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Branch Cuts in the Balizs Method. II. Application to Pion-Pion Scattering*
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e modi6ed Balazs method, which retains the near part of the left-hand cut, is studkeu with regard to
ab lity to reproduce known, resonant functions and is applied to the pion-pion scattering problem. The

ed reliabl with little dependence on the matching points and the numberknown functions are reproduce re a y, wi i e
and that the ole posi-of poes, provi e a suf l, 'd d th t anciently good estimates of the gap and the cut are use, an a e po'

im rovementtions are chosen to op imize e agreemt the a reement in the gap. The pion-pion results show a systematic
'

p
cient to roduce thed- h l rtial waves are added to the input, and four partial waves are suQicien o pro

p and f' in rough agreement with experiment. These calculations do not use cuto s, oGs other arbitrary ad-
justable parameters Castillejo-Dalitz-Dyson poles, coupling to other channels, or inelastici y.~ustab e parameters,
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FIG. 1. Region of integration for Immi(s).
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I. INTRODUCTION

OME time ago Balazs' proposed a method of esti-
mating the eGects of distant singularities in the

solution of partial-wave dispersion relations in an
attempt to overcome certain diTiculties in calculating
these singularities from crossed-channel processes. In
the usual procedure, a partial-wave amplitude is given
by the Froissart-Gribov expression, ' which, in the equal-
unit-mass case and with ~m crossing, is

4 " 2tq
Arr(s) = -Q prr' dt A( (tr,s)Q) 1+ — —

~, (1)
s(s —4) r' s —4

where I+I is assumed to be even and the crossing
matrix is

i]. i 5 i

pr
I' r r s (2)

6~

On the left-hand cut, which begins at s=0, the
discontinuity can be obtained by taking the imaginary
part of (1). The result, out to s= —32, which is the

beginning of the double-spectral function A &„, is

ImA('(s) = g p"'
s—4I 4

( 2t
&&A,'(t,s)Pti 1+, (3)

s —4
'

where the path of integration is shown in Fig. 1.
At is obtained from the imaginary part of the t-

channel amplitude and is normally given by an ex-
pansion in t-channel partial waves,

Ar'(t, s) =Q(2t'+1)A p'(t)Er (cos0~), (4)

A, '(t,s) =g(2P+1) ImAt. '(t)Pt (cosg~), (5)

' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

where cos0 is the t-channel center-of-mass scatteringw ere cos & is
angle.

The expansion (5) diverges in the region of the double-

spectral function 3&„, which is shown in Fig. i, and
therefore should not be used for s& —32. Thus only the
near part of the left-hand cut, —32&s& 0, is obtainable
in this way. The Balazs method Inakes use of the fact
that (5) is also convergent for 0&s&4, which is the gap
between the left- and right-hand cuts of A t(s), so that
(1) and (5) may be combined in this region to find the
(real) form of At(s). The direct-channel amplitude is
represented by the N/D method' with the left-hand cut
replaced by a series of poles, and the residues are de-
terrnined by matching the Jt't/D form with that obtaine
from (1) for 0&s&4. In principle, only the part of the
cut for s( —32 has to be represented in this way, but
Balazs actually replaced the entire cut by poles to
simplify the practical calculations. In addition, he gave
a prescription for Gnding the pole positions from an
examination of the kernel of the integral equation for E.

This method was applied to the p-bootstrap problem

by Balazs, ' and he apparently obtained the mass and
width of the p in approximate agreement with experi-
ment. It was subsequently used in a variety of other
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problems. 4 However, the validity of the matching pro-
cedure was questioned by several authors, ' and it was
demonstrated, particularly by Bond, ' that the results
were extremely unstable with respect to changes in the
matching points and in e, the number of poles. These
problems were discussed in recent papers by Williamson
and Everett' and by Antippa and Everett, ' in which the
matching points were chosen by means of a criterion
which demands, in effect, the closest possible agreement
between the two forms of the amplitude in the gap.
Here the variation of the solutions with the choice of
matching points remains, but there is a method of
choosing an optimum matching point, and this choice
also seems to reduce the variation with n.

Recently one of us discussed' another method of
stabilizing these solutions. In this paper, which we

refer to as I, the near part of the left-hand cut was
retained explicitly, as in the original proposal, and only
the distant part was replaced by poles. The N/D inte-

gral equations were decoupled by a method similar to
Pagels's approximation, "and closed-form solutions con-
taining the cut were written for both X and D. The
problem of scattering by a Yukawa potential was used
as a model to show that the stability is improved by use
of the cut, and the N/D output was in good agreement
with the solutions obtained from the Schrodinger equa-
tion. In this paper, the modified Balazs method is

applied to pion-pion scattering and its stability is
discussed further.

