeV. The predicted
on-mass-shell results agree well with the available data. The general conditions below threshold for -
scattering that follow from crossing symmetry and positivity are well satisfied. The extrapolated =-= and
K-v amplitudes off the mass shell are found to agree satisfactorily with the data for =NV — =z N and
KN — KxN when a phenomenological form factor is used in the extrapolation. The total and differential
cross sections at high energy are found to have characteristic Regge behavior. The Pomeranchukon ampli-
tude produces total 7-r and K- cross sections consistent with factorization in the asymptotic region.

I. INTRODUCTION

MODEL for - scattering has been developed by
one of us! in which the scattering amplitude
satisfies the following properties: (a) Mandelstam

* Supported in part by the National Research Council of
Canada.

1 J. W. Moffat, preceding paper, Phys. Rev. D 3, 1222 (1971).
This will be referred to in the text as Paper 1. See also, Nuovo
Cimento 64A, 485 (1969).

representation; (b) crossing symmetry; (c) resonances
in all nonexotic channels; (d) Regge behavior in all
channels; and (e) the Adler condition.

The Pomeranchukon is incorporated in the model as
a nonresonant, diffractive background satisfying cross-
ing symmetry. The Regge trajectory corresponding to
the exchange-degenerate p-f° mesons is assumed to rise
linearly to high energies and then turn over and tend
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to a finite constant in the asymptotic region. In view of
the nonlinear nature of this trajectory, the model has
a finite number of resonances and daughters. The
amplitude describes a ‘“‘generalized interference” model
and differs from a narrow-resonance model, such as the
Veneziano model,? by possessing the unitarity cuts for
two-body scattering corresponding to the Mandelstam
representation. The Pomeranchukon amplitude, de-
scribed by background cuts consistent with Mandelstam
analyticity and crossing, falls naturally within the
scheme of such a model, and we find that it plays an
important role at low as well as high energies.

It is in the problem of spinless meson-meson scatter-
ing that we hope to find a complete solution; problems
such as parity doublets in fermion-meson scattering are
at present unresolved within a crossing-symmetric
scheme. However, the most difficult question we are
faced with is how to impose unitarity on the model
while preserving crossing symmetry exactly. The
difficulty arises because of the essentially nonlinear and
many-body nature of the unitarity equation. If a solu-
tion of the unitarity principle can be implemented, then
the model would conceivably represent a unique solution
for meson-meson scattering. In Paper I, it was shown
that by neglecting terms of order m.,? and unitarity
effects, the model was consistent with the current-
algebra results at threshold provided the magnitude of
the scattering lengths was fixed by identifying the model
with the Weinberg? amplitude—consistent with (e)
above.

In the following, we apply the model to =-r and K-=
scattering by searching for solutions that are approxi-
mately unitary at low energies. The parameters are de-
termined by seeking absorption parameters n that lie
in the interval 0<»< 1. This uniquely determines the
parameters for, say, K-r scattering, gives a good fit
to the on-mass-shell K- data, and predicts K-r scat-
tering lengths in agreement with current algebra. With
effectively the same parameters (apart from a change
in the coupling constant), the 7w scattering is then
predicted and found to be approximately unitary up
to 900 MeV, and to provide a good description of the
available low-energy data; the scattering lengths are in
close agreement with current algebra and chiral
SUR)®SU(2). The general conditions on 7%-7° scat-
tering obtained by several authors below threshold are
well satisfied.

Because the calculations performed are only valid at
low energies—below the f° meson—or at high energies
where unitarity is not crucial, we included only one
satellite term. In order to extend these calculations to
the intermediate energy range, we must include the
wr, KK, and NN coupled channels and further satel-
lites. No attempt is made to carry out such a program
in this paper. We used the low-energy parameters to

2 G. Veneziano, Nuovo Cimento 57A, 190 (1968).
3 S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
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predict the high-energy =-m and K-r scattering, in-
cluding the effects of the Pomeranchukon, and find
total cross sections of the expected magnitude in the
asymptotic region and differential cross sections with
the characteristic Regge behavior. Thus, low- and
high-energy meson-meson scattering are provided a
unified description within the model. A complete solu-
tion of the problem must await a satisfactory treatment
of the difficult intermediate resonance region.

The processes #N —7rN and KN — KxN are
studied by extrapolating the 7-r and K-m amplitudes
off the mass shell. In terms of a phenomenological form
factor, good fits to the data are obtained for the Chew-
Low extrapolations of the total and the differential cross
sections; also the on-mass-shell forward-backward
asymmetry is well fitted.

The paper is organized as follows. In Sec. II, the
kinematics and amplitudes for 7-m and K-m scattering
are discussed; in Sec. III, the specific model for the
Pomeranchukon amplitude is presented. In Sec. IV,
the parameters for K-r scattering are determined by
our unitarization procedure and the results are com-
pared with the data. The calculations for w-m scattering
are then presented in Sec. V and the results are com-
pared with the low-energy data. In Sec. VI, the posi-
tivity and crossing conditions below threshold are
studied, and in Sec. VII, the off-mass-shell calculations
are described for both #N —xrN and KN — KxN
scattering. The high-energy scattering predicted by the
model is then discussed in Sec. VIII. Finally, in Sec. IX,
we end the paper with concluding remarks.

II. KINEMATICS AND SCATTERING
AMPLITUDES

We summarize for the sake of completeness the basic
kinematical notation and properties of the amplitudes
discussed in Paper I. Let us define the 7" matrix in terms
of the .S matrix by

Sri=087+1Q2m)8(ps—p:) T i 2.1)
and the scattering amplitude f(s,d) by
f(5,0)=(1/8m/s)T. 2.2)

The isotopic-spin amplitudes fI(s,0) can be expanded
in a sum over partial waves:

1¥(s,0) =é (2141) f1(s)Pi(cosh) , (2.3)

with
1

1¥(s,8)Pi(cosb)d cosf.

-1

1
(s) = — 2.4
J(s) . (2.4

In = scattering, the partial-wave expansion of the
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isotopic-spin amplitudes is
fi(s,0)= ?E QA1) fif(s)Pa(cost)[1+(—1)"*T], (2.5)
=0

where the extra factor is due to Bose statistics.
We unitarize the partial waves f;’(s) and set

1
fil(s)= ;—(m’ez"“'—l) , (2.6)

g

which implies that the elastic unitarity equation (for
the absorption parameter n equal to unity) is

Imfi’(s) =q| f()|*. @7
The total invariant amplitude is defined by
A’(s,t,u) =F,,,K*’(s,t,u)+P’(s,t,u) ’ (28)

where F,T and Fx*! denote the amplitudes for == and
K-m scattering, corresponding to p, f and K*, K** ex-
changes, respectively, while P? denotes the Pomeran-
chukon amplitude.
Amplitudes of definite isospin for -7 scattering are
determined in the s channel by':4
AT=0=3[F )(5,0)+F,(s,) ]—3F ,(t;)
+A P(tys) +A P(t)u)_*-A P(ufs)
+A P(u)t)+3[A P(S)t)+A P(s;u):] ’
AJ=1=F (s,t) = F ,(s,u)+A p(t,s)
+A P(t)u) —A P(u;s) —A P(u:t) )
AT=2=F,(tu)+A p(t,u)
+A p(t,S) +A p(M,S)+A P(u)t) )
where F,(s,{)=F,(t,s). Then various charged-pion
processes are given by
{00 — 7m0y =1 404242,
{rtr—rtr} =3A4°4-344+542,
{rEr® — rEr%) =1(414-42),
{rtr~— 7079} =3(42—A49),

{rErE > rErt} =42,

(2.9

(2.10)

The scattering amplitude is related to the w-r invariant
isospin amplitude 47 by

1(s,0) = (1/16m+/5) AX(s,t,u) . (2.11)

In K- scattering there are two values of the isospin

I=% and I=3% in the s and # channels. The absence of

exotic resonances in the /=% channel permits us to

write in the s channel
F81=3/2=FK*(u’t) ’

4 J. Shapiro and J. Yellin, Yadern. Fiz. 11, 443 (1970) [Soviet J.
Nucl. Phys. 11, 247 (1970)7]; J. Shapiro, Phys. Rev. 179, 1345
(1969); A. Yahil, ibid. 185, 1787 (1969); C. Lovelace, Phys.
Letters 28B, 265 (1968) ; E. Del Guidice and G. Veneziano, Nuovo
Cimento Letters 3, 363 (1970).
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where Fg+(s,t)=Fg+(t,s). The amplitude F,=12 is
uniquely determined by s-u crossing symmetry to be

FI=12=3F px(s,) —3F g*(u,1) . (2.12)

Let us consider the Pomeranchukon isospin ampli-
tudes. We demand, as in m-w scattering, that the
Pomeranchukon is an /=0 object and, therefore,
PI=112(5 f) and PT=3%/2(s,f) must have no poles in s. The
most general form we may write for P7=3/2 is
PI=312=g/ p(t,u)+bA p(u,t)

~+cA p(u,s)+dA p(t,s).

