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useful for our purposes. In any event, it is our hope that
accurate experimental data at high energies (pJ.&5
GeV/c) will soon be available on all these double-
charge-exchange reactions.

Lastly, in our calculations, strict SU(3) invariance,
with the exception of physical masses for mesons and

baryons, has been assumed. However, if necessary,
SU(3) symmetry-breaking effects can be easily intro-
duced into the calculations by (e.g.) treating the strange
quark differently from the nonstrange quarks. At the
present time, we do not see any necessity of introducing
SU(3) symmetry-breaking effects into the calculations.
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The conjectures of Feynman and of Benecke, Chou, Yang, and Yen on the high-energy limit of single-
particle distributions are studied in the framework of the multiperipheral model. It is found that classes of
multiperipheral diagrams add to give limiting single-particle distributions.

I. INTRODUCTION

where

d 0 q&

f(x,qg) s), —
dxdqg x

x =Px'+ (qP+y')/-, 's7'~' (1.2)

and p, is the mass of the observed particle. Feynman's
conjecture is that at very high s the function f becomes
energy independent, i.e.,

d 0 gy
f(x,q~) . —

dxdgg x
(1.3)
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' R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969).

HE great complexity of inelastic hadronic interac-
tions at high energies has led both theorists and

experimentalists to focus their attention on inclusive
experiments. ' They offer the advantages of being easy
to perform and re]atively simple to describe from a
theoretical point of view. This simplicity is a conse-
quence of the. summation over all the unobserved
channels, which tends to average out the details of
the matrix element and to exhibit only its dominant
features.

The examples of inclusive experiments that we
discuss here are single-particle distributions. Feynman
has recently proposed to describe these distributions in
the center-of-mass system by means of the double
differential cross section d'o/dxdq„where x=2q&, (s) '~';

here s'l" is the total energy, and q& and pl& are the
transverse and longitudinal components of the momen-
tum of the observed particle. The cross section is then
written in the form

A similar hypothesis was independently formulated
by Senecke et al. ,

' who describe the same process at
6nite momenta in the laboratory and projectile frames,
and conjecture that d'o/dq„dq, approaches a constant
limit in those frames as s ~~. In this limit, any finite
momentum in the laboratory or projectile frame
transforms into a nonzero value of x in the range—1&@(i.Conversely, any finite momentum in the
center-of-mass system, or in any "intermediate" frame
reached from the c.rn. frame by a boost of order s&,

0(&(-,', goes to the point @=0. The conjecture of
Benecke et ul. turns out to be equivalent to Feynman's
hypothesis for x/0. The point @=0, which concentrates
all the information of finite momenta in this continuum
of frames, is, however, very important, and for this
reason we adopt Feynman's notation in our present
work.

Our main purpose is to study the high-energy limit
of single-particle distributions in the multiperipheral
model that was used by Caneschi and Pignotti' to 6t
experimental single-particle distributions at accelerator
energies. We point out that in the description of an
inclusive experiment we cannot restrict the model to
the multi-Regge region of low multiplicities and large
subenergies, which on]y accounts for a small part of
the inelastic cross section, but we have to use the
model for all multiplicities and throughout phase space,
and we can only expect it to be meaningful in some
average sense. 4 If we increase the total energy, this
approximation i's not improved as the additional energy

2 J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev.
188, 2159 (1969).

'L. Caneschi and A. Pignotti, Phys. Rev. Letters 22, 1219
(1969).

4G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078
(1968).



1168 BALI, P I GNOTT I, AN D STEELE

propagators associated with the exchanged objects. In
particular we shall consider Regge exchanges character-
ized by a trajectory function nz(t), but most of our
conclusions are independent of the detailed nature of
the exchange. Equation (3) can then be rewritten

do"= iM„gi'R(s, s', t)P(t)
yX—'~'(s, m' m')de" —'de'ds' . (2.2)

FIG. 1.Typical multiperipheral process: 2 ~ n.

is used in the production of new particles and the
average subenergy of a pair of particles emitted at
neighboring vertices stays constant. As a consequence,
the highest trajectories do not necessarily dominate,
and, in particular, we can, as a first approximation,
neglect Pomeranchukon exchange in the spirit of Ref. 5.

