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A crossing-symmetric model for ~-m scattering is presented which satisfies the Mandelstam representa-
tion, has a Qnite number of resonances associated with an exchange-degenerate trajectory that turns over
at high energies, and which has Regge asymptotic behavior in all channels. The Pomeranchukon ampli-
tude is nonresonating and has background cuts. The total amplitude satisGes the Adler condition. Satellites
are included that eliminate all the odd-daughter (ghost) resonances. The double-spectral functions are
calculated and shown to have, except for the lack of curvature, the correct boundaries determined by elastic
unitarity. The structure of the second-sheet singularities is briefly discussed. The ~-m scattering lengths are
calculated and found to be consistent with those obtained from current algebra, when terms of order m ' and
unitarity corrections are neglected.

unitarity altogether (narrow-resonance approximation),
and crossing symmetry is explicitly built into the models.
Because the Veneziano model is based on inde6nitcly
rising Regge trajectories, it loses thc Mandelstam double
representation by invoking essential singularities at
inanity, although retaining the 6xed-t dispersion rela-
tions. It has long been felt that a satisfactory theory of
strong interactions requires a logically consistent
method for analytically continuing the two-body scat-
tering amplitude in thc smoothest possible way in both
energy and momentum variables, and this should be
combined with a consistent iterative scheme based on
the unitarity equation.

In the following, we present a simple, fcw-parameter
model which ls expllcltly crossing syIQmctric, hRs le-
sonances in all nonexotic channels, and satisies the
Mandelstam representation. The Regge trajectories
risc linearly up to high energies and then turn over
and tend to 6nite, constant values at, in6nity; the
model has the correct Regge asymptotic behavior in all
channels. %e shall concern ourselves mainly with ~-~
scattering and include the Pomeranchukon amplitude
explicitly, since no model of m-m scattering is complete
without it. The Adler condition for +-~ scattering is
satisfied by the amplitude o6-the-mass shell, and when
terms of order m ' are neglected this leads to the
current-algebra results for the x-m scattering lengths
at threshold. The calculated double-spectral functions
have approximately the correct boundaries prescribed
by elastic unitarity and, therefore, it is anticipated that
the violations of unitarity are small at low energies.

In an earlier model for vr-x scattering5 the analyticity
properties of the amplitude were not satisfactory in that
unwanted singularities occurred in the physical sheet
violating unitarity. The assumption of in6nitely rising
Regge trajectories generated essential singularities at
in6nity, and the amplitude did not satisfy dispersion
relations. However, in spite of these defects the model,
when applied to low-energy scattering and meson
decays, yielded results in fair agreement with the cxperi-
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~MONSIDERABLE effort has been devoted to~ establishing a dynamical theory of strong inter-
actions which satisfies Rnalyticity, crossing symmetry,
and unitarity. The fundamental problem of strong
interactions is to combine analyticity, the linear
principle of crossing symmetry, and the nonlinear uni-
tarity equation for the 5 matrix within a soluble scheme
of equations. After a decade of strong-interaction
physics the problem of unitarity remains unsolved
because of the essentially many-body nature of thc
equations. The principle of analyticity in 6eM theory is
based on microscopic causality and is naturally related
to the smoothness of the 5 matrix. Ke Inust discover
an expression for the 5 matrix which can be continued
in both the angle and energy variables in a way com-
pletely consistent with the postulate that the 5 matrix
is a I.orcntz-invariant function of all the momentum
vRI'lRblcs with only those slngularltlcs rcqulred by unl-
tRI'lty. A satisfactory s-body RIQplltude together with a
consistent Geld-theory formalism is then required to
solve the unitarity problem.

Early attempts at implementing the Chew-Mandel-
stam' ' program assumed elastic unitarity everywhere,
and crossing symmetry was brought into the scheme in
a piecemeal fashion. ' It is clear that the linear principle
of crossing symmetry plays a dominant role in the
problem, since this principle permits us to analytically
continue the sca,ttering amplitude into the crossed
channels corresponding to antiparticle scattering.
Recent attempts to construct simple models of strong
interactions, such as the Veneziano model, give up
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mental data. ' This served to show that the applications
considered to date do not provide an exacting test
between such dynamical philosophies as "duality" and
"generalized interference" models. ~ This has been shown
independently for the predictions of the threshold m-x

parameters by Graham and Johnson. '
The paper is organized as follows. Section II estab-

lishes the notation and kinematical properties. In Sec.
III, we set forth the fundamental requirements of the
model and discuss the isospin amplitudes, and in Sec.
IV introduce the model for the non-Pomeranchukon
amplitude. In Sec. V, the residues and satellite terms
corresponding to this amplitude are studied in detail.
Then, in Sec. VI, the Regge asymptotic properties are
studied, and, in Sec. VII, a model for the Pomeran-
chukon amplitude is introduced and its asymptotic
properties are discussed. In Sec. VIII, the analyticity
properties of the model are considered and the double-
spectral functions are calculated. A brief discussion is
given of the singularity structure of the amplitude in
the second sheet, and also its threshold behavior. In
Sec. IX, we present an approximate calculation of the
m.-x scattering lengths, and end the paper in Sec. X
with concluding remarks.

