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Direct-Channel Resonance Model of Deep-Inelastic Electron Scattering.
II.* Spin Dependence of the Cross Section
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The spin dependence of the cross section of deep-inelastic electron (muon) scattering is investigated in the
framework of the direct-channel resonance model. The structure functions entering the spin-dependent part
of the cross section obey the following scaling laws in the 3jorken limit: vS'z is a function of co, and p5"4 ——P'3.
The polarization asymmetry is calculated in the framework of a quark model with orbital excitations; sizable
asymmetries are predicted. The spin-dependent part of the cross section is found to be strongly model
dependent; therefore, polarized-beam —polarized-target experiments should be able to distinguish between
various models.

I. INTRODUCTION
' 'NELASTIC scattering experiments with charged,
~ ~ polarized lepton beams on polarized nucleon targets
have become feasible lately. "From a theoretical point
of view, this means that by measuring the cross section
for inelastic electron (or muon) scattering at various
incident lepton energies and scattering angles and at
two different relative orientations of the target and
beam spin, the amplitude of virtual forward Compton
scattering can bc in principle completely deter-
mined. There exist already several works in which the
spin dependence of the Compton amplitude is investi-
gated either by using general principles (locality, etc.)
or specific models. ' ' In Paper I of this work' we have
demonstrated that at least a substantial part of the
experimental data on the spin-averaged cross section
can be explained in terms of nucleon resonance con-
tributions. The model constructed in I described the
inelastic electron scattering data on unpolarized proton
targets in terms of one free parameter, and predicted—
without free parameters —the difference between the
structure functions of the proton and neutron. Good
agreement was obtained between the experimental data
and the predictions of the theory in the region of
Bjorken's scaling variable oi=2nsr/qs /or rather the
modified variable, &o'= (2rni +tns)/q'], where scale
invariance is well established experimentally (or' 9).

The purpose of the present work is to investigate the
scattering of polarized electron (or muon) beams on
polarized targets in the framework of the resonance
model described in I.

We find —as may be expected —that the spin-depen-
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dent part of the virtual Compton scattering amplitude
is quite sensitive to the details of a resonance model. In
particular, the behavior of the respective structure
functions and the polarization asymmetry depend quite
sensitively on the assumptions one makes about the
transition form factors. 'This is in sharp contrast with
the spin-averaged cross section, where almost any
reasonable model is able to reproduce the observed
scaling behavior of the structure functions and more or
less their shape as well. We believe that this is not a
speci6c feature of the resonance model, but rather
reQects a general physical property of the virtual
Compton amplitude; this further underlines the im-
portance of performing polarized-beam —polarized-target
experiments in order to gain insight into the structure
of hadrons.

Our basic assumptions are the same as in I; we list
them here only brieQy.

(A) The nucleon spectrum is "oscillatorlilre"; the
masses squared and total widths of the states satisfy
the approximate semiempirical formulas

s =i+n,
s„'"I'„=0.13(s„—i) . (1.2)

Even and odd values of n correspond to I= ~3 and I= ~~

resonances, respectively. Each level characterized by a
fixed value of n contains several states with spins
ranging from —,

' or ss to n+sr and of both noimalities.
(8) The transition form factors G(q') ar" essentially—universal functions of the variable a=qs/s . We

choose a "dipole form, " viz.
& G(x) ~ (i+r'x) ' where

r'=1.41 from a fit to elastic electron-proton scattering.
(C) At high resonance masses, each decay channel

has the same relative weight; hence, the relative weight—as defined in I—is inversely proportional to the
number of channels, i.e., roughly to s„'i".

Clearly, none of these assumptions is satisfied exactly
in nature. Nevertheless, it is hoped that in those
kinematic regions where many resonances give big
contributions to the virtual Compton amplitude, the
finer details of the individual resonance terms are.
washed out and thus a model based on these assump-
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tions is quite adequate. The basic advantage of these
assumptions is their simplicity; this allows the sum-
mation over resonances to be carried out relatively
easily.