In this paper we show that Feynman's conjecture
is realized by this model and discuss what classes of
multiperipheral diagrams contribute at x/0 and at
@=0. We also derive a very simple expression for

f(x,q,) for the pion spectrum at small x, which has a
number of attractive features.

In Sec. II we discuss multiperipheral diagrams in
which the observed particle is emitted at either end of
the multiperipheral chain. Section III is devoted to the
case of particles emitted at internal vertices of the
chain. We discuss the pion and nucleon single-particle
distributions in pp collisions and point out some
differences between the two. In Sec. IV we summarize
our results and discuss them in the context of Refs. 1
and 2. The Appendix contains some details of the
integrations performed in the s —+~ limit.

II. TWO-VERTEK DIAGRAMS

Here R is the Regge propagator, P contains the factor-
ized dependence of the residue functions on the in-
variant momentum transfer $,

6 and the m-particle phase
space is written as the product of a two-body phase
space, times the phase space for the decay of one of
these two bodies, of mass (s')'t', into the remaining e—1
final particles. The techniques of the integral equation
of Chew, Goldberger, and I.ow' and Halliday and
Saunders' can now be used to perform the integration
over dC" ' and the sum over e, and lead to power
behavior in s'. We denote this power by n(0), and obtain

( s' "' q,dq, dx
do

~

— E(s,s', t)P(t)X "'(s,m', m') —.(2.3)

Note that o.(0) is the power generated by an infjnite
sum of multiperipheral diagrams depicted in Fig. 2, and
is in general different from the value of the intercept
of the exchanged trajectory considered, nz(0). Equation
(2.3) can be interpreted as incorporating into the model
the statement of power behavior for the cross section for
inelastic collisions between the exchanged Reggeon and
the target particle a.

Asymptotically, the Regge propagator depends on
the quotient s/s' in the form

(2 4)

S

I.et us consider particle production in collisions of
two particles of equal mass m. The cross section for e
particles in the Anal state can be written as

do"= ~M„~9 '"(s,m', m')dC" (2.1)

where dC" is the e-body phase space, JIt/I„ is the matrix
element, and P the kinematic triangle function. We
choose the matrix element to be of the multiperipheral
form, diagrammatically indicated in Fig. j., and we start
by considering the distribution of particles emitted at
either end. For concreteness, we choose particle b to
be incident along the positive s direction, and particle
1 to be the observed one. Characteristic of multi-
peripheral models is factorization of the matrix element
into vertex functions that are strongly damped for
large values of the invariant momentum transfers and

~ G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 {1968).

Fro. 2. Typical two-vertex diagram.

6 We neglect the Toiler-angle dependence of the internal multi-
Regge-pole vertex, and assume that the dependence on the ad-
3acent momentum transfers factorizes. We believe that the con-
clusions of this paper are independent of these approximations.

~ G. F. Chew, F. E. Low, and M. L. Goldberger, Phys. Rev.
Letters 23, 258 {1969).

L G. Halliday and L. M. Saunders, Nuovo Cimento 60A, 115
{1969).
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Therefore, we obtain

a (0)—1$2a@(t)—1 ( $~ a(0)—

p(&)l—
km'd dx'""

xmas'

(2.5)
S

Sb
l

So

l' t f s —+~ and fixed x an q&,and &, we haveIn the imit o s —+

x+0(1/s) for x)0
x= 0(s "') for x—0

—x+0(1/s) for x(0,
call the four-vector of thethe observedand hence, if we ca q e

particle, we have

m' 1—x) —2 —+0(1/s)t = (q p(,)—'=p'+m'(1 x ——

FzG. . yp. 4. T ical three-vertex diagram.

and
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and, furthermore, neglect the eGect of the slope of the
Regge trajectories in the propagators

R(s/s', t) = (s/s') "& . (3.3)

The limited range of values of t which contribute
substantially to the cross section makes it reasonable
to approximate n)0(t) by some average value &),z. In
the limit of large s, we can evaluate the leading behavior
of the integrals in Eq. (3.1). The details are presented
in the Appendix; we discuss the results here.