II. SCATTERING AMPLITUDE, KINEMATICS,
AND NOTATION

The invariant T matrix is connected to the S matrix
by

Sf —Sf~+i(2m)'5(pt ' p;) Tf; — (2.1)

t CHANNEL

s CHANNEL

FIG. 1. m.-~ scattering process p1+p& ~ p3+p'4. Suffixes
a, b, c, and d denote the isotopic-spin labels.

tion for the T matrix,

Tfi Tfj ='t(2n)' Q 5(p, p„)Tt„T„p—. (2.6)

For a two-particle intermediate state and elastic
scattering,

and for two-particle scattering 1+2—& 3+4 (Fig. 1) in
the center-of-mass (c.m. ) system, the differential cross
section is where

dQ
1mf(»8) =

V f(~,8')f*—(~,8"), (2 7)

where
«/d~=(C'/C) tf(a8) I',

f(q, 8) = T(/Sn-Qs)

(2.2)

(2.3)

cos8"=cos8 cos8'+cos$ sin8' sin8. (2.8)

The partial waves for x-m scattering are deined by

and q and q' are the initial and anal c.m. momenta.
The familiar Mandelstam variables are fi(s,8) =2 Q (2l+1)P~(cos8)ft (s),

l=o
(2.9)

s= (pg+p2)'=(pa+p4)',
t= (pg+p, )'= (p,+p4)',

tt= (pi+p4)'=(p2+ps)'.

The variables s, I,, and I satisfy the relation

s+t+I =p m,'.

where I denotes the isospin and

fF(s) = — d cos8 fi(s,8)P (cost8) . (2.10)
2 —1

(2.5) For ft (s), the elastic unitarity (2.7) becomes

The unitarity of the S matrix StS= 1 leads to the equa-
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1mf~'(~) =sf~'(~) f~'*(~) . (2.11)

In m-m scattering, the most general amplitude satisfy-
ing crossing symmetry, isospin conservation, and Bose
statistics is'

T=M.„,(s,t,u) =B,(s,t,u)8.,8„
+B28.,&gg+B~48'b„(2.12)

where B~, 82, and 83 are the invariant amplitudes and
a, b, c, and d are Cartesian basis vectors for the isotopic
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spin of each particle. We have

Bg(s,t, u) =Br(s,u, t),
B stu =B sut).3

For interchange of I and s, we get

B&(s,t~u) =B2(u)t)$) y

By(S~t~u) =Bo(u,t,s) &

and for s and t interchange,

Bo(s,t)u) =Bo(t,s&u) ~

By(s, t~u) =Bo(t,s,u) .

A = =3Br+Bo+Bo,
A I=' 8 8
A,r='=Bo+Bo.

The isospin amplitudes in the s channel are

(2.13)

(2.14)

(2.15)

(2.16)

amplitudes are crossing-symmetric and there are no
exotic resonances in the I=2 channel; the symmetry
(—1)r under interchange of u and t is explicitly dis-
played. The crossing constraints and the requirement
that the Pomeranchukon has I=0 determines the iso-
topic spin Pomeranchukon amplitudes"

P,r=o =A p(t, s)+A p(t u)+A p(u, s)+A p(u, t)

+3A p(s, t)+3A p(s,u),
(3.3)P,r='=A p(t, s)+A p(t, u) —A p(u, s) —A p(u, t),

P, '=A p(t, s)+A p(t,u)+A p(u, s)+A p(u, t) .
Here an unknown constant has been absorbed in A p(s, t)
and we have assumed that the Pomeranchukon ampli-
tude can be written as a sum of terms like Ap(s, t),
where A& has only an s-channel Pomeranchukon and a
t-channel nonresonant cut (background).

We shall demand that our model for the amplitude
satisfies the following fundamental properties:

For identical particles (vr-m scattering), the exchange of
two particles in the final state gives a factor (—1)r
(Bose statistics) and this accounts for the extra factor
of 2 in (2.9); we define

fl($,8) = (1/167r+s)A, r(s, t,u) . (2.17)

The phase shifts are determined by

f('(s) = (ge""'—1)
2'

(2.18)

F,'=' = -,' [F(s,t)+F(s,u)] ——',F(t,u),
F,r '=F(s,t) F=(s,u), —
F,'=' = F(t,u),

(3.2)

where the amplitude F(s,t) =F(t,s). These isospin

9 J. Shapiro and J. Yellin, Yadern. Fiz. 11, 443 (1970) LSoviet
J. Nucl. Phys. 11, 247 (1970)j; J. Shapiro, Phys. Rev. 179, 1345
(1969); A. Yahil, ibid. 185, 1786 (1969); C. Lovelace, Phys.
Letters 28B, 265 (1968).

where g is the inelasticity parameter, 0~& g~& 1, and for
elastic scattering in the region 4m '~& s~& 16m ' the in-

elasticity parameter p is equal to unity. The scattering
lengths are dehned by

ar= lim d'or(s)/q=for(4m ')
e-+4mu ~

=A, (4' ',0,0)/32sm, . (2.19)

III. FUNDAMENTAL PROPERTIES OF MODEL

Our model for m-x scattering is described by the
amplitude

Ar(s, t,u) =Fr(s, t,u)+P r(s, t,u), (3.1)

where Il~ is the amplitude containing only Regge tra-
jectories p, a&, f, etc. , and Pr describes the Pomeran-
chukon amplitude. In the s channel, the Fr(s, t,u) are
given by'

IV. MODEL FOR NON-POMERANCHUKON
AMPLITUDE F (s,t)

The amplitude F(s,t) is given by

F(,t) = —b($) I'(I —($))re(t) "+v(t)
Xl'(1—n(t))w(s)~&"7++(satellites). (4.1)

The trajectory n(s) describes the exchange-degenerate

p,oo,f, and Ao mesons, and for y(te ') =0 when s=t =m o

the amplitude satisfies the Adler" condition F(m ',m ')
=0 (including the satellite contributions). We consider
the nonlinear trajectory"

bs —e(4m '—s)'I'
n(s) =a+

(1+t (4~-' —s)/~3"'}'
(4 2)

where 6 is a constant. This trajectory is real analytic,
has poles only in the second (unphysical) sheet, and
has the elastic unitarity cut in the region 4m . ~& s~& ~ .