Then PI=1/2is determined from crossing symmetry to be
PI=12=4[aA p(t,5)+bA p(s,t)
+cA p(s,u)+dA p(tu)]
—3lad p(t,u)+b4 p(u,t)
+cA p(u,s)+dA p(,s)].

Absence of poles in P’=!2 implies that b=c=0.
Consequently,

pI=1/2= %a—%d)A p(t,s)+(3d —%a)A P(t’u) ’
P1=3/2=(1A P(t,u)+dA P(trs) .

(2.13)

(2.14)

(2.15)

The Pomeranchuk theorem demands that PI=1/2
=PI=3/2 at asymptotic energies. Therefore, a=d, and
absorbing the remaining constant into 4 p, we get in
the s channel

P J=V2=p I=3/2
=4 P(t’s)+A P(t:u) .

The crossing matrix relating s and ¢ channels is
P =0 1V/6  +/6\ /P I=12
I QR (VI
Pt1=1 1 _1 Psl=3/2
Applying crossing gives
P tl=1=0

(2.16)

nd
iy PA=0=3/6[A p(bs)+Ap(tw)].  (2.18)

Thus the total isospin amplitudes in K-r scattering in
the s channel are
AT =4 (5~ 3 s )

+A P(tys)—*-AP(t:u) ]
AT=312=Fgx(u,)+A p(t,5)+A p(t,u) .

In K-m scattering the invariant amplitude is related to
the scattering amplitude by

1(5,0) = (1/8m+/s)AL(s,t,m) . (2.20)
In the model! the amplitudes F,(s,f) and Fg*(s,?),
including the first satellite, are given by
Fp(s’t) = —’Y,,(S)I‘(l —'Olp(S))
XLy +dyon, (= O]+ (s>,

(2.19)

(2.21)
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where the nonlinear trajectory a,(s), corresponding
to p-f° exchange, is given by

+ bs—c,(dmy2—s)1/2
{(1+[(dm.2—s)/aTuzy2

The condition Rea,(m,2)=1, the Adler® condition
a,(m,*) =%, and a knowledge of the total widths of the
p, f% and g mesons gives ¢=0.51, $=0.838 GeV2,
¢,=0.107 GeV~1, A2=100 GeV; this leads to the inter-
cept «,(0) =0.48. Moreover,

( vLep(s) —3] exp[ —ga,*(s)]
YolS)= )
[1+xp(s)]2q

%,(s) = (4m,*—s)'1?/A.

The constants v, g, A, and ¢ are positive and A is chosen
large; in the calculations the specific choices of A and A
are unimportant. The function w,(s) is given by

w,(s) =A+Bs+C(16m,2—s)'/2.

As explained in Paper I, the analyticity requirements
demand that A>0, B<0, and C>0. The function
w1,(s) associated with the satellite term will differ from
w,(s) because of the constant A. As the function
7,(5)=0 at s=m,2 it follows that F,(m,2m,*) =0 and
the Adler condition is satisfied.

The amplitude Fg+(s,t) is given by

FK*(S,t) = —'YK*(S)P(I —ﬂfK*(S))
X [w, (£) 2&*© +-d a1, () 2x*©—1]
=7 (OT(1—a,(1)

(2.22)

a,(s)=a,

(2.23)

where
(2.24)

(2.25)

X[wg*(s) %O 4-dywig*(s)* 1], (2.26)
The trajectory ag*(s) is
bs—cr*[(mr+my)2—s ]2
ax*(s) =ax*+ 27)

(1 [(mx+mo)P—s)/aTzy2

The conditions Reag*(mg+?) =1, ag*(mg?) =% and the
knowledge of the total width of the K* resonance
determine the constants to be a¢x*=0.314, cx*=0.061
GeV~, and ag*(0) =0.28. Moreover,

vLoxs(s) —3] exp[ —gax+*(s)]
[14ax«(s)]2e

xgr(s) =L (mx+my)*—s]'?/A.

At the point s=u=mg? the trajectory satisfies

ag*(mx?®) =% and yx+(mx?) =0, so that Fr*(mg2m,2)=0

and the Adler condition is satisfied. The function wg*(s)
is given by

wi*(s) = A+ Bs+C[ (mg+2m,)2—s ]2,

5 S. L. Adler, Phys. Rev. 137, B1022 (1965); 139, B163 (1965) ;
140, B736 (1965).

. (2.28)

vr*(s) =

where
(2.29)

(2.30)
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where the cut begins at the first inelastic threshold
(mg—+2m,)?. The function wix*(s) associated with the
satellite term will differ from wg*(s) by virtue of the
parameter A. The same parameter B is used in both
processes and is chosen to be the negative of the
universal Regge slope 0.84 GeV—2 This gives the
correct s dependence of the amplitude at high energy,
(—s/50)2®, as | B| =1/so.

III. MODEL FOR POMERANCHUKON
AMPLITUDE

The requirements for a model of the Pomeranchukon
amplitude were discussed in Paper I. However, we find
it more convenient to use an alternative model for
Ap(s,t) in the present calculations. We must include
the Pomeranchukon contributions to the =-r and K-r
scattering for two main reasons:

(1) A Pomeranchukon is exchanged in the ¢ channel
with /=0 in both 7-r and K-r scattering; hence it
contributes a dominant term in the s-channel total
cross sections at asymptotic energies;

(2) In -7 scattering, the s-channel amplitude F,=2
(and in K- scattering the s-channel amplitude F g+'=3/2)
is purely real for all s above threshold. This implies
that there is no scattering in these channels if unitarity
is satisfied, and this prediction is obviously wrong.
Thus, the Pomeranchukon must contribute an imagi-
nary part to these channels.

Let us consider the properties that our model for the
Pomeranchukon amplitude must satisfy:

(i) Unitarity demands that it have a positive imagi-
nary part in all partial waves from threshold, s=R, to
infinity [where R=4m,? for m-m scattering and
R=(mg+m,)? for K-r scattering ].

(ii) The imaginary part must be zero at threshold.

(iii) The Pomeranchukon amplitude for any isospin
must become purely imaginary at high energies, and
must behave like (s/s0)*P®) as s — , where so~1 GeV?
and ap(f) is the Pomeranchukon trajectory.

(iv) The Pomeranchukon amplitude must satisfy the
Adler condition for both -7 and K- scattering.

(v) It should have Mandelstam analyticity; in
particular, it should be cut in the region R<s< « and
should satisfy a dispersion relation.

Let us now proceed to derive 4 p(f,5). We require that
ImA p(t,s)~ (s—R)(s/so)2P 1, (3.1)

We assume that A p(f,s) satisfies a twice-subtracted
dispersion relation

Ap(t,s>=w[D+K(s—moﬁ>

s 2 x—R/x\P®  dx
+2 / <—) ] (32)
wJr % \So x2(x—s)
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where D and K are the subtraction constants. In fact

Ap(t,0)=D—Kmy?,

AP (t0)=K, (3.3)

where my=m, for 7w scattering and mo=mg for K-
scattering. Then the Adler point corresponds to s=m?
Note that we have the option of making D and K
functions of ¢; however, this will not be required in
our work.

The Pomeranchukon trajectory is given by

bpt
(1L (16m,2—1)/AT2)2

ap(t)=1+ (3.4)

We choose bp to be the universal value bp=56=0.85
GeV~2% The turnover point sy=A is chosen to be the
same as for the p-f° trajectory: AY2=100 GeV. We find
that the calculations are insensitive to both & and A;
for example, a change in b from 0.4 GeV—2 to 0.8 GeV—2
changes the low-energy phase shifts by less than 10%,.