For concreteness, we go back to the example of
nucleon-nucleon collisions with production of only
pions, and we begin by considering the pion spectrum.
The observed pion can be emitted at either a meson or
a baryon exchange vertex. In the 6rst case, both blobs
of Fig. 4 carry baryon number 1 and represent the total
baryon —Reggeized-meson cross section. We assume
Pomeranchukon behavior for this, i.e., n, (0) =nb(0) —1,
and we take n~ to represent a typical meson trajectory
exchanged. We call this case the Pomeranchukon-
Pomeranchukon (PP) three-vertex diagram, and obtain
Lsee Eq. (A9)]

d0 qg= —e"'I(q&,x),
dqydS X

(3.4)

where, if we set the threshold mass m& of blob b equal to
the nucleon mass, r is given by

of s' into two blobs of masses s ' and sg' in their center-
of-mass frame. Equation (3.1) involves a four-dimen-
sional integration, and the study of its high-energy
limit is somewhat involved. The analysis is simplified
if we choose exponential parametrization of the residue
functions

(3.2)

with

d'0. q&
— = —e"'I'((Ji,x),

dqgdS X
(3 6)

s'm' qg2 2 —3s
(m' —mb') — (3 7)

1—s 2 —s 2(1—x)

where m~ is the threshold mass for the b blob. The
function I' has properties similar to those of Imentioned
above. For s(0, the same result with u replaced by b

and s by —s holds. Thus we see that those diagrams in
which the pion is emitted at a baryon-exchange line
again have a nonvanishing limit for f but only for posi-
tive values of x with the above choice for o.,(0) and

nb(0). At x=0, from Eq. (A11)

d 0' gb / S Hs(0)+b(0)] —i
= —e"'Io(q.)~—

dxdqb 0 x ( m'

with r = —gib/2. Hence,

(3.8)

function on the invariant momentum transfers. All the
above features appear to be qualitatively correct."

We now consider the case in which the pion is emitted
by a baryon-exchange line, and we set o.z equal to some
average ba,ryon trajectory 0.&. In this case, one blob,
for example the one with index u, carries baryon
number 2, and describes the baryon —Reggeized-baryon
total cross section, whereas the other blob contains no
baryonic lines in the final state and corresponds to the
cross section for baryon —Reggeized-antibaryon an-
nihilation into pions. This cross section is not expected
to be constant, but rather to decrease with energy like
some inverse power. In other words, we set

n. (0) =1, (bb(0) =()(g(1.
We call this contribution the three-vertex Pomeran-
chukon-annihilation (PA) diagram, and we find, for
s&0, as indicated in the Appendix,

m2S2 f(0 g s)~sb(az —i) (3.9)

2 —S 1—S
(3.5)

and represents the maximum value of ti+t2 attainable in
the region of integration of Eq. (3.1) for given values
of x and q„as s ~00. The function I(g, ,x) involves a
one-dimensional integration, depends on 0 and nE, has
no zeros for

~

x
~
(1, and contains no further exponential

dependence. If we choose to ignore this function, we are
left with a simple expression for the pionic asymptotic
single-particle distribution which has a number of
appealing features. (i) It exhibits Feynmans limit,
including the point s=0, which gives rise to a logarith-
mic growth of multiplicity with energy. (ii) It is strongly
damped for large values of q„as a consequence of the
input damping in t. (iii) It suggests a simple form for
function f, which, for small x, approximately factorizes
in its dependence on s and q&, and has a Gaussian
dependence on s. Note that the latter also follows from
the original exponential dependence of the residue

as s ~~. In other words, Pomeranchukon behavior is
required for both blobs if we want to 6nd a nonvanishing
value of f(0,q,). In the language of Ref. 2, pions
emitted at a baryon line correspond to "fragments"
of that baryon, and give rise to Gnite asymptotic cross
sections d'o/d(t„dq, in the frame in which the corre-

sponding incident baryon is at rest. The same is true
for the two-vertex diagrams described in Sec. II.