- ~o E. Del Giudice and G. Veneziano, Nuovo Cimento Letters 3,
363 (1970)."S.L. Adler, Phys. Rev. 13'7, 81022 (1965); 139, $163 (1965).

~ J. W. Mo6'at, Toronto report, 1970 (unpublished).

(1) It. is a real analytic function of its arguments and
only has the singularities corresponding to the unitarity
equation.

(2) The Mandelstam representation. This means that
the amplitude satisfies the correct fixed-t dispersion
relation (axiomatic field theory) and partial-wave dis-
persion relations.

(3) Crossing symmetry.
(4) Resonances in all nonexotic channels.
(5) A self-consistent scheme for unitarizing the model.
(6) Regge behavior in all channels.

These six requirements more or less embody the basic
properties that a microcausal and Lorentz-invariant
theory of strong interactions should possess.
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It is a Herglotz function that satisfies the once-sub-
tracted dispersion relation

s " ds' Imn(s')
n(s) =n(0)+-

4yg~~ S (S S 22)
(4.3)

We observe that by continuation (4m '—s) 'I' ~
i—(s 4—m ')"' and for large 6 and intermediate values

of s, we have

Imn(s) ( 2s c)
=(s—4m 2) "2~ + —

~.
Ren' EgA bl

(4.4)

Because at intermediate values of s the Ren(s) is ap-
proximately linear for large 6, we find from the Adler
condition n(m ')=-,'and Ren(m, ')=1 that a=0.503,
b=0.848 GeV ', and n(0) =0.480 for c=0.083 GeV '.
Then, the relation

Imn(m~2)
-- — =mgI'g

Rem'

C&—[C'+4B(A+16m 2B)]'t'

For Rez(0, the cuts generated by w(z) =0 occur only
in the second sheet. This is true for the choice of con-
ditions on A, B, and C described above.

V. RESIDUES AT POLES AND SATELLITES

The leading term in F(s,t) has the residues at the
poles n(t) =n:

v(m ')(—1)" '
R (s) = w(s)",

n'I'(n)
(5.1)

where we have treated Imn(m„') as a small quantity.
In the t channel, the isospin amplitudes are

The last condition only holds if A+16m„2B)0.

Proof Le. t z=(16m '—t)'t' to give w(z) =A+16m B
Bz—'+Cz=0. This has the solution

leads to
(ma2 —4m. 2& 'I' 2ms2 c+-

m~2 I Qh b
(4.6)

F,r-' =2[F (t,s)+F(t,u)]—-', F(s,u),
F,r='=F(t, s) —F(t,u),
F,r=2 F(s,u) .

(5 2)

For 6'I'=100 GeV, this gives F,=102 MeV, I'f =120
MeV, and F,=145 MeV, in reasonable agreement with
the experimental values of these widths. "The maximum
value of the spin for a resonance on this trajectory will
occur at 8=1500 GeV and will have the value
J =10'. It can be shown by solving the equation
n(s) =n using the trajectory (4.2) that the maximum
number of resonances on the leading trajectory will be
N=a+bh, which for 6'12=100 GeV is %=104. In the
asymptotic region n(&~) =a bA= bD T—he —func-.

tion y(s) is real analytic, and of the form

~[ (s) —-', ]exp[ —
g (s) ]

y(s) =
[1+x(s)]22

(4 7)

where x(s) =(4m ' —s)'~2/A and A is a constant. This
function has poles only on the second sheet and has
the elastic unitarity cut; moreover, q=bh and y(s) ~ 0
as s —+ &~. The scale constant h. is chosen large and
the positive constant g suKciently small so that 7(s)
=y[n(s) —2] for low energies.

The function w(t) is de6ned by

w(t) =A+Bt+C(16m t) (4 8)—

For the p resonance,

y(m, ')
R2'=' —— [w(s) —w(u)]

y(m, 2)
Bcose~(m '—4m ') (5.3)

This should be compared with the field-theory or dis-
persion-theory residue for the exchange of a p meson,

—2y, 'cosa& (m '—4m '),
and gives for (B[=n'

y(mp2) =2yp .'.
For the fo meson, we get

(5 5)

(5.6)

where we have neglected for the moment the term
C(16m '—s)'t2 in w(s). Since we require that the con-
stant J3 be negative,

(—1)v(m, ')
~B~ cos82 (m ' 4m ') —(5 4)

It possesses the inelastic unitarity cut in the region
16m 2~& t~& ~ and w(t) &' generates additional cuts in
t for fixed s only in the second sheet, provided the con-
stants A, B, and C satisfy

3 (—1)v(m. ')
[w(s) 2+w(u) 2].

A
(5.7)

A&0, B(0, C&0,
C'+4B(A+16m 'B)(0.

"Particle Data Group, Rev. Mod. Phys. 41, 1 (1969).