The question of stability is first studied by using the
method to reproduce known functions which have the
desired analytic properties, satisfy elastic unitarity, and
exhibit resonant behavior in the region s& 4. For a given
function, the gap and cut are known exactly and are
used as the input to an N/D calculation. The positions
of the poles replacing the distant parts of the cut are
then adjusted, by a method similar to that used by
Williamson and Everett, ~ to choose the matching
points, so that the output leads to a best match in the

gap. We find that when an optimal set of pole positions
is used, the known function is reproduced with great
accuracy and there is virtually no dependence on the
choice of matching points nor on the number of poles.

We find, however, that the input on the cut and gap
must be accurately specified and that modifying these

' For example, S. K. Bose and M. Der Sarkissian, Nuovo Ci-
mento 30, 878 (1963);V. Singh and B.M. Udgaonkar, Phys. Rev.
130, 1177 (1963);P. Narayanaswamy and L. K. Pande, ibid. 136,
B1760 (1964);M. Der Sarkissian, Nuovo Cimento 30, 894 (1963);
J. C. Pati and K. V. Vasavada, Phys. Rev. 144, 1270 (1966);
K. C. Gupta, R. P. Saxena, and V. S. Mathur, ibid. 141, 1479
(1966).

'M. L. Mehta and P. K. Srivastava, Phys. Rev. 137, B423
(1965).

6 A. H. Bond, Phys. Rev. 147, 1058 (1966).
7 M. R. Williamson and A. E. Everett, Phys. Rev. 147, 1074

(1966).
A. F. Antippa and A. E. Everett, Phys. Rev. 178, 2443

(1969); 186, 1571 (1969).' J. Dilley, Phys. Rev. 186, 1678 (1969).
'o H. Pagels, Phys. Rev. 140, B1599 (1965).

quantities can lead to unpredictable changes in the out-

put. This fact is relevant to all realistic calculations
because here the input must be approximated from the
crossed channels. Our findings for pion-pion scattering
indicate that an accurate treatment of crossed channels
is very important in obtaining stable and reliable re-
sults. In particular, we find that inputs of only one or
two partial waves in the crossed channels do not lead to
a reliable output; however, as additional partial waves
are included, both the stability and accuracy of the
output improve. In fact, if crossed-channel terms
through l=3 are used, both the p and fo resonances

appear automatically in approximate agreement with

experiment. These solutions are achieved without the
use of cutouts or other adjustable parameters.

Section II outlines the general method, Sec. III gives
the numerical results for the reproduction of the known
functions and describes the search for the optimum pole
positions, Sec. IV gives the numerical details for the mx

calculations, and the summary and conclusions are
given in Sec. V.

ImA(s) =p(s) ~A(s) ~', (6)

where p(s) is the usual phase-space factor

/s —4y 'I'

s ] (7)

We replace the portion of the left-hand cut s& —32
with a series of poles at s =u; and residues n; so that the
equations for X and D become

1V(s) =A(SO) —(s—so)g — — -+
i (s—a,)(so—a,)

s—Sp

D(s') ImA (s')
-ds', (8)

—32 (s —s) (s —SQ)

s —so
" p(s")N(s")

D(s) =1— — — — ds",
4 (s"—s)(s"—so)

(9)

where p(s) is given in (7).
The details of decoupling these equations are given in

I, and the procedure will only be outlined here. When

(8) is substituted into (9), there arises after some

II. GENERAL METHOD

To outline the method, we assume that the N(s) and

D(s) both satisfy once-subtracted dispersion relations
with sp as the common subtraction point, so that
D(sp) =1 and N(sp) =A(sp). In what follows, the sub-

script l will be omitted. The amplitudes are normalized
so that elastic unitarity is written as
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where the function G(s) arises in the integration and is
given by

p(s)+1
G(s) =p(s) ln

p(s) —1

It is real for s&4 and has a branch cut for 4& s& ~.
Explicit forms for various ranges of real s are given in
Zq. (13) of I." The integral in (10) could be done
exactly if it were meromorphic in s; thus the essential
approximation is to replace G(s) by a meromorphic
function G(s), such that G(s)~G(s) for —32&s(0, and
G(s) has poles at s=s„with residues P„. Then the
integral in (10) can be evaluated by means of a contour
about the cut giving, after a substitution of the final,
approximate form of D back into (8),

E(s) A (so) —(s —so)