In order to evaluate the integral (3.2), we let
1/y=x/R. Then

1\ aP() g2
Ap(ts) =7P|:D+K(S—m02) +Rap(t)—2<_> _

So ™

X /0 1 (l—y)(l— %y)—lyl—wwdy]. (3.5)

This is the integral representation for the hyper-
geometric function

TONCD) o bscs)
T'(c)

= f =11 —f)=-1(1—ts)=2dt, (3.6)

where Rec>Reb>0. The latter restriction implies
ap<2, but this will be removed as discussed below.
Thus, we have

Ap<t,s>=yp[D+K<s—mo2>

R2r®=2%2 F(1; 2—ap(t); 4—ap(t), S/R):I 3.1
[2—ar(®)][3—ar()]

There are simple poles in (3.7) as a function of ¢ for
ap(f)=2,3,.... Since no resonances have been observed
on the Pomeranchukon trajectory, we remove these by
dividing F by I'(2—ap(#)). F is cut in s in the region
R<s< » and our representation above, including the
factor of 1/T'(2—ap(t)), holds for all ap and all s.

TSP )
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The evaluation of the hypergeometric function is
quite straightforward. For |s| <R, F can be written as
a rapidly convergent Gauss series and 4 p(t,s) becomes

Ap(t,s)=vp {D—}-K(s —mo?)

1 /RaP(t)—Z 52
+ )—
TC—ar()\ s=?® /o

X[éo [3—ap(t)+n]1[2 —ap() +n]<_;)"]} - @8

For |s| =R, this sum can be performed explicitly. By
using

I'(y)T(y—a—p)

F(a;B5v, 1) = ,
s = L —ar—p)

(3.9)

we get

A p(t,R) =7P[D+K(R - moz)

+£F_(3_}_(5;<_R)”] (3.10)

Finally, for |s| > R, we use the transformation formula
F(a; b; ¢, 2)
T'()T'(b—a) 1
= ——————(—z)‘“F(a; 1—c¢c+a; 1—b+a, —)
T'(®)T(c—a) 2
T'(c)T'(a—b)

_bF<b‘ 1 b1 b !
m(—z) y 1—c+b; 1—a+ r)

2

(3.11)

to perform the analytic continuation. By using the
Gauss series again, we evaluate these new hypergeo-
metric series (|1/z| <1):

A ( ) {D+K + 1 1<R ap(t)
1,5) = —me?)F ————— =
PR =Tr S —— )

So.
XP(%) go (a—1+n)1(a—2+n)(§>n

ey MGl B

The cut in 4 p(l,s) is explicit in the term (—s/R)*P®,

The above formula is valid for all values of ap({),
including integer values; actually to show that the
apparent poles at ap=—m (m=—1,0,+1,2,...) do
not occur, we simply take the limit of the expression
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as ap— —m, to give
AP(t,S)=7P{D+K(S—m02)
1 So™ 1 S m ©
+ I‘(m+2)(_R—"‘>1_r|:_<_I—€>“:v§) +n=§+3:|
1 /R n R m+1 R m+2
x 0-G0) -6
(n—m—l)(n—m—Z)\ s s s

#i() (=) )

Asymptotically, we have for s— and fixed ¢

1 1/ R\2r®
AP(tys)z'YP[KS“l’ —— —(—)
I'(2—ap(t)) w\so

S

R

} . (3.13)

) \ 1 T
X[ <R/ap(t)[ap(t)—1:] " sinras(?)

G e

We recall that as ap— integer, the lower-order terms
in the sum cancel the apparent poles. In 7-7 scattering
in order to increase the convergence to the Regge
asymptotic limit, we multiply the Pomeranchukon
amplitude by an over-all function,

e—aP(t)
A
{14+[(16m 2—1) /A1 2}2e
=vp(t)A (1),

where A and ¢ are the same as in Egs. (2.23) and (2.28).
Now A p(t,s) goes to zero for large values of ¢ This
means that for 7-r scattering, in the s channel, for
s—oo and fixed ¢, we get

P (t,S )

A P(t,S)'—)

(3.15)

PI~A p(t,S)+AP(t,M) ) (3'16)
whereas for K-m scattering, we recall that
PI=ti2=pPI=3i2= A p(t,5)+A p(t,u) 3.17)

is satisfied exactly. Thus, the common Pomeranchukon
contribution to all isospin amplitudes in the s channel
for s—o and fixed ¢, in both m-7 and K- scattering is

'YP(t) s ap(t) 1+e—i1raP(t)
i~ _—~<~> <____#) (3.18)
I'2—ap(?)\ so sinmra p(?)

The trajectory ap(f) has the asymptotic value

ap(d=o)=1—bA= —bA. (3.19)

The appearance of a signature factor in the s-channel
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amplitudes is a reflection of the fact that the
Pomeranchukon is an I=0 object exchanged in the
¢ channel.

It can easily be shown that because ap(f) has the
negative constant asymptotic value (3.19), the
Pomeranchukon amplitude does not violate the
Cerulus-Martin bound exp[ —+/|s|C()] [C(¢) a slowly
varying function of £] for large-angle scattering, s —o
and t— — oo (u fixed).

We choose the subtraction and coupling constants
as follows: The coupling constant vyp is chosen to give
the correct magnitude of the total cross sections from
factorization arguments; this also gives the correct /=2
amplitude at low energies. The subtraction constant K
is chosen to give the I=2 (I=3% for Kw) phase shift at
low energies, and D is then calculated to give the Adler
condition

PI(s,t,1) | smummpc?; t=mp2=0 (K- scattering),

_ (3.20)
PI(s,tu)| smtmy=m,2=0 (-7 scattering).

However, the basic restriction on the parameters v p,
D, and K arises from the unitarization procedure in
low-energy scattering.

IV. RESULTS FOR K-n SCATTERING
ON THE MASS SHELL

Let us begin our description of the results of the
application of the model with K- scattering. We
unitarize the partial waves by considering the absorp-
tion parameters

Im!| = [1+2igfi'(s)] . (4.1)
Here ¢ is the magnitude of the c.m. 3-momentum
1
q= 2 s(s2+mx4+m,r“
—25m 2 —2smr?—2m P mgH)1?  (4.2)

and the relationship between s,t, and the c.m. scattering

TasLE 1. Values of parameters calculated
from unitarity considerations.

Parameters calculated

Name Description of parameter from unitarity
v Over-all coupling constant 167 (for wr)
124 (for Kn)

g Exponential dependence of 0.3
amplitudes ¥, and Fg*

A Leading constant in wg*(f), w,(f) 272

A, Leading constant in satellite
function wle(t), w1 ,(2) 2.28

—3.01 (for 7mr)

dx Satellite coefficient
—2.96 (for K)

C Square-root coefficient in 0.086 GeV~
wr*(#) and wix*(f)

vp  Pomeranchukon coupling 0.60
constant

K Pomeranchukon subtraction —1.28 GeV2
constant .
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angle 0 is
s24-2s(t—mg —m2)+ (mg?—m,2)?
cosf = . (43)
s2mrttmat—2smg?—2sma2—2mg*m,>
The S-wave scattering lengths are defined by
= 1 —of . 4.4
o=, lim 810" (5)/q (4.4)

The parameters are determined by demanding elastic
unitarity 7;Y=1 in all partial waves in the region

(mr+m,):< s< (mg+2m,)?

and nonviolation of unitarity ;<1 above the first
inelastic threshold. This procedure determines the
values of the parameters shown in Table I. The I=%
S wave depends almost entirely on the leading term
and not on the satellite and Pomeranchukon terms in
the low-energy region. Consequently, v is determined
by setting 70'/2=0.83 at the mass of the K* resonance.
Unitarity determinations of 7,/ are found to be very
insensitive to C provided C is small. It is necessary
that C be small in order to avoid high-spin “ancestors.” !
The contribution of the ancestors at the poles is <5%
for the unitarized solutions. The constants v» and K
are determined principally by unitarity in the I=3
S wave, although the Pomeranchukon also contributes
to the I=% S wave. The unitarization procedure is
sensitive to variations in d;. The Pomeranchukon sub-