(4.9)
The leading term in cos8 is

3 (—1)v(mt')
B2(m~2 4m 2)2 cos2g

4 n' (5.8)
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and the ratio of the p to the f' residues is

4 7(m ') (m ' —4m~')

3 v(mr') I
B

I
(mr' 4—m. ')'

(5.9)

Near the resonance the residue is

The Breit-Wigner amplitude for a definite spin J is

gs I'iimii(2J+1)PJ (cos8)
F s=16s. — — . (5.10)

k m~' —t —iI'~mg

The residue Rir=' will be the same as Eq. (5.4), whereas
the residue corresponding to the e will now become

3 y(m, ')
[w(s)+w(u) +2di]

2 A

3 y(m, ')
[22+ I

B
I

(mn' —4m ')+2d,]. (5.1g)
2 Q

For n=2 and I=1, the residue of the p' is

(I'iimii )—16m.
I I(2J+1)Ps(cose) .

ke
Thus we 6nd

ResFis=' 2 I', (m '/k )

ResF is=' 5 I't (mr'/kr)

This leads to the result

(5.12)

y(mz')
I BI cosg (mt' —4m, ')

X[»+ I
B

I (mt' —4m-')+di —d2] (5 19)

(—1)y(m ')

(5 11)
R2'='= fw(s)' —w(u)'

A

+(di —d2)l w(s) —w(u)])

(5.20)

We can guarantee that the e is not a ghost by demanding

(5.13)
7 f f2 4'™ th t

I f 3 r(m&')n' (m, '/k, ) (m&' —4m ')' 23+
I
B

I (m ' —4m ')+2d&~( 0,

where we have set
I
B

I
=n', and

y(m„') =(n ——',)ye g"'. (5.14)

and we can eliminate the p' daughter resonance by
requiring that R2I='=0 and solving for d2.'

For the daughter resonance of p with I=0 and n =1,
called the e resonance, the residue of the leading term is

3 y(mp')
Ri' ' ——— [w(s)+w(u)]

2 o.'

3 y(m, ')
[22+ IBI(m, '—4m ')]. (5.15)

2 G

Because A is positive, the residue R1~=' is positive and
the ratio of the p and e residues is negative. This will be
true for all the residues of the poles corresponding to the
odd-daughter trajectory one unit of spin below the
leading trajectory. Thus, all the resonances on this tra-

jectory are "ghosts. " In order to eliminate all these

ghosts, we consider the satellite terms.
We write Eq. (4.1) as

F(,t) =-~()[n1--()) (t) "
+ g d„l'(m —n(s))w(t) "—']+(s~ t). (5.16)

m=1

We can then choose the coefficients d such that all

the odd-daughter ghost resonances are eliminated. If we

consider only the first three satellites, the model takes
the form

F(s,t) = —y(s)1'(I —(s)){w(t) i'
+[d +d.(1--())+d.(2--())

X(1—(s))]w(t) '—')+ (s t) . (5.17)

d2 ——2A+ IBI(mq' 4m —')+di (5.21)

where
I
B

I
=n'. The residue of the first daughter of the

g meson is

3 7(mg')
Rs'='= — (w(s) '+w(u)'

4 n'

+(di —2d2+2d3)[w(s)'+w(u)']) (5.22)

Solving for the coeKcient of cos'8 in (5.22), we can
eliminate the erst daughter of the g meson by requiring
that

da= 2[2d2 3~ di—4 I
B—

I
(m—g' 4m. ')]—(5.23).

There is no experimental evidence for a p' meson
(first daughter of the f' meson) or a daughter of the g
meson; therefore, we have removed them from the
scheme by demanding Eqs. (5.21) and (5.23). Further
satellites may have to be added to remove other
daughter ghosts in the model lying on the trajectories
more than one unit of spin below the parent trajectory.
Because we have only a finite number of resonances
Xon the leading trajectory, there will be no problems of
convergence of the sum over satellite terms.

Because the function w(s) has an imaginary part for
s»&16m ', the requirement that the residue of the pole
in t must be a polynomial in s is not satis6ed. There
is no basic physical principle underlying this require-
ment. However, if it is not satis6ed we must concern
ourselves with the high-spin ancestors that are generated
in the partial waves. The projection of the residues of
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the amplitude at the poles n(t) =n is

+1
d cose R (s)Pt(cos8).

2
(5.24)

F, + =F(st)
F, + +=F(t,tt).

(6.5)

signature factors. The m+m and x+x+ amplitudes, in
the s channel are

At the p pole n(t) =1, the term coming from (5.23) for
1)1 will be nonvanishing. But an analysis" shows that
for C/~B~ =0.1 GeV, the contribution of the l=2
ancestor is less than 5% at the p pole and the contribu-
tion of the ancestors for l) 2 at the p pole is smaller

by a factor of 1/L Thus for small C the ancestors will

have a negligible e6ect on the higher partial waves and
can be ignored. We note that the physical residues at
the poles are real in value.

VI. REGGE ASYMPTOTIC BEHAVIOR OF
AMPLITUDE E(s,t)

The leading term of the amplitudes F(s,t) for fixed t

and s —&~ has the asymptotic behavior

n.y(s) expLn(s) ln~ w(t) ~]
F(s,t) = ——

P(n(s)) sintrn(s)

It then follows from Eq. (6.1) that for s~ap and f)xed
I, we get

ImF, »+» P(t) (s/st)) a &"

ImIi, + +—+0,
where the residue is

(6.6)

p(t) =~~(t)/r(n(t)). (6.7)

We observe that the model has a ghost-eliminating
mechanism since the residue P(t) vanishes for n(t) =0.
Result (6.6) is the behavior expected for the absorp-
tive parts of the x+x and m+x+ amplitudes in the
absence of the Pomeranchukon-exchange contribution,
and is consistent with the absence of exotic resonances
in the m+m+ channel. The charge-exchange process
m.+m——+ m'm' in the t channel is dominated by the I= 1
amplitude for supp. From (6.4) for s~po and fixed
t we have

try(t) w(s) " try(t) (—s/sp)
(6.1)

