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A crossing-symmetric model for m-n scattering is presented which satisfies the Mandelstam representa-
tion, has a finite number of resonances associated with an exchange-degenerate trajectory that turns over
at high energies, and which has Regge asymptotic behavior in all channels. The Pomeranchukon ampli-
tude is nonresonating and has background cuts. The total amplitude satisfies the Adler condition. Satellites
are included that eliminate all the odd-daughter (ghost) resonances. The double-spectral functions are
calculated and shown to have, except for the lack of curvature, the correct boundaries determined by elastic
unitarity. The structure of the second-sheet singularities is briefly discussed. The =~ scattering lengths are
calculated and found to be consistent with those obtained from current algebra, when terms of order »,2 and

unitarity corrections are neglected.

I. INTRODUCTION

ONSIDERABLE effort has been devoted to
establishing a dynamical theory of strong inter-
actions which satisfies analyticity, crossing symmetry,
and unitarity. The fundamental problem of strong
interactions is to combine analyticity, the linear
principle of crossing symmetry, and the nonlinear uni-
tarity equation for the .S matrix within a soluble scheme
of equations. After a decade of strong-interaction
physics the problem of unitarity remains unsolved
because of the essentially many-body nature of the
equations. The principle of analyticity in field theory is
based on microscopic causality and is naturally related
to the smoothness of the .S matrix. We must discover
an expression for the S matrix which can be continued
in both the angle and energy variables in a way com-
pletely consistent with the postulate that the .S matrix
is a Lorentz-invariant function of all the momentum
variables with only those singularities required by uni-
tarity. A satisfactory #-body amplitude together with a
consistent field-theory formalism is then required to
solve the unitarity problem.

Early attempts at implementing the Chew-Mandel-
stam!:2 program assumed elastic unitarity everywhere,
and crossing symmetry was brought into the scheme in
a piecemeal fashion.? It is clear that the linear principle
of crossing symmetry plays a dominant role in the
problem, since this principle permits us to analytically
continue the scattering amplitude into the crossed
channels corresponding to antiparticle scattering.
Recent attempts to construct simple models of strong
interactions, such as the Veneziano model,* give up
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unitarity altogether (narrow-resonance approximation),
and crossing symmetry is explicitly built into the models.
Because the Veneziano model is based on indefinitely
rising Regge trajectories, it loses the Mandelstam double
representation by invoking essential singularities at
infinity, although retaining the fixed-¢ dispersion rela-
tions. It has long been felt that a satisfactory theory of
strong interactions requires a logically consistent
method for analytically continuing the two-body scat-
tering amplitude in the smoothest possible way in both
energy and momentum variables, and this should be
combined with a consistent iterative scheme based on
the unitarity equation.

In the following, we present a simple, few-parameter
model which is explicitly crossing symmetric, has re-
sonances in all nonexotic channels, and satisfies the
Mandelstam representation. The Regge trajectories
rise linearly up to high energies and then turn over
and tend to finite, constant values at infinity; the
model has the correct Regge asymptotic behavior in all
channels. We shall concern ourselves mainly with -
scattering and include the Pomeranchukon amplitude
explicitly, since no model of 7-r scattering is complete
without it. The Adler condition for 7-r scattering is
satisfied by the amplitude off-the-mass shell, and when
terms of order m,? are neglected this leads to the
current-algebra results for the m-r scattering lengths
at threshold. The calculated double-spectral functions
have approximately the correct boundaries prescribed
by elastic unitarity and, therefore, it is anticipated that
the violations of unitarity are small at low energies.

In an earlier model for -7 scattering® the analyticity
properties of the amplitude were not satisfactory in that
unwanted singularities occurred in the physical sheet
violating unitarity. The assumption of infinitely rising
Regge trajectories generated essential singularities at
infinity, and the amplitude did not satisfy dispersion
relations. However, in spite of these defects the model,
when applied to low-energy scattering and meson
decays, yielded results in fair agreement with the experi-

¢ J. W. Moffat, Nuovo Cimento 64 A, 485 (1969).
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mental data.® This served to show that the applications
considered to date do not provide an exacting test
between such dynamical philosophies as “duality” and
“generalized interference” models.” This has been shown
independently for the predictions of the threshold =-m
parameters by Graham and Johnson.?

The paper is organized as follows. Section IT estab-
lishes the notation and kinematical properties. In Sec.
II1, we set forth the fundamental requirements of the
model and discuss the isospin amplitudes, and in Sec.
IV introduce the model for the non-Pomeranchukon
amplitude. In Sec. V, the residues and satellite terms
corresponding to this amplitude are studied in detail.
Then, in Sec. VI, the Regge asymptotic properties are
studied, and, in Sec. VII, a model for the Pomeran-
chukon amplitude is introduced and its asymptotic
properties are discussed. In Sec. VIII, the analyticity
properties of the model are considered and the double-
spectral functions are calculated. A brief discussion is
given of the singularity structure of the amplitude in
the second sheet, and also its threshold behavior. In
Sec. IX, we present an approximate calculation of the
m-m scattering lengths, and end the paper in Sec. X
with concluding remarks.

II. SCATTERING AMPLITUDE, KINEMATICS,
AND NOTATION

The invariant 7" matrix is connected to the .S matrix
by
Sri=087+1(2m)*8(ps—p) T i (2.1)

and for two-particle scattering 142 — 344 (Fig. 1) in
the center-of-mass (c.m.) system, the differential cross

section 1is
da/dQ=(¢'/9)| f(2,9)|?,

f(g,0)=T/(8x/s) (2.3)

and ¢ and ¢’ are the initial and final c.m. momenta.
The familiar Mandelstam variables are

s=(p1+p2)?=(pst+pa)?,

2.2)
where

1= (prtps)*=(pt+ps)?, 24
u=(p1+ps)*=(pa+ps)*.
The variables s, ¢, and « satisfy the relation
st+itu =Z mi2. (2.5)

The unitarity of the S matrix S'S=1 leads to the equa-

S R. C. Johnson and J. W. Moffat, Toronto report, 1969 (unpub-
lished); I. O. Moen and J. W. Moffat, Nuovo Cimento Letters 3,
473 (1970).
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“duality” is violated in some two-body reactions and, therefore,
probably strongly violated in #-body reactions. See Kwan Wu
Lai and J. Louie, Nucl. Phys. B19, 205 (1970).