O,j A (so)DG(so)
Xg + (s —s ) 1— Io(s)

s—a&'

s —$0
+ Q n;AG(a, )I,(s)—

s —$0

P„S(s„)I„(s)xZ, (»)
so —s

E(s)EG(s) A (so)AG(so) s—so
D(s) 1+ —— — — +

where

n;AG(a;) s —so P„E(s„)
xZ — 2, (13)

s —a, ~ (s —s„)(so—s„)

alld
AG(s) =G(s) —C(s) (14)

1 ' ImA (s')
Io(s) = — —ds', (15)

82 (s' —s) (s' —so)

1 ' ImA (s')
I„(s)= — = — ds', (16)

82 (s' —s) (s' —s„)
"The notation in this paper is slightly different from that which

was used in I. What we call G is called —is G in I.This produces a
corresponding difference in the residues of P„of O'. Also the pole
positions a; are called —a,' in I. For further discussion of G(s) see
J. Dilley, J. Math. Phys. 8, 2022 (1967).

integration

G(s)cV(s) G(so)E(so) s —so
D(s) =1+

7r 7r 7r'

G(s") ImA (s")ds" s —so
X „-„+——

3g (s —s) (s —so)

n,G a,xE, (1o)
~' (s—a„)(sp—a;)

1 ' ImA (s')
I;(s) = — ds',

m „(s'—s) (s' —a~)
(17)

and the substitution n, /(so —a;) —& n; has been made.
We do not think that the approximation involved in

introducing G(s) has any serious effect on the results,
since it is introduced in an integral over a 6nite range.
As can be seen in (13), this approximation appears to
introduce the cut of E into D, but the discontinuity is
multiplied by DG(s), which is quite small on the cut.
The function used for these calculations was

3.103397 115.4189
G(s) =5.414104+ — +

s —5.5 s—40.5
(18)

which differs from G (s) by less than 0.1%everywhere on
the cut. Perturbations in 6 of up to 1% were found to
leave the output phase shif ts stable within a degree, and
the use of other forms of 6 that matched G with equal
accuracy left the output completely stable. In I, a check
of the N/D output in the exact integral equations indi-
cated that the error was negligible.

The input, which is given either by (3) or by the
imaginary part of the known function, is ImA (s) in the
integrals (15)—(17). The pole positions are determined
by the optimization procedure mentioned previously,
which will be described in- Sec. III. For the e-pole case,
there are m+2 constants left to be determined, assuming
two poles in G(s) as in (18).They are the e residues n,
and the values of 1V(s) at the poles of G, E(s„).The
E(s„) are found from setting s=s in (12), and the n,
from setting 1V(s )=A(s„)D(s ) at e points s in the
gap. Thus the problem is reduced to solving n+2
simultaneous equations. In addition the subtraction
point so is chosen in the gap and becomes, in effect,
another matching point. For these calculations, so=0
was usually used although it was varied within the gap
in some cases to verify directly that the results were
independent of it.

III. STUDIES OF KNOWN FUNCTIONS

Part of the error in calculations such as these comes
from the pole approximation itself. This error was
studied by an attempt to reproduce certain known
functions. The results of this study indicate that the
error of the pole approximation can be made extremely
small when the amplitude is known on the cut and in the
gap, and provided that enough care is used in searching
for the pole positions which produce the best match
between-the two forms in the gap.

The functions that were used for this purpose satisfied
elastic unitarity and the proper analytic and threshold
properties for an l=1, equal-mass partial wave. In
addition they contained a resonance at the approximate
p mass. It was also required that ghost poles on the
physical sheet be absent and that the high-energy phase
shifts be of a form corresponding to no Castillejo-
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Dalitz-Dyson (CDD) poles, that is, b(~) ~0. This
seems necessary because the present form of the N/D
equations assumes the absence of CDD effects, and it
was recently shown by Coulter" that one should not
expect to reproduce a function with CDD phase shifts
L5(~) ~ m.] by a non-CDD form of the N/D method.
In addition we have veri6ed directly that the present
form of the N/D equations will not reproduce a function
which satisfies all of the above properties except for t e
non-CDD requirement. "

We have recently discussed the construction of such
functions. "A suitable form is

1 1
A(s) =

p(s) cot5(s) —i
(19)

cotb(s) =
a+bs' "+es+ds' "+es'

s—

w ereh the constants must be adjusted to give the re-
hiftsd resonance the non-CDD formof thephase s i s,

19and the absence of ghost poles. The known form of ( )
on the near part of the cut and in the gap was used as
the input for several N/D calculations, and the accuracy
of the results was checked by a comparison of the phase
shifts as given by the N/D equations with the known
phase shifts from (19).The integrals in (15)—(17) were
performed numerically using a su%.cient number of
points, usually 65 including the two ends, so that an
increase in this number left the output stable.