I'(n(t)) sintrn(t) P (n(t)) sintrn(t)

d0 p(t) 2(s /s )2a (t)—2—(tr+tr
——+ pr'm') =

dt cos'L-', pm(t)]
(6.8)

where the scale sp
——1/~8~ =1/n', and we have used the

identity
I'(1—s) =tr/t P(s) sintrsj. (6.2)

The first term on the left-hand side of (6.1) for s —+to

and Axed t has the behavior

which is the generally accepted Regge form for do/dt
for this process as s —+tc. Just when the asymptotic
behavior (6.6) and (6.8) sets in is determined by the
constants A. and A. Recent measurements of xN and
EÃ cross sections at 30—70 GeV indicate that the
asymptotic region may occur at very high energies. "

const
— exp L

—bb, ln
~
w(t)

~ j~ 0,
(—s)p

(6.3) VII. POMERANCHUKON CONTRIBUTION
TO MODEL

~+(t) s pa(t)e i»a&t)+I-
F,r=P

2 P(n(t)) s p) sintrn(t)

&+(t) S a(t)e—i»a(t)

I'(n(t)) sp sintrn(t)

P 1=2~0

(6.4)

Thus the model has the correct Regge behavior and

'4 I. O. Moen (private communication)."F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964).

where we have used n(n) ) = bt(, If w—e cho. ose &t=btt,
then (6.3) vanishes faster than the expression on the
right-hand side of (6.1) for any 6xed value of t. For
large-fixed-angle (fixed tt) scattering corresponding to
s ~ tc and t —+ —pp, it follows that F(s,t) —+ 0 without
violating the Cerulus-Martin bound'P e (~')o(t) (C(t) a
slowly varying function of tj From (5.2), . (6.1), and
(6.3), we get in the t channel for large s, recalling that

—s, the Regge form

In view of the lack of high-energy data in meson-
meson scattering, the conditions that can be imposed
on the Pomeranchukon amplitude Ap(s, t) are much
less restrictive than those for the Regge trajectory
amplitude F(s,t). The nature of the Pomeranchukon
in high-energy scattering has long been a mystery. The
knowledge that no resonances have been established on
the Pomeranchukon trajectory, and the purely diffrac-
tive nature of the Pomeranchukon contribution, has led
to the postulate that it is diBraetive scattering, built
up from nonresonating backgrounds of the crossed
channels. '~

We shall seek an amplitude Ai(s, t) which satisfies
the following requirements:

(a) The amplitude satisaes the asymptotic behavior
AI (s,t) -+ pi (s)(—t/tp) "&') (within logarithmic factors)
for t —+pp and fixed s, where nt (s) describes the Pomer-

"G. G. Beznogikh et ul, Phys. Letters 3DB, 274 (1969)."H. Harari, Phys. Rev. Letters 20, 1395 (1968); P. G. O.
Freund, ibid. 20, 235 (1968).
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anchukon trajectory. In particular, the total cross
section for m--m scattering should satisfy o.~ ~ const at
asymptotic energies. This corresponds to the exchange
of an I=O Regge Pomeranchukon in the t-channel.

(b) Ap(s, t) has a nonresonating cut in the t channel
and no resonating poles in the s channel.

Let us consider the following expression:

yp(t)
A p(t, s) =

I'() —
n p(t) —n P(s))

The additional logarithmic factor ln(t/tp) does not
violate the Froissart bound for the amplitude and (7.8)
is the required Regge asymptotic behavior. For 6xed t
and s ~~, we get

A p(t, s)
21'(X—n p(t) —n p( ~ ))

( s ) ~P(t)

(7.9)
Spf — Spf

(4m '—s)"'
Xln 1+l l wp(s) P"', (7.1) On the other hand, for t fixed and s~~, we have

s() J

where X=2n p(m '), sp ——tp =up = 1 GeV', and

wp(s) =A p+8s+C(16m '—s)"'. (7 2)

const (4m ' t) '—('
Ap(s, t)- » 1+l

(—s/A)' E t,

xexpL —bphp lnlm(t) l
j-+0, (7.10)

As before, the constants A&, 8, and C satisfy the
following conditions (1/l 8

l
=sp):

A»0, 8(0, C&0,
C'+48(A p+16m '8) (0. (7.3)

The Pomeranchukon trajectory is real analytic with a
right cut starting at the inelastic threshold sz =16ns ':

16,'—q
't'--'

np(s) =1+bps 1+
)

(7.4)

where bI and 6& are constants. This trajectory also
satisfies a once-subtracted dispersion relation

s " ds' Imnp(s')
np(s) =1+-

ipttt, t s'($' $ M)——(7.5)

and for asymptotic energies,

np(+ ~)=1—bpAp. (7.6)

The function yp(s) is a suitable real analytic function
(with possible unitarity cuts and poles on the second
sheet) and y(s) ~0 as s~ &~. The amplitude (7.1)
satisfies the Adler condition for X=2np(m '):

Ap(m ',m ') =0. (7.7)

A p(s, t)-
yp(s)

21'(X—n p(s) —n p( ~ ))

( t) ap(s)

(7.g)
to& to

We observe from (3.3) that in contrast to the amplitude
F =' the Pomeranchukon amplitude I', =' has a non-
vanishing imaginary part in the s channel.