8R. H. Graham and R. C. Johnson, Phys. Rev. 188, 2362
(1969) ; Phys. Rev. D 2, 2114(E) (1970).

1223

t CHANNEL —==

s CHANNEL

Fi16. 1. -7 scattering process p1+p: — P3-+ps. Suffixes
a, b, ¢, and d denote the isotopic-spin labels.

tion for the T matrix,

Tyi—Tys =’L‘(27r)4 Z 6(p;—pn)Tf,,TM~T . (2.6)

For a two-particle intermediate state and elastic
scattering,

aQ
Im(s,6)=q f e N ONCY)

where

cosf”’ =cosf cosf’+coseg sind’ sinf. (2.8)

The partial waves for 7-m scattering are defined by

1(s,0)=2 gﬂ Q4+1)Pi(cosh) fi1(s),  (2.9)

where I denotes the isospin and

1 1
fil(s)= - ] d cosb f¥(s5,0)Pi(cosh).

5 ) (2.10)

For f!(s), the elastic unitarity (2.7) becomes

ImfiI(s) =g fi'(s) fi"*(s) - (2.11)
In 7-m scattering, the most general amplitude satisfy-
ing crossing symmetry, isospin conservation, and Bose
statistics is?
T=M avca(s,t,u) = B1(s,t,4)8408ca
+326acabd+B36adabc ’ (2'12)

where Bi, B, and B; are the invariant amplitudes and
@, b, ¢, and d are Cartesian basis vectors for the isotopic
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spin of each particle. We have
Bi(s,t,u) =Bi(s,u,t) ,
Bs(s,t,u) =Bs(s,u,t) .
For interchange of # and s, we get
Bo(s,t,u) =Bs(unt,s) ,
Bi(s,tu) =Bs(u,t,s) ,
and for s and ¢ interchange,
Bs(s,t,u) =Bs(t,s,u) ,
Bi(s,t,u) =Bs(l,s,m) .
The isospin amplitudes in the s channel are
A ='=3B1+By+Bs,
A='=B,—B;,
A J=?=By+B;.

For identical particles (w-m scattering), the exchange of
two particles in the final state gives a factor (—1)7
(Bose statistics) and this accounts for the extra factor

of 2 in (2.9); we define

(2.13)

(2.14)

(2.15)

(2.16)

F1(5,0) =(1/16m~/5) A (s,t,) . (2.17)
The phase shifts are determined by
1 .
Jil(s)= —(ne*™'—1), (2.18)
2iq

where 7 is the inelasticity parameter, 0<7< 1, and for
elastic scattering in the region 4m,2< s< 16m,? the in-
elasticity parameter 7 is equal to unity. The scattering
lengths are defined by

ar= 1i4m ) 801(s)/q=fol (4m.?)

=A4,1(4m,%0,0)/32zxm.. (2.19)

III. FUNDAMENTAL PROPERTIES OF MODEL

Our model for =7 scattering is described by the
amplitude
AT(s,tu) =F1(s,t;u)+P(s,tu) 3.1)

where F! is the amplitude containing only Regge tra-
jectories p, w, f, etc., and P’ describes the Pomeran-
chukon amplitude. In the s channel, the FI(stu) are
given by®
FJ=0=4[F(s,)+F(s,u) ]—3F (t;u) ,
FJI=1=F(s,{)—F(s,u),
PI=t=F(tw),

where the amplitude F(s,f)=F(t,s). These isospin

3.2)

9 J. Shapiro and J. Yellin, Yadern. Fiz. 11, 443 (1970) [Soviet
J. Nucl. Phys. 11, 247 (1970)]; J. Shapiro, Phys. Rev. 179, 1345
(1969); A. Yahil, ibid. 185, 1786 (1969); C. Lovelace, Phys.
Letters 28B, 265 (1968).
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amplitudes are crossing-symmetric and there are no
exotic resonances in the /=2 channel; the symmetry
(—1)7 under interchange of # and ¢ is explicitly dis-
played. The crossing constraints and the requirement
that the Pomeranchukon has 7=0 determines the iso--
topic spin Pomeranchukon amplitudes!®

P31=0 =Ap(t,s) +Ap(t,’u) +A p(u,s) +Ap(u,t)
+3A4 p(s,0)+34 p(s,u) ,

Pt A p(t) A p(tu) — A p(1,5) — A p()
PI=2=Ap(t,5)+Ap(tu)+Ap(t,)+ A p(u).

Here an unknown constant has been absorbed in 4 »(s,?)
and we have assumed that the Pomeranchukon ampli-
tude can be written as a sum of terms like 4 p(s,?),
where 4 p has only an s-channel Pomeranchukon and a
{-channel nonresonant cut (background).

We shall demand that our model for the amplitude
satisfies the following fundamental properties:

(3.3)

(1) It is a real analytic function of its arguments and
only has the singularities corresponding to the unitarity
equation.

(2) The Mandelstam representation. This means that
the amplitude satisfies the correct fixed-¢ dispersion
relation (axiomatic field theory) and partial-wave dis-
persion relations.

(3) Crossing symmetry.

(4) Resonances in all nonexotic channels.

(5) A self-consistent scheme for unitarizing the model.

(6) Regge behavior in all channels.

These six requirements more or less embody the basic
properties that a microcausal and Lorentz-invariant
theory of strong interactions should possess.

IV. MODEL FOR NON-POMERANCHUKON
AMPLITUDE F(s,t)

The amplitude F(s,t) is given by
F(s,t) = —[y() T —a(s))w(®) >+ ()
XIT(1—a(®))w(s)*®]+3" (satellites).
The trajectory a(s) describes the exchange-degenerate
p,w,f, and A, mesons, and for y(m,2) =0 when s =¢{=m,?
the amplitude satisfies the Adler!! condition F(m,2m2)

=0 (including the satellite contributions). We consider
the nonlinear trajectory!?

bs—c(dm2—s)1/2
(1L (dm,2—s)/aJu3y2

where A is a constant. This trajectory is real analytic,
has poles only in the second (unphysical) sheet, and
has the elastic unitarity cut in the region 4m,2<s< .