The following parameter proved useful in evaluating
the match in the gap:
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FIG. 2. (A) Variation of Z with the pole position in the one-po e
case. I represents s =2, and II represents s =,=4 while the labels
1—5 give the pole positions used in the calculations of (B).
(B) Comparison of the N/D output with the known function,
represented by the dashed line, in the one-pole case.

50

~=2 [~(s~)—N(s')/D(s'))', (2o)

a = 19.875, b =75.0875, c= —15.5375,
d =0.05875, e=0.0125. (21)

where the sum is taken over 50 equally spaced points s;
in the gap, and A (s;) is the known amplitude. In each
case, as the pole positions were varied over a wide range,
the value of Z changed considerably, and a definite
minimum could always be found. The output phase
shifts also varied considerably with the pole positions,
but the output corresponding to the minimum in Z was
always very close to the known function. The matching
points were varied throughout the gap and, except for a
few exceptional cases to be discussed below, the varia-
tion of the output with the matching points was
negligible. This variation was small even away from the
minimum, but with the optimum set of poles it was
usually less than the width of the lines on our graphs.

We now present examples of an attempt to reproduce
a function of the form of (19). A suitable set of con-

(193stants, which satisfy all necessary requirements in ~

» P. W. Coulter, Phys. Rev. 179, 1590 (1969).
"T.Gibbons and J. Dilley (unpublished).

The resonance occurs at s =28.09 in this case.
The results of an attempt to reproduce (21) in the

one-pole case are given in Fig. 2. Figure 2(A) shows the
variation of Z with the pole position for two different
matching points, s =2 for case I, and s =4 for case II.
Z is small over a wide range, approximately —20000
&u;& —4000, with a clear minimum at a;= —11 000.
F' 2(B) shows the output phase shifts and theigure

of oleknown function for a representative sample o po e
positions, where the labels 1—5 give the pole positions
and correspond in Fig. 2(A) and Fig. 2(B). Case I
corresponds to a;= —544. There is some error, as should
be expected, but the best solutions correspond to the
small values of Z. Studies of intermediate pole positions
show that the variation of the phase shift with the pole
position appears to be smooth, and it follows the trend
shown in Fig. 2(B). It would, of course, be possible to
choose a pole position which could mak. e the agreement
almost exact, but this procedure, if used in a practical
calculation, would amount to adjusting an arbitrary
parameter to bring about agreement with experiment.
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FIG. 3. Comparison of the E/D output with the known function
in the two-pole case. The dashed line is the known function, and
the labels correspond to Table I.

The idea here is to adjust all parameters so as to bring
about agreement in a known region, and then to in-
vestigate the resulting error in the physical region. We
next indicate that this error decreases in the two-pole
case.

Table I shows the variation of Z with a representative
sample of pole positions in the two-pole case, where (21)
is still the model. There is a clear minimum for the set

(—70, —900). The corresponding phase shifts are com-

pared to the known function in Fig. 3, and it can be seen
that the error is very small for the optimum set.
Although there is considerable agreement between the
one- and two-pole cases, the error is substantially re-
duced with two poles. Table lj: and Fig. 4 give the same
information for the three-pole case, and although the
variation of Z is not as great, the smallest values still
correspond to the most accurate solutions. The best

solutions in Fig. 4, cases 4—6, are coincident with the
known function on the scale used.

The above discussion indicates that the position of
the minimum in Z is independent of the matching
points, and that the resulting variation of the output
with the matching points is negligible. This was true
over a wide range of points, but there were a few sets of
matching points where, although the same optimum set
of poles was found, the accuracy decreased. These cases
tended to occur when most of the matching points were
bunched near one end. An example is shown in Fig. 5,
which is a three-pole case with pole positions and labels
corresponding to Fig. 4. The values of Z in cases 1—6
were 558, 271, 223, 195, 200, and 204, all times 10 ' as
in Table ll, so that the matching was much worse. This
poorer match occured in all such cases so that a choice
could always be made.

Thus we have been able to Qnd in each case a set of
optimal pole positions where a best match in the sense
described above exists, and for these sets there is a
progressive improvement in the results with the number
of poles. Even the one-pole case is surprisingly good, and
the three-pole case reproduced the known function
almost exactly. The output is stable with respect to the
matching points except for a few exceptional cases that
can be screened out a priori by means of their noticeably
worse matches.