Let us consider the high-energy limits of A p(s, t). For
fixed s and t —+~, we have

where we have assumed that Vp(s) 1/( —s/A)" as
s —+~ for r)0. If r=bphp, then (7.10) will vanish
faster than (7.9) for any fixed value of negative t
Now consider the amplitude A p(s, u) in the limit s ~op
and t f(xed (u ~ —op):

const
A p(s,u)- — ln-

(—s/A)" up

u
Xexpl —I p~p ln —

I
~ 0. (7.11)

upi

For all isospin amplitudes determined by (3.3), the
asymptotic behavior for 6xed t and s ~~ is

yp(t) (' s ) NP(')

p l~
2 I'(X np(t) n—p(~)) 5—spf

(s)
lnl l(1+e t~~P(t)) —t'pry

&spi
(7.12)

Then for t=0 and np(0)=1, we have for s~~ the
result

vp(0) s
p I~

2r(l( —1 —n, ( )) s,
(7.13)

Thus, the Pomeranchukon amplitude at t=O becomes
pure imaginary as s ~~ and the total ~-~ cross section
tends to a constant. This is the correct Regge behavior
corresponding to the exchange of an I=O Pomeran-
chukon in the t channel.

In the intermediate energy region the parameters
in the model must be chosen so that unitarity is not
violated; this would ensure that the elastic cross section
is less than the total cross section in this energy region.
Only a detailed calculation can reveal whether this can
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and the discontinuity of A p(t, s) is

vp(t)
a,A p(t, s) = ——

2 I'(X—u p(t) —u p(s) )

yp(t)

Vp(t)

I'(X —u p(t) —u p(s) )

q p(t)
—

t s —4m. 'y 'I'
tan-'l

I'(X—up(t) —up*(s)) k so

v.(t)
Xsin[ppup(t)]lwp(s) l

p&'&8(s —16m ')+—
2 I'(X—up(t) —up(s)) I'(X —u p(t) —u p*(s))

t s —4m. 'q "'- —
y p(t)x» 1+l

so ) I'(X—up(t) —up(s))

yp(t)
—

t s —4m. 'q 't'
tan-'l

I'(X —up(t) —up*(s)) k so )
Xcos[ppup(t) j lwp(s) l

p"'8(s 4m—'), (8.7)

where where pg and p~ are obtained from the discontinuities of
(8.6) and (8.7), respectively, across the positive t axis.
Then p+ is given by

w(s~i ~) =A+Bs~iC(s 16m, ')—"'
= lw(s) l

e+'~&'&,

-C(s —16m ')"'-
y(s) = tan —'

A+Bs

wp(sixie) =A p+Bs&iC(s 16m ')—'"

(s) l

s+~4 p(s)

(8 9) The pp(s, t) can be obtained in a similar way from
(8.7) and we assume that the cut in yp(t) begins at
tr 16m ', as in——the case of up(t).

The double-spectral functions possess the correct
boundaries determined by the elastic unitarity equation
(2.7), except that these boundaries will not be curved
as they should be according to the equations

C(s —16m ')"'
yp(s) =tan —'

A p+Bs

I.et us decompose the double-spectral function in the
form

(8.1O)

p (s t) = li&[~(s)I'(I —u(s)) I w(t) I
"»n(&(t)u(s))

8.8)

—y*(s) I'(1—u*(s))
l w(t) l

'&' sin(y(t)u*(s)) j
X8(s—4m ') 8(t —16m ')+[y(t) I'(1—u(t)) l w(s) l

Xsin(P(s)u(t)) —y*(t)I'(1—u*(t))
l w(s) l

*&"

Xsin(P(s)u*(t))70(s —16m ')8(t —4m ')) . (8.11)

u=4
2

u =. I6m»

~su

t= 4m»

S
t =16m.'l —

l
for t) s,

ks —4m. 'J

s =16m, '
l

for s) t
t —4m 'J

(8.12)

si l6m&
2

s+ 4m~

obtained from (2.7). The shapes of the double-spectral
functions obtained in our model are shown in Fig. 2.

The model possesses the correct threshold behavior.
In order to see this, consider'0

4 q1
A & (s) = —

l

— dt A, (s, t, 4m '—s —t)
s —4m. ')~ 4„.2

2t
XQ~l 1+—,(8.13)

S—4m. 2

where A, is the complete absorptive part. For smal&

Fro. 2. Boundaries of the double-spectral functions
calculated from the model.

»See, e.g. , A. O. Barut, The Theory of the Scatteririg Matrix
(MacMillan, London, 1967), p. 214.
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q ) we have

(
2t i 2t

(7z 1+
s —4m. ') s —4m. 'i

(8.14)

Jt
Ims

and it follows that
4

A P(s) —(s—4m. ') '
g2~0 ~2l+1

dt A.'(s, t, 4m. '—s —t)
(8.15)

m 2 ~l+1

which is the correct threshold behavior as q' —+ 0.
Let us now consider our scattering amplitude in the

second sheet. Consider the two-body elastic unitarity
equation (2.11) for the partial waves. This can be
written in terms of first- and second-sheet amplitudes

(A ~(s))zz —(A z(s))z = —ip(s)(A z(s))z(A z(s))zz, (8.16)

1 6m~~

Res

where (Az)z and (Az)zz denote the partial-wave ampli-
tudes on the first and second sheets, respectively. Also, Fio. 3. Two-sheeted structure of the amplitude in the s plane.

s—4m' "'
p(s) =

16~ s

If we solve (8.16) for (Az)zz, we get

(Az(s))zz = (A z(s))z

1+ip(s)(A z(s))z

or, conversely, for (A&(s))z, we have

(Ai(s))zi
(A z(s))z ———

1—ip(s) (A z(s))zz

(8.17)

(8.18)

(8.19)

Ar(m ',m. ',m ') =0 (9.1)

for one of the external pions oR the mass shell. This
condition follows from the partial conservation of the
axial-vector current (PCAC). oz I.et us assume that the
contribution of the Pomeranchukon amplitude is small
near threshold and consider the amplitude F(s,t) in-
cluding the first satellite. The trajectory n(s) is approxi-
mated at low energies by

IX. CALCULATION OF SCATTERING LENGTHS

The amplitude in our model satisfies the Adler
condition"

We see that if we continue (A z(s))zz into the second sheet
for complex s and encounter any cuts, then we should

expect these cuts to occur at the corresponding value of
s in the first sheet. Because unitarity and the Mandel-
stam representation do not allow any complex singulari-
ties in the first sheet for equal-mass two-particle scatter-
ing, the continued second-sheet amplitude must not
possess such singularities either if these singularities
can be reached by passing through the elastic cut
4m '&~ s&~ 16m '.