@.1)

a(s)=a+ (4.2)

10 E. Del Giudice and G. Veneziano, Nuovo Cimento Letters 3,

363 (1970).
1§ L. Adler, Phys. Rev. 137, B1022 (1965) ; 139, B163 (1965).

12 T W. Moffat, Toronto report, 1970 (unpublished).
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It is a Herglotz function that satisfies the once-sub-
tracted dispersion relation

s [°  ds’ Ima(s’)

als)=aO)+— [ L

T J 4mg? 8’ (s’ —5—1€) '

(4.3)

We observe that by continuation (4m,2—s)1/2—
—i(s—4m,%)12 and for large A and intermediate values
of s, we have

Imaf(s)
Red’

(s—4 ;)1/2< 2 + 6) (4.4)
=~ (s—4m, —4-). .
VA b

Because at intermediate values of s the Rea(s) is ap-
proximately linear for large A, we find from the Adler
condition a(m.?)=% and Rea(m,?)=1 that ¢=0.503,
5=0.848 GeV-2, and «(0)=0.480 for ¢=0.083 GeV—.
Then, the relation

Ima(mgz)
————— =mglzr (4.5)
Red’
leads to
mr2—a4m N\V2/2mg? ¢
O i L S
mRZ \/A b

For AY2=100 GeV, this gives I',=102 MeV, I';=120
MeV, and I'; =145 MeV, in reasonable agreement with
the experimental values of these widths.!? The maximum
value of the spin for a resonance on this trajectory will
occur at E=~1500 GeV and will have the wvalue
Jmax=103. It can be shown by solving the equation
a(s) =n using the trajectory (4.2) that the maximum
number of resonances on the leading trajectory will be
N =a-+bA, which for AY2=100 GeV is N=~10% In the
asymptotic region a(d=©)=ae—bA= —bA. The func-
tion y(s) is real analytic, and of the form

2 vle(s) —2] exp[ —ga(s)?]
r$)= ’
[1+42(s) ]2
where x(s) =(4m,2—s)1/2/A and A is a constant. This
function has poles only on the second sheet and has
the elastic unitarity cut; moreover, ¢=bA and y(s) — 0
as s — == . The scale constant A is chosen large and
the positive constant g sufficiently small so that y(s)
=~y[a(s)—3%] for low energies.
The function w(?) is defined by

w(t) =A+Bt+C(16m.2—1)1/2. (4.8)

It possesses the inelastic unitarity cut in the region
16m,2<t< o and w(f)*® generates additional cuts in
¢ for fixed s only in the second sheet, provided the con-
stants 4, B, and C satisfy

A>0, B<0, C>0,
C2+4B(A+16m,2B) <0.

.7

4.9)

13 Particle Data Group, Rev. Mod. Phys. 41, 1 (1969).
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The last condition only holds if 4+16m.2B>0.

Proof. Let z2=(16m,2—1)'/2 to give w(z) =A+16m,*B
— Bz2+4-Cz=0. This has the solution

—C+[C*4B(A+16m,2B) ]t/
2= B
—2B

For Rez<0, the cuts generated by w(z) =0 occur only
in the second sheet. This is true for the choice of con-
ditions on A4, B, and C described above.

V. RESIDUES AT POLES AND SATELLITES
The leading term in F(s,f) has the residues at the

poles a(t) =n:
' v(ma?)(—1)"1

R.(s)= T w(s)",

(5.1)

where we have treated Ima(m,?) as a small quantity.
In the ¢ channel, the isospin amplitudes are

FI=0=3[F(t,s)+F(t,u) |—1F(s,u) ’
FJ='=F(t,s)—F(i,u),
F,I=2=F(S,M).

(5.2)

For the p resonance,

v(m,?)

Rj-1=

— ) )]

_ v(m,?)

B cost, (m,2—4m,?), (5.3)

’
a

where we have neglected for the moment the term
C(16m,2—s5)/? in w(s). Since we require that the con-
stant B be negative,

(—=Dy(m,?

Ry=1= )IBI cost; (m,2—4m,?). (5.4)

al
This should be compared with the field-theory or dis-

persion-theory residue for the exchange of a p meson,

—2Ypna? cO80; (m,2—4m,?), (5.5)
and gives for | B| =a’
'Y(mp2) =2Yprr’. (5-6)
For the f° meson, we get
3 (=D (m,?)
Ryf=0= E———~I—p—[w(s)2+w(u)2]. (5.7)
a
The leading term in cos# is
3 (=1)y(ms
- ——————B¥ms*—4m.?)? cos?0, (5.8)

4 o
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and the ratio of the p to the f° residues is
4 'Y(mp2)
3x(m)| B| (ms—dm:)?

(m, —4m-") (5.9)

The Breit-Wigner amplitude for a definite spin J is

\/S PRmR(2]+1)PJ(COSO)
FJ= 161r<——\ . (5.10)
k / mpi—it—ilgpmp
Near the resonance the residue is
T rmg?
- 161r< )(2]+ 1)Ps(cosh). (5.11)
R
Thus we find
ResF/=1 27T, (my2/k,)
ot e E_i’_{_”_ (5.12)
ReslF /=2 5Ty (m_fz/kf)
This leads to the result
T 10 v(m,2) (ms2/ky) (m,2—4m,?)
_{2:__7( p)(f/f)(p , (513)
Ty 3 'Y(mfz)a, (mpz/kp> (mf2_4mvr2)2
where we have set | B| =a’, and
y(mp?) = (n—F)ye . (5.14)

For the daughter resonance of p with /=0 and a=1,
called the e resonance, the residue of the leading term is

RuI=0— 3 'Y(mp2)
T

[w(s)+w(x)]

’
a

3y(m,?
~ E“’(m, 24t | B (= )],
o

(5.15)

Because 4 is positive, the residue Ry~ is positive and
the ratio of the p and e residues is negative. This will be
true for all the residues of the poles corresponding to the
odd-daughter trajectory one unit of spin below the
leading trajectory. Thus, all the resonances on this tra-
jectory are “ghosts.” In order to eliminate all these
ghosts, we consider the satellite terms.
We write Eq. (4.1) as