In most of these calculations, the threshold condition
was enforced by the simple device of using s=4 as a
matching point. However, this was not really necessary,

I 80
------—- K N 0 W N F U N C TI ON

4 5 6

L
90—

V)

ALE I. Two-pole fits to a known function in the gap.

Case
Pole

positions

10'Z
Matching points

0.56, 4.0 1.6, 4.0

—32.43, —41.0—33.0, —131.0—45.0, —400.0—50.0, —600.0—70.0) —900.0—150.0, —1250.0—400.0, —4000.0—1000, —10000

34.4
8.84
0.984
0.268
0.0066
0.362
0.94
1.06

10.2
2.66
0.321
0.100
0.0021
0.073
0.209
0.236

I I I I I

IO 20 30 40 50 60 70
s

F/G. 4. Comparison of the X/D output with the known function
in the three-pole case. The dashed line is the known function, and
the best solutions, cases k4, are coincident with it. The labels
correspond to Table II.
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and in the one-pole case it was not always possible.
With other matching points, the two forms matche at
threshold as well as at any other point.

The pole positions chosen here do not always corre-
spond to what would be expected from the procedure
given by Balazs. ' The pole approximation involves the
integral

ImF (s')ds'
I(s) =

(s' —s) (s' —sp)
(22)

which would appear in the exact dispersion relation for
X(s). In the usual procedure, the substitution s'= —x '
is made, giving

t80

90—

CO

—--——-K NOWN FUN CTIQN

4

""Im1V(x) 1
I(s) = idx.

1+spx 1+sx)
(23)

The approximation is to set

1 G;"(x)

1+sx &=& 1+sx~
(24)

where the functions G;"(x) can be chosen as the

Lagrange interpolating polynomials,

0-

I I I I

0 IO 20 30 40 50 60 70
S

Fro. 5. The same calculation as in Fig. 4 withith a set of matching
points, s ==0.24 1.2 4.0 which produced a poorer match in t e

ble II.gap. The labels correspond to Fig. 4 and Table I .

(25)

giving an e-pole form

I(s) (26)

where

(27)

1 '~P'ImS(x)Gg"(x)dx
Q

x; p 1+spx
(28)

AI(s) = ImS(x) 1
dS

G;"(x)-

1+spx 1 sx ~=& 1+sx;
(29)

The error in the amplitude thus depends on the
integral

those quoted here. The same method also reproduced a
nonresonanesonant function with similar accuracy.

ect ofS tt t was made to determine the effec oome a emp
in the known function in the gap and on t e cu .errors in e

This question is relevant to the xm pro em, e

the cut and the gap were not clear in a quantitative
sense, and only a few general qualitative statements
seem possi e.ible. Errors of up to 10% in the known regions

roduced unpredictable changes in the ou pu . om-pro uce u
t' the solutions were destroyed, an sosometimes thereimes

ment be-was little difference. In addition, the agreeme
tween the one- and two-pole cases was either weakened
or destroyed. It seems clear that the method may a' in

a practical calculation unless sufficient accuracy can be
attained from the t channel. The results of Sec. IV
indicate that this problem can be overcome.

Now a possible explanation for the discrepancy in the
pole positions presents itself. The procedure outlined
here consists of minimizing the error between the pole

therefore, x;. This probably minimizes the error as given

by (29) as a function of x;. The usual procedure in-

volves optimizing e agrth agreement in (24), in some sense,
int eregion x», w

'
h

'
n 0&x& ~ which, because of the eGect o

ImN(x), would not necessarily give the same resu

The set of constants given in (21) is not unique, and
calculations with other sets gave the same results as

Case
Pole

positions

10'oZ
Matching points

0.56, 2.0, 4.0 1.2, 2.8, 4.0

—32.43, —36.0, —51.0
—33.5, —41.0, —231.0
—40, —100, —600
-50, -300, -1000
-55, -500, -5000
—65, —9OO, —12OOO

44.8
10.5
5.05
3.55
3.76
3.92

17.4
3.72
2.13
1.73
1.75
1.79

~ ~

TABLE II. Three-pole fits to a known function in the gap.
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FIG. 6. Phase shifts for the crossed-channel resonances.
2 is the p, and 8 is the fo.

IV. PION-PION SCATTERING

(3o)

where I' is related to the width at half-maximum, 8'~~2,

TABLE III. Crossed-channel resonance parameters.