The amplitude (A(s))zz has a cut generated by the
vanishing of the function w(s) =A+Bs+C(16m ' s)"'—
in the second sheet t subject to the conditions (4.9) on

A, B, and Cj. However, this cut in the second sheet can
only be reached by passing through the unitarity cut
above the first inelastic threshold at sr = 16m ' (Fig. 3).
But this is a different sheet than the one defined by the
continuation of (Az)zz in (8.18) or (8.19), since these
equations are only valid for purely elastic scattering
and cannot be continued beyond the inelastic threshold
at s~ ——16m '. Therefore, our second-sheet cut structure
is not in conflict with elastic unitarity.

zz(s) =-', +n'(s —m „'). (9 2)

where we have assumed that C is small and the term
C(16m '—s) 't' in zo(s) can be neglected at low energies.
The Weinberg amplitude takes the form"

Mo~, =(1/F ')[b„b s(s m, ')+b, b,—(t m')—
+bosho, (u m. ') j (9.4—)

and
Fr=a (1/F o)(3s+t+u Sm ')—
F'='=(1/F ')(t—u),
F =' = (1/F ') (t+ u —2m ')

(9.5)

2' Y. Nambu, Phys. Rev. Letters 4, 380 (1960); J. Bernstein,
S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento lV,
757 (1960)."S.Weinberg, Phys. Rev. Letters l'7, 616 (1966).

If we expand F(s,t) around the point s=t=u=m ' and
consider only the linear approximation, we find

A+Bm '+dz
F(t,u) = —(/zr)n'y(t+u —2m.'), (9.3)

(A+Bm ')"'



1232 J. W. MOF FAT

where P, is the pion decay constant. From (9.3) and
(9.5), we get

(A+Bm '+di)
(Qs)y

(A+Bm ')"' (9.6)

and

fA+dr)
P (0,0) =2m. 'n'y(Qrr)

~

4 Ail~)
(9.7)

P(4m ',0) =m, 'n'y(Qvr) (A+4m. 'B)'"

This means that A+Bm '+dr(0. From (9.2) we see
that n(0) =n(4m ') = ~~is a reasonable approximation
where n'= 1/2m, '. Using this in Eq. (5.16), we find

This means that a model that explicitly satisfies the
Mandelstam representation and crossing symmetry is
consistent with the current-algebra results. at threshold.
However, we should stress that we have imposed the
current-algebra constraints on the model; in a complete
calculation of x-x scattering only PCAC will be imposed
on the model.

By ensuring that the lower partial waves do not
violate unitarity in the low-energy region the param-
eters will be determined and the lower partial waves
can be calculated. Provided crossing symmetry is
maintained, the rigorous consistency conditions near
threshold based on crossing symmetry and positivity"
will be satisfied.

dr ( dr )
(9 g)

Arfr&

A+dr)
P(4m ' 0)= —2m. 'rr'y(Qs. ) A'" f

From (2.19) and (3.2), we have

(9.9)

32nm~ae ——Ar='(4m~', 0,0) =3P(4m~', 0) ——,'P(0,0),
32m-m a2 ——A'='(4m ',0,0) =P(0,0), (9.10)

Let us now assume that 4m '8 is small compared to
both A and d&. Then by neglecting this quantity, we
get 23

X. DlSCUSSION OF RESULTS

We have shown that there exists a simple, few-param-
eter model for ~-x scattering which satisfies the Mandel-
stam representation and crossing symmetry. The model
has certain defects common to all models of its kind,
e.g., there are daughter resonances which do not seem
to correspond to observed particles, and some of these
resonances are ghosts. This necessitated the introduc-
tion of a finite number of satellites. The most serious
problem to solve is the discovery of a satisfactory
method of unitarizing the model. One approach that
has been used in the past is to iterate the equation for
the elastic double-spectral function given by'

and from (9.5) within the approximation of neglecting
m '8, we get

A+dr)
(9.11)

p i(s t) =
32 qs,gs

where

dt'dt"D" (t',s)D(t",s)
(10.1)

E»'(s; t,t', t")

Therefore substituting (9.7) and (9.9) into (9.10) and
using (9.11), we find

E(s; t,t', t")=t'+t"+t"' —2(tt'+tt" +t't")
(tt't"/q') .—(10.2)

7 m
Qo=

32%I' 2

m.02=-
16m F ' (9.12)

Here the discontinuity D(t,s) is determined by

1 ds p i(s,t)
D(t, s) = V(t,s)+— (10.3)

If we use the Goldberger-Treiman value Ii =0.087M~
=0.58m, the scattering lengths are

go ——0.20m ', u2 ———0.06m (9.13)

ao/a2 == —7

2ao —5@2=0 70m
(9.14)

These scattering lengths are exactly the same as those
calculated by %einberg22 from current algebra. Apart
from the assumption that 4m '8 is small and can be
neglected compared to A and di (this is consistent with
our requirement that A —4m 'I B

~
)0) 2' results (9.13)

and (9.14) follow from the identification of (9.3)
with (9.5).