Fsy) = —y()[T (L —a(s) ()
+ 3 4=l (s D). (5.16)

We can then choose the coefficients dn such that all
the odd-daughter ghost resonances are eliminated. If we
consider only the first three satellites, the model takes

the form

F(s,t)=—7()T(L—a(s){w(®)
+[d1+d2(1 —a(s))+d3(2 —a(s))

X(—a@)Jw@®*@ "} -+ 9. (5.17)

W. MOFFAT 3

The residue Ry’=! will be the same as Eq. (5.4), whereas
the residue corresponding to the e will now become

R I=0 3 'Y(mpz)
1 = -

[w(s)+w(u)+2d1]

’
a

3 'Y(mp2)

2 o

(5.18)

[24+|B| (m,2—4m.2)+2d,].

a
For a=2 and I =1, the residue of the p’ is

__.1 2
Oy

+(d1—d2)[w(s) —w(u)]}

| B| cost (ms2—4m,2)

R,I=1=

v(ms?)

’
a

X[24+|B| (mp—4m.?)+di—dz2]. (5.19)

We can guarantee that the eis not a ghost by demanding
that

24+ | B| (m,2—4ms2)+2d:<0, (5.20)

and we can eliminate the o’ daughter resonance by
requiring that Ry’='=0 and solving for d,:

d2=2A+lBI (m/?—4m,,2)+d1, (521)

where | B] =a’. The residue of the first daughter of the
£ meson is

RuI=0 3 y(my?)
3=

{w(s)*+w(w)®

al
+(d1—2d2+2ds)[w(s)*+w(u)*]} .

Solving for the coefficient of cos?§ in (5.22), we can
eliminate the first daughter of the g meson by requiring
that

(5.22)

ds=3[2ds—34 —dy—32| B| (my2—4m,2)]. (5.23)

There is no experimental evidence for a p’ meson
(first daughter of the f° meson) or a daughter of the g
meson; therefore, we have removed them from the
scheme by demanding Egs. (5.21) and (5.23). Further
satellites may have to be added to remove other
daughter ghosts in the model lying on the trajectories
more than one unit of spin below the parent trajectory.
Because we have only a finite number of resonances
NN on the leading trajectory, there will be no problems of
convergence of the sum over satellite terms.

Because the function w(s) has an imaginary part for
s2 16m.,2, the requirement that the residue of the pole
in ¢ must be a polynomial in s is not satisfied. There
is no basic physical principle underlying this require-
ment. However, if it is not satisfied we must concern
ourselves with the high-spin ancestors that are generated
in the partial waves. The projection of the residues of
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the amplitude at the poles a(f) =# is

1+t
5 / d cos R,(s)Pi(cosh). (5.24)

-1

At the p pole a(f) =1, the term coming from (5.23) for
I>1 will be nonvanishing. But an analysis* shows that
for C/|B|=0.1 GeV, the contribution of the /=2
ancestor is less than 59 at the p pole and the contribu-
tion of the ancestors for />2 at the p pole is smaller
by a factor of 1/I. Thus for small C the ancestors will
have a negligible effect on the higher partial waves and
can be ignored. We note that the physical residues at
the poles are real in value.

VI. REGGE ASYMPTOTIC BEHAVIOR OF
AMPLITUDE F(s,)

The leading term of the amplitudes F(s,t) for fixed ¢
and s —c has the asymptotic behavior

y(s) expla(s) In|w(®)|]

F(s,t)~—
T'(a(s)) sinma(s)
_ w0 ) (s
T(a(t)) sinma(t)  T(a() sinma(?)

where the scale so=1/|B| =1/¢’, and we have used the
identity
I'(1—z)==/[T'(3) sinwz]. 6.2)

The first term on the left-hand side of (6.1) for s —
and fixed ¢ has the behavior

const

exp[—bAIn|w(t)|]—0, (6.3)

(—s)¢

where we have used a(« )= —dA. If we choose g=bA,
then (6.3) vanishes faster than the expression on the
right-hand side of (6.1) for any fixed value of ¢ For
large-fixed-angle (fixed #) scattering corresponding to
s— and t— — o, it follows that F(s,f) — 0 without
violating the Cerulus-Martin bound!® e~ V¢® [C(¢) a
slowly varying function of #]. From (5.2), (6.1), and
(6.3), we get in the ¢ channel for large s, recalling that
u~ —s, the Regge form

3 wy() /s)““)e—"”““)—i—l
F I=0~_ — — —_ s
2T@®))\so/  sinma(l)
Ty t) s a(t)e—i‘ira(t)_l
i T0(2) e
T@@®))\ss/  sinra(l)
F¢I=2 —0.

Thus the model has the correct Regge behavior and

4T, O. Moen (private communication).
15 F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964).
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signature factors. The #tz~ and #*tz*+ amplitudes, in
the s channel are
F,m™ " =F(s,0),

F ™ =F(tu).

It then follows from Eq. (6.1) that for s — % and fixed
t we get

(6.5)

ImF =7~ B(t)(s/50)*®,

ImF,™ "0, ©66)
where the residue is
Bt)=my(®)/T(«(®). 6.7)

We observe that the model has a ghost-eliminating
mechanism since the residue 8(¢) vanishes for a(f) =0.
Result (6.6) is the behavior expected for the absorp-
tive parts of the #*r— and #*rt amplitudes in the
absence of the Pomeranchukon-exchange contribution,
and is consistent with the absence of exotic resonances
in the #*xt channel. The charge-exchange process
7tr~— w0 in the ¢ channel is dominated by the /=1
amplitude for s —. From (6.4) for s —w and fixed
t we have

U( + 0r0) B(2)*(s/s0)2\)~2
(= ) = ———

dt cos? 3ma(t)] ’

6.8)

which is the generally accepted Regge form for do/dt
for this process as s—o. Just when the asymptotic
behavior (6.6) and (6.8) sets in is determined by the
constants A and A. Recent measurements of # NV and
KN cross sections at 30-70 GeV indicate that the
asymptotic region may occur at very high energies.®

VII. POMERANCHUKON CONTRIBUTION
TO MODEL

In view of the lack of high-energy data in meson-
meson scattering, the conditions that can be imposed
on the Pomeranchukon amplitude A4p(s,f)) are much
less restrictive than those for the Regge trajectory
amplitude F(s,f). The nature of the Pomeranchukon
in high-energy scattering has long been a mystery. The
knowledge that no resonances have been established on
the Pomeranchukon trajectory, and the purely diffrac-
tive nature of the Pomeranchukon contribution, has led
to the postulate that it is diffractive scattering, built
up from nonresonating backgrounds of the crossed
channels.'”