Resonance

P
f0
g

30
30
81

138.9

5.25
6.0

10.6
11.2

"For l =0, the use of (1) is an inadequate method for calculating
the gap because of substantial high-t contributions and because of
the possibility of subtractions. We And, for example, that the re-
sulting amplitudes badly violate the Martin constraints:
A. Martin, Nuovo Cimento 47A, 265 (1967).More pragmatically,
it is impossible to obtain good 6ts in the gap and a stable output."This form was used in a different kind of 37/D calculation, in-
volving a cutoff, by D. Atkinson and K. M. Ong, Phys. Rev. 168,
1692 (1968).

Several combinations of crossed-channel partial waves
were used to calculate the 1=1 and 1=2 direct channel
amplitudes for mx scattering. "It is not clear in advance
how many crossed-channel partial waves are necessary
to attain sufficient input accuracy, but the results show,
roughly speaking, a progressive improvement in sta-
bility and accuracy as the number is increased.

The usual narrow-width approximation, that is, the
practice of representing crossed-channel resonances by 8

functions, was not used in order to retain as much of the
cut as possible. This approximation moves the beginning
of the cut from s=0 back to s=4—t„, where t„gives the
position of the t-channel resonance. Thus any resonance
with t„)36 would not contribute to the cut, and there
would be no cut over most of the range —32(s(0.The
crossed-channel amplitudes were actually represented
by the unitary Sreit-Wigner form"

and / is the partial-wave number. This form also
satishes the proper threshold conditions, and the param-
eters can be varied to give the desired partial wave and
resonance. The imaginary part of (30) was used in (5)
to obtain A &, which was used to obtain the cut and gap
by means of (3) and (1), respectively.

This was done numerically, and six-place accuracy
was used to ensure that roundoff errors would be absent.
Thus the cut and gap were known to a greater number
of figures than was necessary even for the most accurate
match with the N/D form, and such errors as were
present in the inputs could be traced to errors in the
crossed-channel model itself. In each case, i.e., each
combination of crossed channel inputs, A (s) was com-
puted for all 50 points in the gap, and ImA(s) was
computed on the cut at a sufFicient number of points for
the numerical integrations in Eqs. (15)—(17).Usually 65
points, including the two ends, were used, because this
proved to be a su6icient number of points to keep the
output stable as the number was increased. For purposes
of comparison with the output, the input p and f' phase
shifts are plotted in Fig. 6.

The N/D calculations were carried out in the elastic
approximation, as given in Sec. II, for the one- and two-
pole cases. The method was to minimize Z with respect
to the pole positions, as in Sec. III. The phase shifts
again changed with the pole positions, but clear minima
were obtained in Z, which gave optimal sets of poles. In
each case, the subtraction point was set as so ——0 and
served as a matching point, while the other matching
points were varied within the gap to check the stability
of the solutions with respect to them. It was easy, in the
one-pole case, to move the single matching point from
one end of the gap to the other; and in each two-pole
case, one matching point was Axed at threshold while
the other was moved through the gap. In some two-pole
cases both matching points were also chosen within the
gap so that there was no forced matching at threshold.
This made little difference, and the agreement at
threshold turned out to be as good as at any other
point. With one exception to be discussed shortly, the
solutions were completely stable with respect to the
matching points.

For inputs, various combinations of crossed-channel
resonances were used: case I, the p only; case II, p and
fo; case IV, p, f', and g. The corresponding resonance
parameters were taken from experimental results and
are given in Table III. In addition, an s-wave, I=O
resonance (o) was introduced in two cases: III, o, p, and
f'; and V, o, p, fo, and g. Some such resonance is in-
creasingly favored by experiment, " and the exact

For example, L. Gutay, in Proceedings of the Conference on
~m and Em. Interactions, Argonne National Laboratory, 1969,
edited by F. LoefHer and E. Malamud (unpublished).
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TAsz.E IV. Summary of xx output.

Case

Inputs

Out

I=1, /=1] (p)

Input
case

IV

No.
poles

1
2
1
2

2

2
1
2

p fo 4's ps f

Optimum pole positions
—160—39.6, —56—9394—38.9, -115.2—5298—63.9, —128—7.34X10'—193.6, —880—5.243 X 10'
—1056, —6176

IV

p, f', g

Z'

3.56X 10-7
369X10 9

2.56X10 '.