Section II is devoted essentially to the kinematics of
the virtual Compton amplitude, including the spin
dependence. The appropriate structure functions are
expressed through the contributions of the nucleon
resonances. We discover the reason for the strong model
dependence of the spin-dependent amplitude in that the
structure functions contain the difference of two terms
of comparable magnitude.

In Sec. III, the structure functions and the asym-
metry in the electron scattering cross sections are esti-
mated in the framework of a relativistic quark mode1
with orbital excitations. Even though we do not know
the exact form of the level density, we get a reasonable
estima, te by making use of the fact that at high energies
the strength function must peak around the semi-
classical value of the angular momentum. The resulting
asymmetry is quite sizable; we calculate it both in the
limit of an exactly symmetric quark model and also
adding a small symmetry breaking which accounts for
the small (=5%) electric quadrupole term in
photoproduction.

The results are discussed in Sec. IV. Throughout this
paper we use consistently the sam-- essentially stan-
dard —notation as in I.The units are so chosen that the
mass of the nucleon i's equal to j..

II. SPIN-DEPENDENT PART OF VIRTUAL
COMPTON AMPLITUDE IN

RESONANCE MODEL

Assuming a lepton beam of 100% longitudinal polariza-
tion, the differential cross section of the inelastic lepton
scattering becomes

d2o (do)
(W2+2 tan'(-', 8) Wg+4$ tan'(-,'8)

dQdE (dQi Mogv,

X$ W3(E—+E' cos8)+g'W4]}. (2 3)

In the last equation, & stands for the magnitude of the
target polarization, together zenith its sige relative to the
polarization of the beam. It is assumed that the target
is polarized parallel or antiparallel to the beam; the
general formula for the cross section has been written
out, e.g. , in Ref. 8.

The theoretical polarization asymmetry A is the
difference between the cross sections with target spin
"up" and "down" divided by their sum, assuming $ = 1,
from Eq. (2.3):

Wa(E+E—' cos8)+W4
A =4 tan'(-'8) — . (2.4)

W2+2 tan'(-', 8) Wg

Hence a measurement of the spin-averaged cross section
and A under various kinematic conditions allows one
to determine the "spin-dependent structure functions"
S'3 and 8'4.

In order to determine the resonance contributions to
the structure functions 8'3 and 8'4, we proceed in the
same way as in I. The matrix element of the current
between a resonance of total momentum, spin, helicity,
and normality equal to I', j, A, E, respectively, and a
nucleon of momentum p, helicity X, is written as'

-(P'+s-)(p'+1)-
E 8)'"(I')c-" g;-, 8. l(&,—g. IG

82 i

+2S~,uG2+i(+s„)qu, euuvvygyup ct'(G, +G,)

(1+7~ (1—vs))
xl +A' lg, (p), (2.5)

2 2

where E=&I is the normality of the resonance. Here
|t~&'" ~'-&«(8) and uq(p) are the usual plane-wave
spinors of the resonance and the nucleon.

In the approximation described in I Lstate vectors
approximated by those of a single particle, the 8
function 8(P2+s„) smoothed out to a Breit-Wigner
factorj, the contribution of a resonance to W„„can be
written as

(ee»'l&. (0) I p+& &'~ &)
XXX'

x(p+8iAxlq„(0) Ipl)a„(s), (2.6)
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Let 3f„„be the absorptive part of the spinor ampli-
tude of forward virtual Compton scattering. We define
the function 8'„,by

W"=»I ~u&(k) j (2.1)

where $u is the axial vector describing the polarization
of the target, and P($) is the covariant density matrix.
In the rest frame of the target, $0

——0, I'($) u x~(1+o.(),
the latter being the conventional, "nonrelativistic"
form of the density matrix.