We shall seek an amplitude 4 p(s,f) which satisfies
the following requirements: '

(a) The amplitude satisfies the asymptotic behavior
A p(s,t) = Bp(s)(—1t/ty)*P® (within logarithmic factors)
for t — and fixed s, where ap(s) describes the Pomer-

16 G. G. Beznogikh et al., Phys. Letters 30B, 274 (1969).
7 H. Harari, Phys. Rev. Letters 20, 1395 (1968); P. G. O.
Freund, zbid. 20, 235 (1968).
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anchukon trajectory. In particular, the total cross
section for w-m scattering should satisfy o7 — const at
asymptotic energies. This corresponds to the exchange
of an 7=0 Regge Pomeranchukon in the {-channel.

(b) 4 p(s,t) has a nonresonating cut in the ¢ channel
and no resonating poles in the s channel.

Let us consider the following expression:

vp(t)
T(A—ap(t)—ar(s))
A2 — 5\ 112
Xln[l—{—( > ]wp(s)‘”’(‘), (7.1)

S0

AP(trs) =

where A\=2ap(m,2), so=ty=uy=1 GeV?, and
wp(s) =4 p+Bs+C(16m,2—s)1/2, (7.2)
As before, the constants Ap, B, and C satisfy the
following conditions (1/|B]| =so):
Ap>0, B<L0, C>0, (7.3)
C?+4B(A p+16m,2B)<0.

The Pomeranchukon trajectory is real analytic with a
right cut starting at the inelastic threshold sy=16m,2:

16m,2—s\ 1272
ap(s)=1+bps[1+<—m> ] , (7.4)
Ap

where bp and Ap are constants. This trajectory also
satisfies a once-subtracted dispersion relation

s *  ds' Imap(s’)
ap(s)=14+— _—, (7.5)
T J 16me2 8" (8" —s —1€)
and for asymptotic energies,
ap(o)=1—bpAp. (7.6)

The function yp(s) is a suitable real analytic function
(with possible unitarity cuts and poles on the second
sheet) and y(s) — 0 as s — == . The amplitude (7.1)
satisfies the Adler condition for A=2ap(m,2):
Ap(me2m.?)=0.

(7.7)

We observe from (3.3) that in contrast to the amplitude
F =2 the Pomeranchukon amplitude P,’=2 has a non-
vanishing imaginary part in the s channel.

Let us consider the high-energy limits of 4 p(s,f). For
fixed s and { —, we have

vp(s)
2I'(\—ap(s) —ap(=))

I\ @P(s) FA
><<— —) (ln— —iar). (7.8)
to to

AP(s)t)N
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The additional logarithmic factor In(¢/{) does not
violate the Froissart bound for the amplitude and (7.8)
is the required Regge asymptotic behavior. For fixed ¢
and s —, we get

vr(®)
2T\ —ap(t) —ap())

x(— i)ap(”[ln<—:—o>—i1r]. (7.9)

On the other hand, for ¢ fixed and s —, we have

const dm 22—\ 12
o 1+( )]
(—s/A)" to

Xexp[—bpAp In|w(t)|]— 0,

AP(t7S)~

Ap(s,t)~
(7.10)

where we have assumed that yp(s)~1/(—s/A)" as
s—o for >0. If r=bpAp, then (7.10) will vanish
faster than (7.9) for any fixed value of negative ¢
Now consider the amplitude 4 p(s,%) in the limit s —o
and ¢ fixed (#— —oo):

u 1/2

Uo

const

(—s/A)

AP(S/M')N

Uo

Xexp(—prp In )—)0. (7.11)

For all isospin amplitudes determined by (3.3), the
asymptotic behavior for fixed ¢ and s — is

PI—s- vef) ( i)ap(”
: 2T(\—ap() —ap(oo))\so

x[ln<i)(1+e—imw)—iwe-mw)]. (7.12)

So.

Then for /=0 and ap(0)=1, we have for s —w the
result
i 0

pa i O s (1.13)
2T(A\—1—ap(®)) so
Thus, the Pomeranchukon amplitude at £=0 becomes
pure imaginary as s — and the total 7-m cross section
tends to a constant. This is the correct Regge behavior
corresponding to the exchange of an /=0 Pomeran-
chukon in the ¢ channel.

In the intermediate energy region the parameters
in the model must be chosen so that unitarity is not
violated; this would ensure that the elastic cross section
is less than the total cross section in this energy region.
Only a detailed calculation can reveal whether this can
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be satisfied. In the asymptotic region a calculation of the
elastic cross section oo from Eq. (7.12) shows that
oe~1/In(s/so), whereas the total cross section tends to
a constant and, therefore, unitarity is not violated at
high energy.