» ii we use the value ~B[ n'=1/2m, '=, then we are in effect
neglecting terms of order m '/nip' compared to A and d1. Terms
of this order and unitarity corrections are neglected within the

S —S

Because for s ~ec the discontinuity D,i(t,s) =p(t)$ «i,
the function p, ~ will diverge like s'" ('& " after n itera-
tions for large enough t This deman. ds that (10.1)
be modified by a cuto8 function" which simulates the
damping eGect of the many-body intermediate states
in the unitarity equation. This is not satisfactory and it
is clear that a basic treatment of the unitarity equation
is required.

A more fundamental approach is to consider a model

steinberg current-algebra calculations of the scattering lengths
(see Ref. 22).

24 A. Martin, Nuovo Cimento 42, 930 (1966);47, 265 (1967).
25 B.H. Bransden, P. G. Burke, J.W. Morat, R. G. Moorhouse,

and D. Morgan, Nuovo Cimento 30, 207 (1963);S. Mandelstam,
Ann. Phys. (N. Y.) 21, 302 (1963);N. F. Bali, G. F. Chew, and
S.Y. Chiu, Phys. Rev. 150, 1352 (1966);P. D. B.Collins and R. C.
Johnson, ibid. 177, 2472 (1969);185, 2020 (1969).
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of an n-point production amplitude of the kind pro-
posed in Ref. 26. Now the constant C, in (4.8), is set
equal to zero and we also choose n(s) to be real from the
outset, corresponding to a narrow-resonance approxi-
mation; this guarantees that the n-point model can be
factorized, and that all parameters in the n-point
amplitude can be calculated from a knowledge of the
4-point residue. In this sense, the model constitutes a
"bootstrap" system with a degeneracy of states cor-
responding to n'. Initially, the model only contains
"tree" graphs, but by calculating the loop diagrams,
cuts in w(t) and n(s) will be generated, hopefully rein-
stating the correct analyticity properties for the 4-point
function, and by summing up all the loop diagrams a
complete unitarization of the scattering amplitude can
be accomplished. This kind of program has been at-
tempted for the n-point generalization of the Veneziano
model, ' but the simplest, single-planar dual loop con-
structed gives rise to an integral with an essential end-
point singularity due to the large degeneracy of the
states which circulate in the loop diagram. A somewhat
complicated and arbitrary procedure of renormalization

26 J. W. Moffat, Nuovo Cimento Letters 2, 773 (1969); A. O.
Barut and J. W. Moffat, Phys. Rev. D 1, 532 (1970).

'~ S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969);
K. Kikkawa, B.Sakita, and M. A Virasoro, Phys. Rev. 184, 1701
(1969).

has been introduced to deal with this problem. "In the
model proposed in Ref. 26, the treatment of the dia-
grams follows familiar methods of Feynman graphs,
and since the degeneracy of states in the model is only
e', there are no divergence problems in constructing
loop diagrams. Whether such a program can succeed in
analogy with quantum electrodynamics is still an open
question, but it is clear that a basic solution to the
inelasticity problem appears to be essential in strong
interactions. One interesting question arising in connec-
tion with such a method for unitarizing the model is
whether the corrected &ajectory will turn over at large
energies, in the way assumed for the n(s) in our model
for the 4-point amplitude, or whether it will rise indefi-
nitely to infinity. This is the kind of fundamental
question that could be answered by a basic treatment of
the unitarity problem.
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Application of a Crossing-Symmetric Model Satisfying the Mandelstam
Representation to ~-~ and X-~ Scattering*
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A model for meson-meson scattering satisfying the Mandelstam representation, crossing symmetry, and
Regge behavior and including a Pomeranchukon amplitude is applied to 7r-~ and E-~ scattering. Solutions
are found for the E'-x partial waves that satisfy unitarity approximately at low energies, give a satisfactory
fit to the on-mass-shell data, and predict scattering lengths consistent with current algebra. Apart from a
change in the coupling constant, effectively the same parameters are then used to predict the low-energy
m-~ scattering, and the solutions are found to satisfy unitarity approximately up to 900 MeV. The predicted
on-mass-shell results agree well with the available data. The general conditions below threshold for m-w
scattering that follow from crossing symmetry and positivity are well satisfied. The extrapolated ~-~ and
E-m amplitudes off the mass shell are found to agree satisfactorily with the data for ~N —+ w~N and
gN —+ E~& when a phenomenological form factor is used in the extrapolation. The total and differential
cross sections at high energy are found to have characteristic Regge behavior. The Pomeranchukon ampli-
tude produces total ~-w and E-~ cross sections consistent with factorization in the asymptotic region.

I. INTRODUCTION

A MODEL for x-m scattering has been developed by
one of us' in which the scattering amplitude

satisfies the following properties: (a) Mandelstam

*Supported in part by the National Research Council of
Canada.' J. W. Moffat, preceding paper, Phys. Rev, D 3, 1222 (1971).
This will be referred to in the text as Paper I. See also, Nuovo
Cimento 64A, 485 (1969).

representation; (b) crossing symmetry; (c) resonances
in all nonexotic channels; (d) Regge behavior in all
channels; and (e) the Adler condition.

The Pomeranchukon is incorporated in the model as
a nonresonant, diffractive background satisfying cross-
ing symmetry. The Regge trajectory corresponding to
the exchange-degenerate p f' mesons is assu-med to rise
linearly to high energies and then turn over and tend