1. \/
(a)
)
/2
0.51—
O -
<
10 /
1,
no'z (b)
0.5
0 | | i | |
600 700 800 300 1000
, MeV

KT

F1c. 1. (a) Absorption parameter 7;-17=1/2 as a function
of the K mass. (b) niuo?=1/2

1239

¥2
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| | 1 |
700 800 900 1000

M¢rr MeV

0
600

F1G. 2. Absorption parameter 7o/ =3/2.

traction constant D is detérmined by the K-r Adler
condition to be —2.55X 1072

The nf determined by the unitarization are shown
in Figs. 1 and 2 and can be seen to be very close to the
elastic solution below the first inelastic threshold at
773 MeV. In Figs. 3-5, we display the K-r phase shifts.
The phase shift §,*/2 in Fig. 3 resonates at about
887 MeV close to the K* resonance in the §,'/? phase
shift in Fig. 4. The resonance in the §y'/? phase shift at
887 MeV is narrow with a width I'g*=60 MeV mea-
sured between 45° and 135° in the phase shift. We show
the world data for the K-r phase shifts including the
new data obtained by the Johns Hopkins group.® The

2I0f—

180

150} ¢

S
I

3Y2 DEGREES
e

[U]
(@]
——

60— +
301 + + +
ol | | | |
600 700 800 900 1000
M MeV

Kw?

F16. 3. Phase shift 8;.o~1/2 as a function of the K7 mass. The
data are from Mercer et al. (Ref. 6). The down-up solution appears
to be excluded by these data (see text.)

8 T. G. Trippe ef al., Phys. Letters 28B, 203 (1968) ; R. Mercer
et al., Johns Hopkins University report, 1970 (unpublished); and
private communication.
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| | 1 |
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MeV

MK7r'

F1c. 4. Phase shift §..,7=1/2, The data are
from Mercer et al. (Ref. 6).

present experimental situation is that the down solution
to 8!/2 in K-r scattering does not cross over to the up
solution around 890 MeV. However, our phase shift
follows the down solution below the K* and the up
solution above the K* and it may be that future
experiments will allow a down-up solution. The fit to
the §,!/2 phase-shift data is very good. The §,*/? phase-
shift data has large errors and our solution is consistent
with the data. The K* resonance in the §;}/? phase shift
at 892 MeV has approximately the correct width
T'x*=57 MeV compared to the experimental width
(T g*)exp=50.12£0.8 MeV.”

40—

o
S
I

n
Q
I

S
|

DEGREES
— ]

'%O o -0~
20—
-30—
-40}
5ol | | 1 1
600 700 800 900 1000
M MeV

Km?

F16. 5. Phase shift 8;¢/=%/2. The data are
from Mercer et al. (Ref. 6).

7 Particle Data Group, Rev. Mod. Phys. 41, 1 (1969).
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It should be mentioned at this junction that because
we unitarize the model by adding an imaginary part to
the p and K* trajectories, the total widths of all reso-
nances will be equal at the positions of the poles in the
second sheet. However, because of appreciable back-
ground effects due to the Pomeranchukon and the non-
resonant scattering, the widths obtained directly from
the predicted phase shifts and cross sections are not the
same for all the resonances. They correspond to the
physical widths which should be compared with the
data. In this sense, a narrow-resonance approximation
can be very misleading and, in fact, incorrect, since it
completely ignores the large background scattering.
We touch upon this question further in our discussion
of the 7w scattering results.

The charged states Kt~ — K+7— and Ktr—— K0
correspond to the isospin combinations

{Ktr=— Ktn} =5§A4124-3432

{Ktn~— Kon0} =3v2(—AV24A43/2),
The total cross sections calculated from the model for
these processes are shown in Figs. 6 and 7, and com-
parisons with the Veneziano-Lovelace® results based on

the K matrix are also shown. Our fits to the data are
better than the Veneziano-Lovelace fits, particularly at

(4.5)

— MOFFAT

——VENEZIANO — LOVELACE

o (K* 77) (mb)

L
1[e]¢]

900
MK1r ) MeV

1000

F16. 6. Elastic cross section o (K*r~) as a function of the K=
mass. The data are from Trippe et al. (Ref. 6). The solid line is
our fit ;) the dashed line is Lovelace’s K-matrix Veneziano model
(Ref. 8). )

8 C. Lovelace, in Proceedings of the ANL Conference on n-r
and K-r Interactions, 1969, p. 562 (unpublished).
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low energies and at the peaks of the cross sections
determined by unitarity.
The S-wave scattering lengths are predicted to be

Q2= O.lSm,,“ R
(4.6)
Q3/2= —0.06'”1«,_1 ,

which are close to the current-algebra predictions®
a172=(0.1320.02)m, ™1,

47
agj2=—(0.0720.01)m, ", *.7)

determined in terms of the experimental pion decay
constant fr=(1.0320.05)m,+1

V. RESULTS FOR =-= SCATTERING
ON THE MASS SHELL

We now consider the results obtained for low-
energy w-m scattering. All the parameters determined
by the K-m unitarization at low energies are used to
predict the low-energy w-r scattering with the exception
of a change in the coupling constant y. We therefore
predict the low-energy m-m scattering in terms of an
effectively zero-parameter model, since the over-all
normalization constant v, determined for - scattering
to be v =167, corresponds to v ,»+2/4mw=2.4. This value
is in agreement with Sakurai’s'® determination of
¥ p2/4m, which has an error of about 20%,. The Adler

—— MOFFAT

n  ——VENEZIANO —
LOVELACE

100[—

2xo (K° 79 (mb)

~

1 I
1000 oo

I
900
M|<1r , MeVv

1
800

0 700
F16. 7. Same as Fig. 6 for the charge-exchange
cross section 2Xo (K*tn~ — K%9),

9 J. A. Cronin, Phys. Rev. 161, 1483 (1967).
10 7, J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).

1241

\\\/// (a)

0.5 (b)

2 1.5

1.0

(c)

0.5~

1 1 |
300 500

| |
700 900

My, MeV

F1c. 8. Absorption parameter ;/ predicted for 7w scattering as a
function of the 7 mass. (a) 71-0'=". (b) 71-1?=%. (C) 710’2

condition determines the Pomeranchukon subtraction
constant D to be —2.64X 10~

Figure 8 shows the predicted results for the absorp-
tion parameters 70% 71!, and 702 The violation of elastic
unitarity bétween 280 and 560 MeV is less than 109, in
the /=0 .S wave and is negligible in the /=1 and =2
waves. However, unitarity begins to be violated above
~900 MeV, particularly in the 7=2 S wave. Thus, we
can believe the phase shifts up to about 900 MeV, since
small violations of unitarity were found to produce only
an error of 1 or 2 degrees in the phase shifts. However,
the cross sections are sensitive to  and violations of
unitarity may be expected to show up there (see Table I
for the parameters used).

Figure 9 shows the 7=0 S-wave phase shift as com-
pared with the data of Cline ef al., Walker et al.,
Biswas ef al., and Malamud and Schlein!!; the latter do
not include 7 =2 scattering, so their results are not fully
consistent. We predict a resonant solution, of mass
and width

m.="725 MeV, T.=194 MeV, (5.1)

corresponding to a fairly broad e resonance. The con-
tribution of the Pomeranchukon to the 7 =0 phase shift
is important, and causes a shift in the e mass and a
large broadening of the peak; this results in a broad

1 D. Cline, K. J. Braun, and V. R. Scherer, University of Wis-
consin report, 1969 (unpublished); W. Walker et al., Phys. Rev.
Letters 18, 630 (1967); N. Biswas et al., Phys. Letters27B, 513
(1968); E. Malamud and P. E. Schlein, Phys. Rev. Letters 19,
1056 (1967).
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Fi16. 9. Phase shift 8;_o’=° with the data of Cline ef al., Walker
et al., Biswas et al., and Malamud and Schlein (Ref. 11). The
dashed line is Lovelace’s K-matrix Veneziano solution (Ref. 8);
the solid line is our fit.

resonance near the p, as would be seen experimentally.
We have also plotted Lovelace’s solution,® which gives
a broader resonance (I':=360 MeV) at the same mass.
His solution, however, results from a coupled-channel
approach (rm— KK, nr) using the K matrix, which
violates crossing symmetry. .