For large-angle scattering corresponding to s—o
and t — — o (u fixed), we get

An(sy)~ — 1 y/tg] 0
#(s,))~ ———— In|/to
' (—s/)

)

Xexp(—-prp lnl t//lol ) —0. (7.14)
This does not violate the Cerulus-Martin bound for
large-angle scattering.!®

VIII. ANALYTICITY PROPERTIES OF TOTAL
AMPLITUDE; MANDELSTAM
REPRESENTATION

Let us now discuss the analyticity properties of the
total amplitude A7(s,t,#). By inspection we see that
the only cuts in AZ(s,t,u) are those generated by the
unitarity equation in the regions 4m,?Ss< e and
16m,2< s< o . Thus, A1(s,t,u) is a real analytic function
with only proper threshold singularities; the poles
corresponding to the resonances occur in the second
sheet. Because a(s) is bounded by a constant in all
directions in the s plane, the amplitude A(s,tu) is
bounded by a polynomial everywhere at infinity and no
essential singularities are present. This means that
A(s,t,u) satisfies the Mandelstam representation (with
N subtractions where N =J pqx)18:

ds'dt ps(s',t
AI(stu)— / / ss_:) (;s_i))
_//‘ ds’du' ps, 1 (s',u')
" =s)' —u)
at'du po ('t
~// Vdu pust (u',1) 8.0
(o —u) (¢’ —1)

18 For equal-mass scattering, a double dispersion relation of

the form
A= /‘ [ ds'dt’p (s',t')
= 7
[CEDIE)
is probably valid in all orders of perturbation theory. See, e.g.,
R. J. Eden, Phys. Rev. 121, 1567 (1961); P. Landshoff, J C.
Polkmghorne and J. G. Taylor Nuovo Cimento 19, 939 (1961)

However, for certain higher-order diagrams of unequal masses
there are indications of complex singularities: R. J. Eden, P.
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The subtraction constants occurring in the Mandelstam
representation for the model, although large in number,
are all determined by the spectral functions. For fixed
¢ the amplitude satisfies the single dispersion relation of
axiomatic field theory (with subtractions):

1 = ds'DJ(s',0)
Al(stou)= — / _—
T Jamg? S’ —5—1e

1 r° du'D,J (1)
+ - / —, (82)
4

T Jamg? W —u—ie
where D,(s,f) and D,(u,t) are the discontinuities of 4

across the positive s and # axes, respectively. The
partial waves defined by

1
A (s)= - f d cos® AX(s,t)Pi(cosh) (8.3)
2

-1

satisfy the dispersion relation proved to all orders in
perturbation theory?!?:

1 r* ds' ImA;'(s")
Al(s)= - [ _—
T Jame? & —5—1ie
1 0 ds' ImAJ(s')
- / BT (84
TJew § —s—ie
The discontinuity A4 (s,t) is defined by
1 .
AA(s,t) = ;lin(} [A(s+ie, t)—A(s—ie, ). (8.5)
1 €«

A calculation of the discontinuity of F(s,f) across the
positive s axis gives

1
AGF (s,) = ;['7(8)1‘(1 —a(s)w(H)*
1

—7* ()T (L—a*(s))w(®)=* ) (s —4m.*)
—[y(OTA—a(®)) |w(s) | =@ sin(d(s)e(?)) ]

X0(s—16m.2), (8.6)
Landshoff, J. C. Polkinghorne, and J. G. Taylor, Phys. Rev. 122,
307 (1961) For existence proofs of scattering amplitudes satlsfy-
ing the Mandelstam representation, see D. Atkinson, Nucl. Phys,
BY7, 375 (1968) ; B13, 415 (1969).

19] G. Taylor, Nuovo Cimento 22, 92 (1961).



1230 J.
and the discontinuity of 4p(f,s) is

ve(t)

W. MOFFAT 3

1 ve(?)
Adp(ls)=— 5 ”:11()\ —ap(t) —ap(s))

ve(?)

[ ve(?) _
T(\—ap(®)—ap(s)) T(—ap(t)—ar*(s))

1
Xsin[¢pap(t)]|we(s)| 2P ®0(s—16m.2)+ - {[

2

£730))

* I‘()\—ap(t)—ap*(s)):, ln[1+<s—j:” ”2>1/2]
Jer(5)

ve(D)

ve(t) ]

IO —ap()—ar(s)) T(—ap(l)—ar*(s))

ve(t)

x1n[1+(s_j:””2>m]“[m_ap(;) —ap(s))

where

w(s=ie) = A+ BsTFiC(s—16m,2)V?
= Jr(s) | Fie®,
(8.8)
C(s—16m, 2112
o(s)= tan—l[—_—_—]
A-+Bs
and

wp(sti€) =A p+BsTFiC(s—16m, )2
=|wp(s)|eFier®

“C(s—16m,2)1/?
¢ép(s) =ta.n‘1|:—-———:| .
AP+BS

(8.9)

Let us decompose the double-spectral function in the
form

p(s,t) =pF(s;t) +PP(S,t) ’ (810)
uszdm2 t=4m2
2
uzl6my hlsms
Psu Pst
s=l6m2
=4m3

Pru

Fi16. 2. Boundaries of the double-spectral functions
calculated from the model.

+ '\ —ap(?) —ap*(s))] tan—l(s—:n ﬂ2>1/2]

Xcos[gpap()]|we(s)| *FOO(s—4m,?), (8.7)

where pr and pp are obtained from the discontinuities of
(8.6) and (8.7), respectively, across the positive ¢ axis.
Then pr is given by

pr(s,t) =3i{[y(5)T(1—a(s)) |w(®) | * sin(p()a(s))
—7* ()T —a*(s)) [w(®) | «* @ sin(()a*(s))]
X0(s—4my?)0(t—16m.*)+ [y () T(1 —a(t)) |w(s) | «®
Xsin(p(s)a(®) —v*OT(1—a*()) [w(s) [ «*®
Xsin(gp(s)a*(£))]0(s — 16m,2)0(t—4m,2)} .

The pp(s,t) can be obtained in a similar way from
(8.7) and we assume that the cut in yp(¢) begins at
tr=16m,2, as in the case of ap(?).

The double-spectral functions possess the correct
boundaries determined by the elastic unitarity equation
(2.7), except that these boundaries will not be curved
as they should be according to the equations

(8.11)

t=16m,2< ) for >s,
s—4m,*

(8.12)

s=16m,r2< ) for s>¢

t—4m.*
obtained from (2.7). The shapes of the double-spectral
functions obtained in our model are shown in Fig. 2.

The model possesses the correct threshold behavior.
In order to see this, consider?

4 1
A (s) =< )— / dt A1 (s, t, dm2—s—1)
s—4m,,2 T J dma?

XQ1<1+ 2) , (8.13)

s—4m,

where 4,7 is the complete absorptive part. For small

20 See, e.g., A. O. Barut, The Theory of the Scattering Matrix
(MacMillan, London, 1967), p. 214.
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g% we have

<1+ 2 ) < # >—l_l (8.14)
@ s—4m,? - s—4m2 '

and it follows that

I ~ (o— 2)1
Al (S) 420 (S 4m‘n ) 1rZH'1

©  dt AI(s, t, dm2—s—1)
X f , (8.15)
4m,2

e

which is the correct threshold behavior as ¢2— 0.