1.36X10 8

5.43X10-7
3.16X10 '
5.10X10 '
7.22X 10-8
1.06X10 '
4.41X10-7

1075

1188

754
907
786
798

171
~ ~ ~

210
244

V

0'spsf sg
Resonance

Mass Width
~MeV) (Mev)

I=. O, l=2, (fo)

I=2, l=2

IV

V

IV

V

320 1—58.1, —128—32.1—64, —246.4—32.1—40, —88—2 147X10'—1.448X10', —7.895X10'—1 933X109—1.316X10', —7.89/X 10'

—32.1—544, —3414.4—52 450—34, —44—32'. 1—283.4, —800—38.4—994.9, —13 552
32.1—994.9, —12 320

0.697
4.36X10-8
0.754
7.81X10 s

0.594
6.09X10 '
6.30X 10-4
1.50X10 '
1.12X10 4

2.36X10 4

0.705
1.06X10 7

0.516
2.51X10-&
1.58
814X10 3

332X10 4

5.41X10 6

2 61X10~
8.23X10—4

1465
1043
1328
1154

218
75

193
122

Z'=Z/Q t A(s;)g' (32)

and the notation is the same as in (20). This provides a
standard for comparing diRerent partial waves with
different values of A(s) in the gap, and the smallest
values of Z' given here are of the order of magnitude of
those obtained for the known functions in Sec. III.

The phase shifts for the I=1, /=1 output are shown
in Fig. 7, A giving the results for one pole and 8 those
for two poles. Case I, where only the p is used as input,
fails to produce any resonance in the direct channel and
does not even qualitatively resemble the physical ampli-
tude. Cases II and III show some improvement, but the

parameters are not at all crucial in this calculation. The
values given in Table III correspond to a o. having the
same mass t„and width %~~2 as the p.

For output, three direct-channel partial waves were
calculated, the p wave with I=1, and the a wave with
both I=O and I=2. A summary of various pertinent
parameters is given in Table IV, which includes the
optimal pole positions for each case, typical values of the
matching parameters, and where a resonance exists in
the output, the mass, and width. A slightly di8erent
matching parameter Z' is used, where

results are still not satisfactory. Though a p of sorts is
produced in the one-pole case, the resonance disappears
in the more accurate two-pole calculations, indicating
that the input is still inadequate. On the other hand,
cases IV and V produce quite satisfactory results. A p
agreeing roughly with experiment is now produced, and
the resonance appears when either one or two poles are
used. The one-pole cases actually produce a better
output, but this is probably accidental since the two-
pole match in the gap is better. As can be seen by
comparing IV and V, the o does not play a crucial role
in producing the p, but its introduction does lead to a
slight improvement in the results.

Figure 8 shows the phase shifts in the 1=2, I=0 case
where, again, A gives the one-pole results and 8 gives
the two-pole case. Cases IV and V, as before, show
satisfactory results, and the f' is produced in approxi-
mate agreement with experiment. As in the previous
case, the o. is not essential in producing the resonance,
but its introduction improves the results somewhat.
However there is some deterioration of the results here
as compared to the 3 =1,I=1 case. There is now no sign
of a resonance in cases I—III, and a check of Table IV
shows extremely poor matches for cases I—III with one
pole. This is probably reQected in the poorer results of
these cases. In addition the matching of cases IV and V



1204 T. GrBBONS AND J. DrLLEY

180—

90

0-
I-
U

t80—
CO

90—

0 -~—

l i i s t s ~ i 1

40 80 )20 )60
S

as in the calculation of the f', and these cases show
small, positive phase shifts. However, all the other cases,
where the matching was good, produced small, negative
phase shifts in approximate agreement with some other
recent estimates. "

These calculations could undoubtedly be improved.
First, one could improve the low-energy t-channel
amplitude by means of, for example, keeping I=2
amplitudes or other possible resonances. "In addition,
further information on the I=O, l=0 amplitude is be-
coming available and a better treatment should soon be
possible. Second, we have made no attempt to estimate
realistically the contributions to the gap from very large
t and it is possible that some Reggeized form would do
better here. Finally, inelasticity, either by means of a
phenomenological inelasticity factor or by coupling to
other channels, can be introduced. This is probably
necessary to reduce the p width further and to stabilize
the behavior of the f It is, h. owever, impressive that,
except for s waves, "the basic features of the low-energy
region emerge even without these refinements.

I I &

J
& & I

J
I I I

f
I & Ii80—

FIG. 7. 1V/D output for the p in A, the one-pole case, and B,
the two pole case. The labels give the inputs and correspond to
Table IV.

90—

has become worse, and these are also the only cases
which contain any significant variation of the output
with the matching points. Figure 9 shows this variation
for case V of Fig. 8(3), that is, the two-pole calculation
with all four resonances in the crossed channel. One
matching point was 6xed at threshold while the other
was varied throughout the gap, and the effect on the
results can be seen. However, Z' also varied somewhat,
and in these cases the matching points producing the
lowest Z' were used in Fig. 8, even though these did not
produce the best resonances. In the region of the f0, one
would expect that inelastic sects would start to become .

important, and without them, these results are probably
as good as can reasonably be expected.