Figure 10 shows the predicted /=2 S-wave phase
shift, together with Lovelace’s result. The data are from
Baton et al.,'? Katz el al.,** and Walker et al.'! Up to
600 MeV, our solution is quite good; at higher energies,
however, it falls below the data points. At M,,=500
MeV, we predict

do2(mg)=—12°, (5.2)
giving
5o°(mK) —502(mK) = +39° y
which is consistent with the results obtained from
K1%— 279.* Morgan and Shaw!® predict on the basis
of a dispersion-relation calculation the results

8% (mg) =(33%95)°, (5.3

which compares favorably with our value §°(mg) =27°.

2 J, P. Baton, G. Laurens, and J. Reignier, Nucl. Phys. B3’
349 (1967).

18 W. M. Katz ef al., in Proceedings of the ANL Conference on
m-m and K-r Interactions, 1969, p. 300 (unpublished).

14 G, E. Kalmus, in Proceedings of the ANL Conference on =-r
and K-r Interactions, 1969, p. 413 (unpublished).

16 D. Morgan and G. Shaw, Phys. Rev. D 2, 520 (1970).
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Lovelace?® gets

800 (mx) =43° (5.4)

and
8o’ (mx) — 8o*(mx) =+55°. (5.5)

Figure 11 shows the I=1, P-wave phase shift, the
usual p Breit-Wigner solution.

Our D, F, and higher waves are quite small; the D
wave is about 1 or 2 degrees at the p mass and there are
no observable effects due to high-spin ancestors in the
higher waves (see Table V).

At threshold, we predict for the -r scattering lengths

a0=0.19m,71,

a1=0.036m,73, (5.6)
as=—0.046m,1,
‘with
ao/a2= —-4.1. (57)

These results are close to the current-algebra values of
Weinberg?® and the predictions of chiral SU(2)®.SU(2)
which gives®

a9=(0.150.02)m, 1,

ay=—(0.04=:0.004)m, 7, Y

using the pion decay constant f,=(1.0320.05)m,+1.
They are also consistent with the experimental value
for a¢/a, given by

ap/a,=—3.2+£1.0, (5.9

4 % BATON ET AL.
-~ KATZ ET AL.
4 WALKER ET AL.
—  MOFFAT
——  VENEZIANO — LOVELACE

82, DEGREES

-20
-30
-40
| ! | l | I | 1 1
300 500 700 900 1100
My 7 MeV

F1c. 10. Phase shift §;_¢’=2 with the data points of Baton ef al.
(Ref. 12), Katz et al. (Ref. 13), and Walker et al. (Ref. 11). The
solid line is our fit; the dashed line is Lovelace’s fit (Ref. 8).
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¢+ s SACLAY
$  SCHARENGUIVEL et dl,
—  MOFFAT
1801
1501~
w
woor e
é 1201
a8 T +
@ 90

60|

30|

e | 1 | 1
600

My > MeV

| |
800 1000

Fic. 11. Phase shift §;.,7=! with the data of Saclay (Ref. 12) and
Scharenguivel et al. (Ref. 23). The solid line is our fit.

obtained from the #*z~ asymmetry!® and from the
branching ratios!”
a(wtn— — 7'70) a(mtr— — 720
—— and ——— (5.10)
o(ntnrt — atpt) o(ato— — 7tr) -
near threshold. The solutions of Morgan and Shaw!®
give
ao=(0.1620.04)m,71,
as=—(0.0540.01)m, 1

for all reasonable input forms for the phase-shift

(5.11)
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TasLE II. Predicted scattering lengths (m,7%).

a,=—0.046
0.06

T

Kx

ay= 019,
a1/2=0.15,

a1=0.036m,72,
azra=—

solution. These scattering lengths are consistent with
our results (Table II).

The other quantity of importance is
L=%(2a0—5a,), (5.12)

which can be evaluated by assuming that the m-w
t~channel I'=1 amplitude satisfies an unsubtracted
dispersion relation. This gives®

Mma [® dv
L= / Y 4900
67r 2mx (V2_4m1l'2)

—54¢2(,0)+3411(:,0)], (5.13)

where v=(s—u)/2m,. In Table III, we summarize the
results of several current-algebra and model evalua-
tions!® of L. The poorness of Lovelace’s scattering-
length predictions is due to the violation of crossing
symmetry which the K-matrix method gives.

We also satisfy approximately the result [partial
conservation of axial-vector current (PCAC) and
linearity |

2(10—5(12 = 18m,,2a1 . (514)

The left-hand side gives 0.618 and the right-hand side
gives 0.653.

Our P-wave scattering length a,=0.036m,~3 agrees
with the Morgan and Shaw!® calculation

a1=(0.0354-0.002)m, 3 (5.15)
and also with the result
a1=(0.0424-0.005)m,~3 (5.16)

quotedvby Olsson.

TasLE III. Comparison of results of several evaluations of L.

Source L ao/az Remarks

Adler (Ref. 5), Weinberg (Ref. 3) 0.10+0.01 —-3.5 Amplitude linear about Adler point; PCAC

Tryon (Ref. 18) 0.114-0.01 -3.5 ““Unitary, crossing-symmetric
numerical procedure”

Morgan and Shaw (Ref. 15) 0.10=:0.01 —3.2+1.0 “Unique solution to 7= scattering”’—
numerical unitarization of fixed-¢
dispersion relations

Lovelace (Ref. 8) 0.15 —4.5 “K matrix”’ on Veneziano coupled channel.

Morgan and Shaw (Ref. 15) 0.11 —14.5 As above, with Lovelace’s phase shifts

(Lovelace IIT) .
J. Cronin (Ref. 9) 0.0940.01 —3.7+£0.8 Chiral Lagrangian model
This model 0.10 —4.1 Evaluated from scattering lengths

16 L. J. Gutay, F. T. Meire, and J. H. Scharenguivel, Phys. Rev. Letters 23, 431 (1969).
17D. Cline, K. J. Braun, and V. R. Scherer, in Proceedings of the ANL Conference on - and K-r Interactions, 1969, p. 179

(unpublished).

B E. P. Tryon, in Proceedings of the ANL Conference on == and K-r Interactions, 1969, p. 665 (unpublished). See also J. B.

Carrotte and R. C. Johnson, Phys. Rev. D 2, 1945 (1970).
1 M. G. Olsson, Phys. Rev. 162, 1338 (1967).
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o (rm—~ 7" 714 mb
P = e e
s § 53
) I

5 3
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F16. 12. Elastic cross section for 7«9 plotted against the ==
mass. The data are from Baton e al. (Ref. 12). The solid line is
our fit.

The on-mass-shell elastic cross sections and charge-
exchange cross sections are calculated using (2.10) and

o=16r 2 @+ £ . (5.17)

We must divide ¢ by 2 in the case of identical particles
(e.g., wmtrt— xtrt and 7%7°— x%x® scattering).
Figure 12 shows the cross section for 7#° elastic scat-
tering compared with the data obtained by Baton ef al.'
in terms of a Chew-Low extrapolation of d%/dA%ds for
7w n— 7 7% to the pion pole. The fit is quite good,
except above 900 MeV, where we begin to violate
unitarity in the /=1 and =2 waves; we reach the
unitarity limit at 765 MeV, as we should. The wtn—
elastic-cross-section prediction is shown in Fig. 13
compared with the data of Johnson et al.?® The number
of data points is not impressive, but we fit the few that
there are well enough. In Fig. 14, we display our

+$- JOHNSON et dl.

ocl{r*r =7 7),mb

1 | L L I I 1
200 400 600 800 1000 1200 1400
My MeV

Fic. 13. Elastic cross section for #*7~ and our fit.
Data from Johnson ef al. (Ref. 20).

20 P, B. Johnson et al., Phys. Rev. 176, 1651 (1968).
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I'16. 14. Charge-exchange cross section ¢ (r+r~ — 7%9) with data
from Deinet ef al. (Ref. 21). The solid line is our fit.

predicted charge-exchange cross section for 7 ta—— 7%7°

and compare it to the data of Deinet ef al.?! The agree-
ment does not seem very impressive at first sight.

100

50|

o (rr—mr7)
0.05

O.lE—- o (r*r—nr°)
N
L

-l 1 ] |
700 900

MeV

0,01 1 |
300 500
Moz
F16. 15. Summary of Figs. 13 and 14: We plot the data of Cline
et al. (Ref. 17) for the ratios 10X o (r*n~ — 770 /o (x*nt — a'at),
o ('t~ — 7970 Jo (xTn~ — ntn~) with our fits.