Let us now consider our scattering amplitude in the
second sheet. Consider the two-body elastic unitarity
equation (2.11) for the partial waves. This can be
written in terms of first- and second-sheet amplitudes

(A(s))r—(Ai()1=—ip(s)(A:(s)1(4:(s))rr, (8.16)

where (4;)1 and (4;)1r denote the partial-wave ampli-
tudes on the first and second sheets, respectively. Also,

1 /s—4m,2 1/2
P(S)=i’—< > .

or s

(8.17)

If we solve (8.16) for (4;)m1, we get
(Aus)
1+4p(s) (A1(s))r

or, conversely, for (4,(s))1, we have
(Au(s))m
1—ip(s)(Au(s))r

We see that if we continue (4:(s))1r into the second sheet
for complex s and encounter any cuts, then we should
expect these cuts to occur at the corresponding value of
s in the first sheet. Because unitarity and the Mandel-
stam representation do not allow any complex singulari-
ties in the first sheet for equal-mass two-particle scatter-
ing, the continued second-sheet amplitude must not
possess such singularities either if these singularities
can be reached by passing through the elastic cut
dm,2< s<16m,2

The amplitude (A(s))ux has a cut generated by the
vanishing of the function w(s) = A+ Bs+C(16m,2—=s)/?
in the second sheet [subject to the conditions (4.9) on
A4, B, and C. However, this cut in the second sheet can
only be reached by passing through the unitarity cut
above the first inelastic threshold at sp=16m,2 (Fig. 3).
But this is a different sheet than the one defined by the
continuation of (A4;)rr in (8.18) or (8.19), since these
equations are only valid for purely elastic scattering
and cannot be continued beyond the inelastic threshold
at sp=16m,2 Therefore, our second-sheet cut structure
is not in conflict with elastic unitarity.

(Aau(s))= (8.18)

Ais)h= (8.19)
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Ims

F16. 3. Two-sheeted structure of the amplitude in the s plane.

IX. CALCULATION OF SCATTERING LENGTHS

The amplitude in our model satisfies the Adler
condition!!

Al(ma2m 2 m2) =0 9.1)
for one of the external pions off the mass shell. This
condition follows from the partial conservation of the
axial-vector current (PCAC).2! Let us assume that the
contribution of the Pomeranchukon amplitude is small
near threshold and consider the amplitude F(s,t) in-
cluding the first satellite. The trajectory a(s) is approxi-
mated at low energies by

a(s)=3+d(s—m.2).

If we expand F(s,t) around the point s=t=#=m,? and
consider only the linear approximation, we find

| (9.2)

A+Bm2+dy
F(t,u)=—(\/r)a’v(t+u—2mﬂ2)[ das ] ©.3)

(A+Bm, )\

where we have assumed that C is small and the term
C(16m,2—s)''? in w(s) can be neglected at low energies.
The Weinberg amplitude takes the form??

Mbdac = (1/F7r2)[6a05bd(5_m1r2)+6abacd(t—m1r2)

+6ad650(u"’m1r2):| (9'4)
and

FI=0=(1/F,%)(3s+t+u—>5m,?),
FI=1=(1/F ) (t—u),
FI=2=(1/F*)(t+u—2m,*,

21 Y. Nambu, Phys. Rev. Letters 4, 380 (1960); J. Bernstein,
S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 17,
757 (1960).

22 S, Weinberg, Phys. Rev. Letters 17, 616 (1966).

(9.5)
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where F, is the pion decay constant. From (9.3) and

(9.5), we get
(A+Bmy2+dy)
(VW) ! (A +Bmﬂ_2)1/2 =

This means that A+ Bm,2+d:<0. From (9.2) we see
that «(0)=a(4m,?)~% is a reasonable approximation
where o’ ~1/2m,? Using this in Eq. (5.16), we find

A-dy
)
and
F(4m,20) =m % 'y(\/w)[(A+4m 2B)1/2

dl dl
+—_— —3(A1/2+ —-——)] (9.8)
(A+4m,2B)12 A2

Let us now assume that 4m,2B is small compared to
both A and di. Then by neglecting this quantity, we
get23
A+dy
Pm a0~ ~man/n(—2). 09
AIIZ
From (2.19) and (3.2), we have
32ampa9=AT=(4m,?,0,0) =3F (4m.%0) —3F(0,0),

32 mpas=AT=2(4m,20,0)=F(0,0) (9.10)

and from (9.5) within the approximation of neglecting
m.2B, we get

A-+dy 1
(\/m( = >= -

s (9.6)

F(0,0)= 2'm,,2a"y(\/1r)( 9.7

(9.11)

Therefore substituting (9.7) and (9.9) into (9.10) and
using (9.11), we find

7m,, lmw'

0= "

32w F, 2’

(9.12)

16w F 2

If we use the Goldberger-Treiman value F,=0.087M,
=0.58m., the scattering lengths are

ay=0.20m,, ay=—0.06m,!, 9.13)
and

a()/a'?: —'% ’
200—502 = 0.70m,,"1 .

These scattering lengths are exactly the same as those
calculated by Weinberg?? from current algebra. Apart
from the assumption that 4m,%B is small and can be
neglected compared to 4 and dy (this is consistent with
our requirement that 4 —4m.,?|B|>0),% results (9.13)
and (9.14) follow from the identification of (9.3)
with (9.5).

% If we use the value |B|=a'~1/2m,% then we are in effect

neglecting terms of order #s%/m,* compared to 4 and d;. Terms
of this order and unitarity corrections are neglected within the

(9.14)
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This means that a model that explicitly satisfies the
Mandelstam representation and crossing symmetry is
consistent with the current-algebra results at threshold.
However, we should stress that we have imposed the
current-algebra constraints on the model; in a complete
calculation of - scattering only PCAC will be imposed
on the model.