To check that the resonances produced here are not
simply fortuitous, we placed a hypothetical /=4 Regge
recurrence of the fo in the crossed channel to see if this
could change the results in any significant way. How-
ever, the resulting change was very small, indicating
that the partial waves used are indeed adequate in
describing the main forces driving the low-energy region.
In addition, we looked at the output in the l=2, I=2
case, a case which presumably should not contain any
resonance at all. These results are shown in Fig. 10,
where the scale is different from Figs. 6—9, and it can be
seen that there is no sign of any resonance. The 6rst
three one-pole cases showed similar matching troubles

0

U

~ I 80

I II: III

90—

~~ B.Y. Oh, W. D. Walker, J.T. Carroll, M. Firebaugh, A. Gar-
finkel, R. Morse, J. D. Prentice, N. R. Steenberg, and E. West,
Phys. Rev. Letters 23, 331 (1969); B. Y. Oh, A. Garfinkel,
R. Morse, W. D. Walker, J.D. Prentice, E. West, and T. S. Yoon,
Phys. Rev. D 1, 2494 (1970).

I For example, S. L. Kramer, H. R. Barton, Jr., L. J. Gutay,
S. Lichtman, D. H. Miller, and J. H. Scharenguivel, Phys. Rev.
Letters 25, 396 (1970).

I I t t I I I I I I ( (
I~(&)

0 40 80 I 20 160
S

FIG. 8. S/D output for the f in A, the one-pole case, and B,
the two pole case. The labels give the inputs and correspond to
Table IV.
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FIG. 9. Variation of the calculation of the fo, case V of Fig. 8(B),
with the matching points. One matching point is at s =4, while
the other is, for cases A-E, 0.72, 1.44, 2.16, 2.88, and 3.6. The
values of Z' are, for the same cases, 2.36, 2.34, 1.19, 2.69, and 7.44,
all times 10 4. C is the best solution and is plotted in Fig. 8(B).

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the accuracy and
stability of the modified Salazs method, which retains
part of the lef t-hand cut, by means of reproducing reso-
nance models, and we have applied it to low-energy mx

scattering. The chief conclusion is that when good
estimates of the cut and gap are available, and when the
pole positions are chosen to optimize the agreement in
the gap, this method is able to give very accurate re-
sults. There is a well-dined method for finding the
optimum set of poles, and once this is done, there is
little ambiguity in the output with respect to the
matching points and the number of poles.

However, errors in the inputs produce unpredictable
changes in the output, so that it is necessary to treat the
crossed-channel processes very carefully in the ~x
problem. It. was found here that when realistic crossed-
channel resonance forms rather than narrow-width ap-
proximations are used in order to avoid losing the cut,
four crossed-channel partial waves are suQicient to
produce the p and f' in approximate agreement with
experiment. Three partial waves, the p, the f0, and the g,
seem to be necessary for reasonably reliable results.
These calculations were done without the use of arbi-
trary adjustable parameters, such as cutouts, and there
were no CDD poles or inelastic effects.

In recent years, there has been some doubt concerning
the general reliability of the 1V/D method, and a
suspicion that the approximations involved are too
crude to allow reliable conclusions. "There have also

I / & I
I

I I I
I

I I I
I

I I I

I-
U

CO

-fO
0 40 80

S
I20 I60

FIG. 10. N/D output for the I=2, 1=2 partial wave in 2, the
one-pole case and 8, the two-pole case; the labels give the inputs
and correspond to Table IV. Note the change in scale from what
was used in Figs. 6-9.

been hints that CDD poles are necessary to produce the
p.'0 In these calculations, all of the basic features of low-
energy xx scattering emerged in an apparently natural
way without the use of CDD poles or adjustable
parameters. The numerical details are not quite in
agreement with experiment, but in view of the accuracy
of the known function calculations and the unpre-
dictability of the eGects of input errors, it is natural to
attribute this to the remaining approximations. It
should be noted in this connection that an attempt to
repeat the calculations of this paper without keeping the
cut, that is, in the pure pole case, resulted in failure.
Even the known functions of Sec. III were not
reproduced. Thus we are inclined to the view that the
troubles of the E/D method are due primarily to poor
approximations and inadequate input.

"For a review of some of these objections, see F. Zachariasen,
in Recent DeeeloPments in Particle Physics, edited by M. J.
Moravcsik (Gordon and Breach, New York, 1966).

'o See, for example, R. Majumdar and V. S.Varma, Nud. Phys.
B10, 364 (1970).