2 W. Deinet ef al., Phys. Letters 30B, 359 (1969).
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However, most experiments have been done at too low
a beam energy with few events and lack of statistics.
The competing N* formation causes problems, -and
since different experiments quote varying fractions of
N*s, violently different cross sections are quoted by
different groups because of the smallness of the absolute
cross section. Morgan and Shaw?!s use the experimental
points in Fig. 14 as evidence for a broad I=0 S wave,
not resonating until 900 MeV or higher (between-down
solutions I and IT). If this interpretation is correct, then
no model with an e daughter of the p can fit the data.
The phase shift has to remain around 90° to reproduce
the data in Fig. 14, but in our model it rises through
180° rapidly giving the dip at 800 MeV. In fact, our fit
has the typical broad resonance shape, as we should
expect. ‘

Much the same remarks apply to Fig. 15, which

shows the ratios of cross sections

Ri=o(rtn=— 770 /o (atat — rtat) s 18

Ry=c(rtr™— 7% /o (ntn— — xta™). $-18)
The dip we find in the charge-exchange cross section is,
of course, faithfully reproduced in Fig. 15. The data
dip in R, because the o(ztar—— 7tr™) is resonating;
in Ry, o(x*xt) is not, so there is no dip. Morgan and
Shaw conclude that §o2(m,) = —15° is favored from Rj.
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The asymmetry parameter is defined by??
F—B

1 do(cosf)  do(—cosh)
=/ dcos@[ — }/0’1’, (519)
F+B 0 dQ dQ

where o7 denotes the total cross section. By using
da/dQ= fI(s, cosf) | 2
=|2Y (2141)Py(cosh) fif(cosh) |2, (5.20)
1 : ‘

— =4Zl“, 3 Q@D QI41) fo(s) fr*(s)

X/dx[Pl(x)Pp(x)—-Pz(—x)Pp(—x):l. (5.21)

Next we substitute for one of the Py ’s in terms of
B (—1)M2I =2\ lxt—2
=0 2N NI =201

where [3/] is the largest integer <2/, and we use the
integration formula
1

Pi(x)xV 2y
’ (V)2 V11T —20)

Pu(x)= (5.22)

= . (5.23
We get 80%(m,)=—27° and hence fall below the data TQA+5—N=3DT GV —N+314+3) G2
points (data from Cline ef al.7). Then with '
(01 [(= M= W20 — 20 [(y/m) 252010 -1 —2))
=2 M =N TGV =3 A+ 1) TR/ 2 g ’ 29
this gives ! T =3l =N )GV +51—N-3)
F—B
R X QHDADSO et Saw/or. (3.25)
For I=1, this is zero; also it is symmetric in ! and . Thus,
F—-B 8 (204-1) (27 +1) Re[ fi(s) fv*(s)] 5 26
— = Q. .
F+B i3 16r Su QUAD| ()2 (26
If we integrate over the azimuthal angle and neglect D 3 SCHARENGUIVEL et ol
and higher waves, we get ek
o8-
F—B 3 Re[fi(s)fo*(s)] e
= . (5.27) 0.6 ® I
F+B [ fo(s)|24+3] fu(s) |2 o :

Figure 16 gives the on-mass-shell asymmetry e gl B e e T
parameter for 7tz as a function of M,,. The data of B — MOFFAT
Scharenguivel ef al. are shown for comparison.?3 This 02 - ARNOWITT
prediction acts as a check on the phase shifts, especially o ‘lxg"AGNliR L

60’ We observe that our fit is very good. Also plotted
are the fits of Arnowitt?* and Wagner.22

2 F. Wagner, Nuovo Cimento 64A, 189 (1969).

% J. Scharenguivel et al., Purdue University report, 1970
(unpublished).

% R. Arnowitt, in Proceedings of the ANL Conference on -r
and K-r Interactions, 1969, p. 619 (unpublished).

F16. 16. On-mass-shell asymmetry parameter (F—B)/(F+B)
as a function of the == mass. Data from Scharenguivel ef al. (Ref.
23). The solid line is our fit; the dashed line is Wagner’s single-
channel Veneziano (K-matrix) model (Ref. 22); the dotted line
is a hard-pion current-algebra model due to Arnowitt (Ref. 24).
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VI. POSITIVITY AND CROSSING-SYMMETRY
CONDITIONS BELOW THRESHOLD

General conditions on the = scattering amplitude
for the process % — 7%° below threshold have been
derived by Martin? and others? from crossing sym-
metry, unitarity, and the existence of a twice-subtracted
dispersion relation for the amplitude. We should expect
to satisfy all of these conditions, because the model
satisfies the correct analyticity properties, is crossing
symmetric, and satisfies approximate unitarity; how-
ever, these conditions are a useful consistency check on
our amplitude.

Let us write
Ao(mon° — r070) = fo00, (6.‘ 1)

In Fig. 17, the S-wave amplitude (6.1) is plotted be-
tween s=0 and s=4m,2. We see that f,° has a unique
minimum between s=1.29%,2 and s=1.7m,%. In
Table IV, we list several conditions on f,°°, which show
that these rigorous requirements are fulfilled by the
model.

VII. OFF-MASS-SHELL BEHAVIOR

We now discuss the behavior of the model when one
of the pions is extrapolated off the mass shell in both
m-m and K- scattering. This enables us to pass into
the physical region for the processes =N — mxN' and
KN — KN assuming the validity of the one-pion-

0.04

A, (TOT=7°m0)

0.03

0.02]

0.0l

s/ m;.
F1c. 17. S-wave amplitude for 79— 7979 from s=0 to s=4m,>.

25 A, Martin, Nuovo Cimento 57A, 393 (1967).

26 A. K. Common, Nuovo Cimento 63A, 482 (1968); O. Piguet
and G. Wanders, Phys. Letters 30B, 418 (1969); A. P. Balachan-
dran and J. Nuyts, Phys. Rev. 172, 1821 (1968); A. P. Balachan-
dran and M. L. Blackmon, Syracuse University Report No. NYO-
3399-223, 1970 (unpublished). G. Auberson, G. Mahoux, O.
Brander, and A. Martin, Nuovo Cimento 65A, 743 (1970). R.
Roskies, Phys. Rev. D 2, 247 (1970).
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TaBLE IV. Conditions (Refs. 25 and 26) on
Ao (770 — 7070) = /% for 0K s L4 (ma=1).

Condition Satisfied Remarks
(1) fo*o(s) <fe*(4) yes
(2) unique minimum in f,%(s) yes minimum
between 1.29 and 1.7; at 1.67
ie., df®(s)/ds<0, 0<s<1.29
df™(s)/ds>0, 1.7<s<1.76
3) dfd(s)/ds>0, 2<s<4 yes
D f"(0) 2 fo*(2(1+1/V3)) yes
(5) d2f(s)/ds*>0, 0<s<1.7 yes
6) [ (0)<—%[2/0™(4) yes
—[®(2)~ fe*(0)]
4
M @3> 3 [ s0as yes

exchange (OPE) approximation (see Fig. 18). Our
on-mass-shell comparisons with the data also assume
the validity of OPE, since this is how the data are
obtained.

We assume that the off-mass-shell dependence of the
amplitude is contained in the implicit dependence of ¢
and # on the extrapolation, except for a possible form
factor which is equal to unity on the mass shell.

Let us consider the #N —arN system first. Our
kinematical variables are defined in Fig. 18 and we
follow the notation and derivation of Ferrari and
Selleri.?” For the nm system, we have

§= (Q1+ka—l]2)2= (k1+k2)2 )

t=(k1—q1)?, (7.1)
u=(k2—q1)?,
and ¢1+q2=k1+ke+ks. For the mV system,
W2=(q1+¢2)?= (k1+kyt+ks)*. (7.2)

We define —A? as the (mass)? of the transferred pion,
i.e., as the momentum transfer from the nucleon to the

k
T I
S
q, T
m
™ k2
w2—
2
A% = (kg gy 2
q k
2 N N 3

Fic. 18. Kinematical quantities used in the extrapolation of the
exchanged pion off the mass shell. g1, g2 (k1,k2,k3) are theincident
(final) four-momenta; W2 is the = (¢1) N (g2) c.m. energy squared;
s is the c.m. energy squared for the 27 — 27 system. —A?is the
(mass)? of the exchanged pion.