By ensuring that the lower partial waves do not
violate unitarity in the low-energy region the param-
eters will be determined and the lower partial waves
can be calculated. Provided crossing symmetry is
maintained, the rigorous consistency conditions near
threshold based on crossing symmetry and positivity2
will be satisfied.

X. DISCUSSION OF RESULTS

We have shown that there exists a simple, few-param-
eter model for -7 scattering which satisfies the Mandel-
stam representation and crossing symmetry. The model
has certain defects common to all models of its kind,
e.g., there are daughter resonances which do not seem
to correspond to observed particles, and some of these
resonances are ghosts. This necessitated the introduc-
tion of a finite number of satellites. The most serious
problem to solve is the discovery of a satisfactory
method of unitarizing the model. One approach that
has been used in the past is to iterate the equation for
the elastic double-spectral function given by!

1 ardi’' D*(¢,s)D(t",s)
Pel(S,t) = // ’ (101)
327%q/s K\2(s; 1.4/ ")

where
K(s; 4 ") =124 2= 2(t8 + 18" 11"
-t /gy . (10.2)
Here the discontinuity D(f,s) is determined by
ds pel(s t)
D(,s)=V(t,s)+ — / . (10.3)

Because for s —o the discontinuity De(l,s) =~ g8(£)s*®,
the function pe; will diverge like sz after # itera-

~ tions for large enough ¢ This demands that (10.1)

be modified by a cutoff function?® which simulates the
damping effect of the many-body intermediate states
in the unitarity equation. This is not satisfactory and it
is clear that a basic treatment of the unitarity equation
is required.

A more fundamental approach is to consider a model

Weinberg current-algebra calculations of the scattering lengths
(see Ref. 22).

# A. Martin, Nuovo Cimento 42, 930 (1966); 47, 265 (1967).

2% B. H. Bransden P. G. Burke, J. W Moffat, R.G Moorhouse,
and D. Morgan, Nuovo Cimento 30, 207 (1963) S. Mandelstam
Ann, Phys. (N. Y.) 21, 302 (1963); 'N. F. Bali, G.F. Chew, and
S.Y. Chiu, Phys. Rev. 150 1352 (1966) P.D. B. Collinsand R. C.
Johnson, ibid. 177, 2472 (1969) 185, 2020 (1969).
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of an n-point production amplitude of the kind pro-
posed in Ref. 26. Now the constant C, in (4.8), is set
equal to zero and we also choose a(s) to be real from the
outset, corresponding to a narrow-resonance approxi-
mation; this guarantees that the #-point model can be
factorized, and that all parameters in the #-point
amplitude can be calculated from a knowledge of the
4-point residue. In this sense, the model constitutes a
“bootstrap” system with a degeneracy of states cor-
responding to 72 Initially, the model only contains
“tree” graphs, but by calculating the loop diagrams,
cuts in »(f) and a(s) will be generated, hopefully rein-
stating the correct analyticity properties for the 4-point
function, and by summing up all the loop diagrams a
complete unitarization of the scattering amplitude can
be accomplished. This kind of program has been at-
tempted for the #-point generalization of the Veneziano
model,?” but the simplest, single-planar dual loop con-
structed gives rise to an integral with an essential end-
point singularity due to the large degeneracy of the
states which circulate in the loop diagram. A somewhat
complicated and arbitrary procedure of renormalization

26 J. W. Moffat, Nuovo Cimento Letters 2, 773 (1969); A. O.
Barut and J. W. Moffat, Phys. Rev. D 1, 532 (1970).

27 S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969) ;

K. Kikkawa, B. Sakita, and M. A Virasoro, Phys. Rev. 184, 1701
(1969).
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has been introduced to deal with this problem.?® In the
model proposed in Ref. 26, the treatment of the dia-
grams follows familiar methods of Feynman graphs,
and since the degeneracy of states in the model is only
n?, there are no divergence problems in constructing
loop diagrams. Whether such a program can succeed in
analogy with quantum electrodynamics is still an open
question, but it is clear that a basic solution to the
inelasticity problem appears to be essential in strong
interactions. One interesting question arising in connec-
tion with such a method for unitarizing the model is
whether the corrected trajectory will turn over at large
energies, in the way assumed for the a(s) in our model
for the 4-point amplitude, or whether it will rise indefi-
nitely to infinity. This is the kind of fundamental
question that could be answered by a basic treatment of
the unitarity problem.
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Representation to =-» and K- Scattering*
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A model for meson-meson scattering satisfying the Mandelstam representation, crossing symmetry, and
Regge behavior and including a Pomeranchukon amplitude is applied to =-r and K- scattering. Solutions
are found for the K- partial waves that satisfy unitarity approximately at low energies, give a satisfactory
fit to the on-mass-shell data, and predict scattering lengths consistent with current algebra. Apart from a
change in the coupling constant, effectively the same parameters are then used to predict the low-energy
w- scattering, and the solutions are found to satisfy unitarity approximately up to 900 MeV. The predicted
on-mass-shell results agree well with the available data. The general conditions below threshold for -
scattering that follow from crossing symmetry and positivity are well satisfied. The extrapolated =-= and
K-v amplitudes off the mass shell are found to agree satisfactorily with the data for =NV — =z N and
KN — KxN when a phenomenological form factor is used in the extrapolation. The total and differential
cross sections at high energy are found to have characteristic Regge behavior. The Pomeranchukon ampli-
tude produces total 7-r and K- cross sections consistent with factorization in the asymptotic region.

I. INTRODUCTION

MODEL for - scattering has been developed by
one of us! in which the scattering amplitude
satisfies the following properties: (a) Mandelstam

* Supported in part by the National Research Council of
Canada.

1 J. W. Moffat, preceding paper, Phys. Rev. D 3, 1222 (1971).
This will be referred to in the text as Paper 1. See also, Nuovo
Cimento 64A, 485 (1969).

representation; (b) crossing symmetry; (c) resonances
in all nonexotic channels; (d) Regge behavior in all
channels; and (e) the Adler condition.

The Pomeranchukon is incorporated in the model as
a nonresonant, diffractive background satisfying cross-
ing symmetry. The Regge trajectory corresponding to
the exchange-degenerate p-f° mesons is assumed to rise
linearly to high energies and then turn over and tend