This is sufhcient to define the density matrix com-

pletely, although its explicit expression depends on the
normalization of the nucleon spinor. (However, W„„is, of
course, independent of the normalization convention used. )

The terisor 8'„, can be decomposed into invariant
amplitudes as follows7:

( a.v) ( Pv &( Pv)
W"=I g"—,IW~+I P.——

Vu II P 8 IW~- —
q' ) E g' i k q' i

+2ifeu„,P'$'(P 8)+Pu „,uP'$'0

pv&u«up 5 g JW3+2&(&uvvvp 5 g +gu&v«up 5 8

gv u«up 6 )W4 ~ (2.2)
'I S. D. Drell and J. D. Sullivan, Phys. Rev. 154, 1477 (1967),

and Ref. 3.The amplitude W4 as defined in Ref. 3 divers from ours
in a factor (p g).
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where

and

&» (k) =Ni(p)&(&)» (p)

1 Fgs
B„(s)=-

s (s„—s)'+I'0's '

and Eq. (2.8), we find

W (jNn)

N=+1

qmE /'q+2) )+i/& (2j+1)I I

B (s) s„"'Iq*'s„( 2 ) (2j)!!

The total resonance contribution is obtained by multi-
plying (2.6) by the number of states, /)(j, e), and sum-
ming over j, 1V, e.

The invariant amplitudes W3 and W4 are projected
out by contracting 5'„„with suitably chosen anti-
symmetric tensors, e.g., those standing in front of W3,
W4 in the decomposition (2.2). In this way, one obtains
two invariant equations, from which W3 and W4 can be
expressed.

It is convenient to evaluate (2.6) in the rest frame
of the resonance, because the projection operator
Pf ' ' ' / "Q/)' "/// '" simplifies there and a two-com-
ponent formalism can be used. The details of this
procedure have been described in I for the case of the
spin-independent part of the amplitude. Here the only
difference is that instead of summing over the helicities
of the nucleon, one must insert the density matrix of
the target. Using "covariant" spinor normalization
Ni(p)ui (p) =alii. , we have

I'(&) =-:(1-~.v.v ). (2.7)

Inserting (2.5) and (2.7) into (2.6) and noticing that the
sums over nucleon helicities give just 2 '(1—iP), the
projection operator for positive energies, we~obtain
after a straightforward but tedious calculation

gr (qNn)

W (qÃn)

1+E z P&)i+i/2 (2j+1)!I

B„(s) )
A/!/'

4 q*' 2

2j+3
X 1VGiGs+v(gs„) G!!'— Gu'

2j-1
1+E s„q*'q /+"' (2j+1)!!

B„(s)
~

AN'
4 q*' 2 ) (2j)!!

2j+3
X —1!/GiGS—+(ps~) G!!'— G2'

2j—1

(2.8)

q*/(1+E), if 1V = —1.

Next, we would like to sum over j, E; e in order to
obtain the full resonance contribution to the invariant
functions. At this point, however, we encounter an
infamous diS.culty. In order to understand its nature,
let us compare, e.g. , the expressions of W2 and 8'3,
summed over the normalities. Using the results of I

Here, as in I, A~ stands for the "normality factor":

if %=1

W (jNe)
N=+1

G ' 2j+3
+ Ga'+ G,'

s~ 2j—1
, (2.9)

/'q*ii'+'" (2j+1)!
B„(s) s„'/'/2q*'s„E 2 I (2j)!!

GiG!! 2j+3
X + GI~ — G 2 . (2.10)Evgs„2j—1

We could argue in I that in the Bjorken limit, when
s —&0(), qm~a(&, and s/q'=re' —1=0(1), the electric
contribution to (2.9) (proportional to Gi') could be
safely neglected, since it contained an extra factor
s„-' s—'. Let us realize, however, that this argument
depends crucially upon the fact that the expression in
the square brackets, containing G&' and G2', is positive
definite and hence no compensations can occur. (For the
same reason, almost any reasonable hypothesis about
the transition form factors and the level density leads
essentially to the same shape of Wm. ) Not so in Eq.
(2.10) and the analogous expression for W4. There the
form factors G2 and G3 contribute with opposite signs;
their contributions may compensate each other. There-
fore, even the relative orders of magnitude of the 6rst
and second terms in the curly bracket are hard to
estimate without making rather detailed assumptions
about the level density and the transition form factors.
Also, various assumptions may lead to quite different
shapes and scaling properties of W3 and W4 and hence
the asymmetry A.