27 E, Ferrari and F. Selleri, Nuovo Cimento 24, 453 (1962).
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pion. Thus, A?=—m,? corresponds to being on the are given by

mass shell and W2—my?—ma2\2
Pap?=| ————— ] —m.?,
A2='—(q2—k3 2=—(k1+k2—ql)2. (73) 2mn
Other quantities of interest are the pion laboratory t=53ms?—5s—A%)+2gongott cost,  (7.4)
momentum pi.p, and ¢ and # as functions of A2 These w=3(3my2—5—A%) —2qongoss COSH,
cok — MOFFAT 560-620MeV 140} 760 - 780 MeV
=--VENEZIANO- WAGNER
a0k ~+ BATON ET AL. 1201~
) —t
20_}'--“*‘—31—?}:_:—_}—— 100~
5 S 8o
60—
GOLI 620-680Mev |
T \ == 1
20~ == - R B 11
. F— ] I 1 ) 1 120
780-800MeV

680-720MeV
60

40

F (A2) mb

120+

720-740MeV

20
1 | ] ] 1 1 L1 8
820-850MeV
60 -~
120 T40-760MeV 40
100] 2

80

60

40.-.

20~

ol 11l L1 | | | [ 1 1 ] L !
- 3 9 1 13 - I3 13

7 5 7.9
A2/m2 8%/ w2

F1c. 19. Off-mass-shell extrapolations of the cross section for 7~#%— 7~x0 as a function of A2/ms2. F(A2s) = (gott/gon)oott. We have
averaged F over the energy region indicated in each graph. The data are from Baton et al. (Ref. 12). The dashed line is,Wagner’s (Ref.
22) fit; the solid line is ours.
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where
q«>n2 = 71’5 - m1r2 )

Gost?=[s*+2(A2—m, %) s+ (m,2+A%*]) /4s.  (7.5)

We multiply the partial waves f; by the form factor
exp[ —B(A2+m,?)], where 8 is a constant. Wagner??
has justified the use of this phenomenological device
as allowing for the Reggeization of the virtual pion
setting

B=ca,' In(W?/W?) (7.6)
so that the form factor has the form
(W2 W (2o’ (A2bmat) (1.7)

However, we should expect from the slope of the pion
trajectory that Wy?=1 GeV2 But Wagner? uses
Wo?2=0.3 GeV? and, therefore, makes this particular
justification of the form factor suspect.

Following Ferrari and Selleri,?” we extrapolate the
formula for the elastic cross section:

o(s,A2) =167 3 (214-1) exp[ —28(A%Hm2)]
X| fils,a8)[% (7.8)

off the mass shell. The partial-wave amplitudes off the
mass shell are defined by

1 1
fif(s,A?) = 5/ d cost fI(s,A2)Pi(cosf). (7.9)

1

We then average (7.8) over small regions of s, and
compare the results with the Chew-Low extrapolation
data of Baton et al.}? Figure 19 displays the fits of the
present model and also Wagner’s fits using the
Veneziano model. We used 8=2.8 GeV~2 in all our =
fits, whereas Wagner uses 3 as an adjustable parameter,
changing it slightly from the Chew-Low extrapolation
to the differential cross section. Both models fit the data
quite well, although in view of the arbitrariness of the
form factor employed in the fits the significance of the
results is not entirely clear.

The differential cross section do/dA? is the quantity
measured in the reaction 7N — 7wV it is extrapolated
to give the total cross sections. In terms of partial
waves, it is calculated to be

AZSIIZqon

d% 1( G.n? >
dA%ds B 8w \my2pran? (A2"+‘M1r2)2

X g; @I+1)| £1(s5,07) |2

Xexp[ —28(A%+m.*) J[1+(—1DH ], (7.10)

where G,x%/4w is the =N coupling constant. We then
average this over the p region and get do/dA?, which is
plotted in Figs. 20 and 21, and compared with the data
of Jacobs,? and Wagner’s fit.?2 Again the fits are good.

% L. D. Jacobs, LRL Report No. UCRL 16877, 1966 (un-
published). '
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Fic. 20. Differential cross section do/dA% for =~ p — ntrn,
averaged over the p region. The solid line is our fit; the dashed
line is Wagner’s (Ref. 22). The data are from Jacobs (Ref. 28).

However, in both our case and Wagner’s calculations,
the normalization is not quite correct. We must use
G.n?/4w=20 instead of 15, and Wagner uses G,y2/4r
=15 for one fit and G,x?%/47=8.8 for the other one.

50

T T°T

—MOFFAT
o ——~VENEZIANO -~WAGNER

+ JACOBS

1 1 Il 1 1 1 1 1 I
2 4 6 8 g2 14 I6 18 20 22
A7 ME

0.1
[¢]

Frc. 21. Same as Fig. 20 for 7#7p — =7a%.
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3.0
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F1c. 22. Differential cross section do/dA% for K*p — K*(890)A++
— K*n~A*™, averaged over the resonance. The data are from
Trippe ef al. (Ref. 6). The solid line is our fit. The kaon lab energy
is P[nb=3.0 GCV/C.

Let us now consider the process KN — KxN. We
examine the cross section do/dA? for the reaction
K*+p— K*tr~A*+ and assume, as before, that the
reaction is dominated by the OPE mechanism. The
momentum transferred to the kaon, squared, is denoted
by ¢, and the c.m. energy squared in the K*z~ system
is s. The coupling between the p, #—, and A+t is as-
sumed to be of the form

(Gra/ M o) ()Wu(x)yé(x)+H.c. (7.11)

In the Ferrari-Selleri®¥ formulation the quantity of
interest is the summation over spin states of the
expression

(g—p)*(g—p)Ta(p)u(q) (@ (p)u. ()],

where ¢* and p* are the 4-momenta of the proton and
the A*+ respectively. Within an over-all constant

(7.12)

Fic. 23. Same as Fig. 22 for P1,=3.5 GeV/ec.

factor, the spin summation of (7.12) gives

8 /My M a2+ A2
s

3 2
8 mypttMstA?
+mpMA>
3M A2\ 2
M Z_m 2_A2 2
><(~—A—————” > . (7.13)
2

Then do/dA? is given by
do (G,,A‘"\P exp[ —28(A24m,2) ]2
4r ) (P1ap)2(A2Hm42)?

47
X(—— >/Q(\/s) > Q1) fi(s,A2) | 2ds. (7.14)
M p M a* [

dar

Here Q is the c.m. 3-momentum in the K-r system and
P\gp, is the magnitude of the incoming K momentum in
the K-p lab system. The constant 8 is chosen to be
B=3.8 GeV~? and G,a%/4m is a dimensionless coupling
constant Gra%/4r=0.44.

The relation between A? and cosf is

$24-5(2t—2mi+ A2 —mo?) + (mg?+A2) (mg?— m,?)

cosf =

, (7.15)

>\(S) mK2’ —Ag))‘(sy'szymwz)

where

A#,y,8) =22 +y* 22— 20y —2x2—2yz.  (7.16)

The off-mass-shell partial-wave amplitudes are found
from (7.9), where the relationship between cosf and A?
is given by (7.15).

In Figs. 22-25, we show the predictions compared to
the data of Trippe ef al.® using 3=3.8 GeV~2, and we
see that the fits are satisfactory.

VIII. HIGH-ENERGY BEHAVIOR

In view of the success of the model in describing
low-energy m-m and K- scattering, it is interesting to
study the r-r and K-r total cross sections and the 7-m
differential cross sections at high energies.

Let us consider the asymptotic behavior of the m-r
amplitudes. The amplitude F,(s,f) has the following
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3.0 behavior in the s channel for s—o and ¢ fixed:
30 Gev/e PI~Ap(ts)+Ap(tw) =0(,s). 8.2)
20 This follows by virtue of the result that for s—o and
¢ fixed,
A4 P(uxs) ~A P(u’t) =0
1.0 ’ (8.3)
A p(s,f)~A p(s,u) =0.
o Therefore, the isospin amplitudes f7 have the following
> asymptotic behavior in the s channel for s—w and
© 0.5
< ¢ fixed: _
E J5=0s,0)~ ! [ *%’y"(t)<_s_)u'm
?
8 } 16+/sL ey )\ 5y
0.2 3eg—imap(t) 1
X —__-__“_"l_(?(tas)] ’
sinma,(£)
—_ ap(t)
e F1=1(s,6) ~ ! [ a0 (i) ’
0 0. . . ’ T
A2(Gev?) 16+/sLT(a, () \ 50
Fic. 24. Same as Fig. 22 for Piap=5 GeV/e. x et te (t’s)] 84
sinma, (£)

asymptotic behavior as s— oo for fixed ¢ in the s channel:

1 —5,(t) 7 s\ ®
wyo(t) (—s/s0)%® I=2(5 §)~ i
FHsh) 16\/s[I‘(ap(t))( >

F (S)t)'\'_ ’
! I'(a,(t)) sinma,(f) o
3 s/s ap(t) X —.—-b"" +(P(t,s)]-
Fo(tu)~ — mell)_ (5/50) s (8.1) sinma, ()
i ¢
T(ep()) sinma,(?) Since the term ®(t,s) eventually dominates as s in-
F,(s,u)—0. creases, the amplitudes will become isospin-independent,

. . as they should be.
The Pomeranchukon amplitude has the asymptotic The differential cross sections are given by

do T
2.0 3.0 GeV/c —(wtrt) = —| f=%(s,0) | 2,
dt q?

do T
1.0 —(@tr) = —|5/7s,0)+5/7=(s,9)
dt q*

p +3/%s,9) |2,
—(rtat) = [0, (8.5)
dt ¢*

o
o

g2, (mb/GeVv?)

do T
E(ﬁ“ﬂ") =— [3/7=(s,6)+3/7=%(s,6) | 2,
q

0.2
do T
—(tr — 1000 = 3L f1=2(s,0) — f1=9(5,0)]| .
dt ¢
By using the optical theorem, we can relate the total
cross section to the imaginary part of the amplitude in
| 1 | ] 1 | 3 fom -
5 o o4 58 the forward direction: “
A®(Gev©) - 1
or=—ImfI(s,0). (8.6)
F1e. 25. Same as Fig. 22 for Py,,=13 GeV/c. q
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TaABLE V. Predicted resonances.

Mass (MeV) Decay Partial width (MeV)

Name JP I¢ Theory Expt. mode Theory Expt.
€ o+ ot 725 ~710 T 194 140-450
P 1~ 1+ 765 765410 T 120 125420
f 2% o+ 1285 126410 T 112s 5130
g 3= 1* 1671 1650420 Tr 18 <120
K* 1= 3 892 891.4+0.6 Kr 57 50.1+0.8
K'™* o+ 3 887 ? K - 60 oo

» Calculated in the narrow-resc approximation

In Fig. 26, we show the differential cross section for
charge-exchange scattering at several values of s. We
observe that the ghost-eliminating zero in the residue
at t=—0.5 causes a dip at this value of ¢, and there is
also a dip near {=0 due to the zero in the residue at
t=m,2 The dip at {=—0.5 becomes more pronounced
as the energy increases because the signature factor
becomes exact only at infinite energy. There is no zero
at t=—0.1; this zero would be expected to occur if
factorization were valid and the crossover in =V scat-
tering were caused by the vanishing of the non-spin-flip
residue for the p trajectory. The differential cross
sections for the elastic w-r processes are shown for
s=40 and 80 GeV? in Fig. 27. These cross sections are
structureless, as would be expected, due to the domi-
nance of the Pomeranchukon amplitude at these
energies.

0.01F

mb/GeVz

0.00I

do
ar

T lllllll

T

0.000I

I N N TR O RN N N I S NN B
02 04 06

-t (Gev?)

0.00001g

F16G. 26. Differential cross section do/dt for #tnr— — a%%as a
function of ¢, for s=12, 20, 40, 64, and 80 GeV2.

Figure 28 shows the total cross sections for m-m
scattering at high energies. The asymptotic limit of the
cross sections is =8 mb for all charge states; this can be
compared to the value of =13 mb obtained from
factorization using

Orr=0zN?/ONN

®.7)

and the presently available data.?® The contribution
from the p-Regge pole is determined by the result
at s=20 GeV2:

Orta~—0r++=—0.5 mb. (8.8)
Because experimentally
Orp—0xtp=1.5mb (8.9)

10.0 >
——(171r—1r1r)

- g—,‘ (- —artr-)

T 77T T T T
—_

QO

~

mb/ Gev 2

do
dt

o.l 1 1 | 1 1 1 1 1 1 1 1 1

F16. 27. (a) do/dt for w*xt — wtzt (solid line), 7tr— — wtr—
(dashed line) for s=40, 80 GeV2. (b) do/dt for 1r°—> wox0, g0
— w70 for s=40, 80 GeV?

% 8. V. Allaby et al., Phys. Letters 30B, 500 (1969).
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F16. 28. Total cross section o7 for =tr+ (solid line), and the
elastic cross sections for 7#tz~ (dashed line), and 700, 7*#° (dash-
dot line) as a function of s.

at this energy has the opposite sign, we do not have
strict factorization for the p contribution, as we already
observed in the m-r charge-exchange scattering. The
asymptotic K-m total cross section is 4 mb, which can
be compared with the value of ~11 mb obtained from
factorization using

(8.10)

OKz= O'KNO'WN/O'NN

and the presently available data.?

IX. CONCLUSIONS

We have succeeded in finding solutions to the model
for K-m scattering which are approximately unitary at
low energies and satisfy s-u crossing exactly; the
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on-mass-shell predictions were in satisfactory agreement
with the data, and the scattering lengths were close to
those obtained from current algebra. Apart from a
change in the over-all coupling constant, the same
parameters were then used to predict the low-energy
w-1 scattering and the crossing-symmetric solutions
were found to be approximately unitary up to 900 MeV,
and satisfactory fits to the available data (see Table V)
were found except in the case of the charge-exchange
data; however, the latter data are still open to question
due to the difficulty in measuring the cross sections for
this process accurately, and further experimental in-
formation is required. The predicted on-mass-shell
forward-backward asymmetry fitted the data very well,
and the predicted scattering lengths at threshold were
in good agreement with various analyses of the data
and the results of current algebra.

The general conditions below threshold that follow
from crossing symmetry and positivity were investi-
gated and found to be well satisfied. The calculation of
the high-energy =-r and K-r scattering showed that the
Pomeranchukon amplitude described the low- as well as
the high-energy region satisfactorily; the charge-
exchange scattering at high energy displayed the
“nonsense” dip correctly, and the total cross sections
were found to be of the order of magnitude expected in
the asymptotic region.

If we could succeed in extending the model to the
resonance region at intermediate energies by some
satisfactory procedure of unitarization, then we could
claim to have an approximate description of m-w and
K-m scattering valid in the whole energy range, con-
sistent with the basic principles that we believe a
model of strong interactions should possess.
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Contribution of Elastic Intermediate States to Polarization of the
Recoil Proton in Elastic Electron-Proton Scattering

A. J. G. Hey*
Department of Theoretical Physics, University of Oxford, Oxford, England
(Received 9 November 1970)

The polarization of the recoil proton in the elastic scattering of unpolarized electrons and protons is cal-
culated to order o?, retaining only the elastic intermediate state in the unitarity sum that occurs. The result
is therefore expected to correspond closely to the physical situation for electron laboratory energies up to
the region where pion production becomes important. Using the ‘““dipole fit” for the proton form factors
G and Gy, the maximum value of the polarization is found to be ~0.03% for electron energies below 400

MeV. Above 10 GeV, the maximum elastic effect is ~1%,.

1. INTRODUCTION

IN the one-photon-exchange approximation, the scat-
tering of unpolarized electrons by an unpolarized
proton target gives no polarization of the recoil proton

* Now at the California Institute of Technology, Pasadena,
Calif. 91109.

(see Sec. II, for example). Any nonzero polarization of
the recoil proton, transverse to the scattering plane,
must arise from interference of higher-order amplitudes
with the one-photon amplitude. We are interested in
the contribution from the two-photon-exchange ampli-
tudes of Fig. 1. There will be such diagrams for each