In the Sec. III we first investigate those properties of
the spin-dependent structure functions which are
essentially independent of the detailed assumptions
made about the level density and form factors (but
depend on the fact that we are using a resonance model),
and then calculate the relevant quantities in a specific
model.

III. CALCULATION OF SPIN-DEPENDENT
STRUCTURE FUNCTIONS

A. General Properties

We introduce the relative weight of the photon-
nucleon channel as in I:

(q ~
/+i/2 (2j+1)!!

E 2 ) (2j)!!
where p(j,e) is the density of states. On summing over
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A% —X= 0.9
--X= l

hnd the relation
vS'4~ H/'3. (3.3)

20-

IO-

asymptotic value: 8%

Further, using the scaling properties of 8'~ and 8'2,
established in I, we 6nd for the expression for the
theoretical asymmetry LEq. (2.4)j in the same limit

8„(s) 2j+3
A Q F„GS'— — G22s„2j—1

B„(s) 2j+3
Ga'+ Gs' . (3.4)

e s~ 2j—1

2 5 l0
I ~~l I ~ I I

20 It is easy to verify that this can be expressed through
the virtual photoabsorption cross sections

asymptotic value:-5%

-10-

FrG. 1.Predicted asymmetry in polarized-beam-polarized-target
experiments. Dashed curve: symmetric quark model. Full curve:
quark model with symmetry breaking.

resonances, we obtain

Fv B.(s) G,G,
Wa = — Q F +G32

2q*' ~ s„ Fl gs„
2j+3

— —G2', 3.1
2j —1

8 (s) a) GgGgF„—— — +G '
2q*2 s„ 2 Fgs„

2j+3,
G2' . 3 2

In the last two equations, we used the de6nition

t'q*'q'+"'(2j+1) '2j+3z p(j~)l
k 2 I (2j)!! 2j—1

(The form factors G~, G3 have been assumed to be
"universal, " i.e., independent of j for any given n), .

Provided that the difference

2j+3
G3'—

does not decrease faster than s„' for large resonance
masses, in the Bjorken limit the electric contribution to
(3.1) and (3.2) can be neglected. "Thus, in this limit, we

'OA very fast decrease of the difference between the averages
of 622 and 532 can probably be excluded on physical grounds: It
would lead to a pathologically smooth behavior of the current
commutators on the light cone; cf. Ref. 5.

A-(0»-~»)/(~~t+0ti)I,
a relation already derived by Bjorken. 4 (The arrows
indicate the relative orientation of the photon and
nucleon spins. )

Relation (3.3) is characteristic of a resonance model.
Other models (Regge models, parton models, etc.)
lead to different types of relations between the spin-
dependent structure functions; cf. Ref. 5.

B. Quark-Model Calculation

Assume that the nucleon spectrum can be described
in terms of orbital excitations of relativistic quark
states. (This assumption is not incompatible with the
empirical properties of the spectrum, discussed in I;
indeed it would lead to a natural explanation of the
observed fact that I=~ and I=—,

' states follow each
other alternatingly. ) In an orbital excitation model we
expect that the ratio G2/Ga is—at least approximately—
independent of the excitation and, hence, can be deter-
mined from the properties of the ground state. As is
well known, "a relativistic, symmetric "quark" model
gives G2=63 for I=~, and G2=0 for I=2 nonstrange
states. We estimate the average of (2j+3)/(2j —1)
semiclassically. Let j——,

' =l q~E, where E. is the
average radius at which the photon is absorbed. Clearly,
for high energies, the function

(PI+i) 11(tt" )&-
1

p(j,n)
(2j)!! 2

has to have a sharp peak around the semiclassical value
of j.Therefore

(2j+1)!!(q*' '+"'2j+3 2I!+3
p s.&»p(j,e)

(2j)!! E 2 2j—1 2g —1

where l!=1+~ is the semiclassical estimate of the
dominant angular momentum.

"A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London) A284, 146 (1965).The equivalent statement in "static"
models is that the b, photoproduction amplitude is pure M1.
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From the expression of the form factor we find
R=r/gs„=r/Qs, since the factors B„(s)peak around
s„=s.Thus, in the limit q'~~, we get/ s'res(a& —1) '.
(This estimate breaks down in a small neighborhood of
co=i, roughly where the maximal spins of the inter-
mediate states become smaller than / as estimated here. )
For I= ~~states, 1 has to be replaced by 1+1, since the
minimum spin is ~. Converting the series in (3.1) into an
integral, as described in I, and using the narrow-
resonance approximation, gives the following estimate
for the structure function 8 3&~&:

.2

uW&

Here

fr/'~( / )~'//~/2 fP—(~)

CO

v W'3&3/"
//, ///2'f—F(a))

(1+-',r)(o —1

(3.5)

(3.6)

0
l

ld
I E / I

3 4 S 6 7 8

Fic. 2. Structure function vW'2. Dashed curve: G2=0.
Full curve: symmetric quark model.

IV. DISCUSSION
(d(Ql 1)

F(sr) =-
(M —1+-',r) 4

and the superscript I indicates the isospin of the inter-
mediate state.

Using the known expressions for the spin-independent
structure functions, the expression for the asymmetry
A becomes

2r/ i/2'~+(/ v2' —2/ 3/2')(~ —1)

~r(pa/2 +2P8/2 )Ct)+(Pl/2 +493~2 )(~—1)
I

This expression is not valid for co —1((1,since there our
estimate of l breaks down. It can be shown that A (1)=1.
The curve A(&v), given by (3.7), is plotted for a proton
target in Fig. 1 (dashed curve). The symmetric quark
model predicts that the yÃ —+ 6 transition-matrix
element is pure M1, whereas experimentally there seems
to be an admixture of E2 of about 4-5% (see Ref. 12).

Making the assumption that G2= XG3, one can 6x the
parameter X from the ratio of the E2 and 351 matrix
elements. Indeed, the appropriate transition-matrix
elements are given by' "

M&
P(E2) = —(gs)i —

i
Mg/t*'(Gg —G3),

E2(E+1)I

Assuming a 5% admixture of E2, one gets X=0.9. The
asymmetry can be recalculated under this condition;
the resulting curve is drawn in Fig. 1 as a full line.

"G. Morpurgo, in Proceedings of the Fourteenth International
Conference on High-Energy Physics, Vienna, 1968, edited by J.
Prentki and J. Steinberger (CERN, Geneva, 1968).

13 L. Durand, III, P. de Celles, and R. Marr, Phys. Rev. 126,
1882 (1962}.

The resonance model predicts a sizable polarization
asymmetry in the inelastic scattering cross section of
charged leptons. A particularly pleasant feature of the
spin-dependent part of the cross section is that is it
considerably more sensitive to model-dependent as-
sumptions than the spin-averaged cross section. The
predicted polarization asymmetry (taking the quadru-
pole term in the ylV —+ 6 matrix element into account)
levels off at about 8% for large values of &o. Such an
asymmetry should be detectable already in the pro-
posed AGS experiment of Chen et al. ,' and even more
in the next generation of experiments to be performed
at SLAC and NAI. It is important to point out that
these experiments should be able to distinguish between
various models. Compared with other calculations,
based on quark-algebra or various versions of the
parton model, '4 the asymmetries predicted by the
resonance model in its present form are lower typically
by a factor of 2, and also the dependence on co is
diferent.

In order to emphasize further the sensitivity of the
asymmetry to various physical assumptions (in contrast
with the spin-averaged cross section) we recalculated
uS'2 under two extreme assumptions. The results are
shown in Fig. 2. The dashed curve is calculated under
the extreme —and unphysical —assumption that the
form factor G2 vanishes identically, while the full curve
corresponds to the symmetric-quark-model value. (The
free parameter in the relative weight has been adjusted
to make both curves pass through the same value at
&v=2.) The clifference between both curves is nowhere
bigger than =5%, whereas the assumption G,—=0 leads
to an asymmetry which is 100% at every co) 1.
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