B. Nucleon Spectrum

The same analysis can be applied to the nucleon
spectrum. Because we have ignored nucleon-antinucleon
pair production, we expect a Qnite multiplicity and
therefore a vanishing f(0,qj,). If we want to be more

precise, we can say that our model applies to the
difference between the final nucleon and antinucleon
spectra, and in this way subtract out the e6ect of"¹Bali, L. S. Brown, R. Peccei, and A. Pignotti, Phys. Rev.
Letters 25, 557 (1970).
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nucleon-antinucleon pair production ("nucleoniza-
tion"). The latter is expected to be present, and the
model can be extended to account for it. A three-vertex
PP diagram analogous to the one described for the
pion spectrum provides this e6ect. Its coe%cient,
however, appears to be small, " and that is why we

choose to neglect it in our example.
Even in the absence of nucleonization, we observe

from formulas (1.1), (2.6), and (3.9) that the proton
cross section does not vanish asymptotically at x=0 if
o.&&0. If we choose 0,& to be the ~ Regge-trajectory
intercept, i.e., n~=0.5,"we find

dxdgg ~p
ct- g1/4

Thus the contribution of the three-vertex diagram to
the proton spectrum at x=O would show a weak rise
with energy, in contrast to the decrease of the two-
vertex diagrams discussed above. Phenomenologically,
neither an increase nor a decrease is yet observed in
experiments at accelerator energies, and the behavior
of the proton spectrum, after subtraction of the
nucleonization e6ect, remains an interesting problem.

IV. CONCLUSIONS

We have found that the multiperipheral model
satisfies Feynman's scaling limit given the assumption
of constant Reggeon-particle total cross sections. "
We have discussed two types of diagrams: those in
which only one blob with Pomeranchukon behavior is
present, and the one in which the observed particles
lies between two blobs with Pomeranchukon behavior.
The former describe effects associated with one end
of the multiperipheral chain, and are characterized by
the presence of the Pomeranchukon blob at the other

end. The observed particle is either emitted at an
external vertex, such as in the two-vertex diagram, or
separated from it by a non-Pomeranchukon blob, as
in the three-vertex PA diagram. In either case, f
vanishes at x=O and at either positive or negative
values of x, depending on whether the observed particle
is associated with the projectile (b) or target (a) end
of the chain. In the language of Ref. 2, these diagrams
may be interpreted as describing fragments of the
projectile or of the target. The average multiplicity for
these diagrams is, however, constant. The second type
of diagram scales for —1&x&1, and the corresponding

"See, for instance, the data at 19.2 GeV of J. W. Allaby et al.,
in Proceedings of the Fourteenth Internatioeal Conference on High-
Energy Physics, Vienna, 19N, edited by J. Prentki and J. Stein-
berger (CERN, Geneva, 1968).

'3 P. Ting, Phys. Rev. 181, 1942 (1969).
'4 Amati, Stanghellini, and Fubini have also discussed single-

particle distributions in the multiperipheral model t see D. Amati,
A. Stanghellini, and S. Fubini, Nuovo Cimento 26, 896 (1962),
and also the article by S. Fubini, in Strong Interactions and High-
Energy Physics, edited by R. G. Moorhouse (Plenum, New York,
1964), p. 259). In the case of the three-vertex diagram, however,
these authors effectively limit their discussion to the point @=0,
and, therefore, do not arrive at Feynman's scaling law.

multiplicity is logarithmically divergent with s, because
the function f is regular and nonvanishing at x=0.
The distributions d 0/dq, ~dq, from this diagram are
asymptotically different from zero in the laboratory,
projectile, and all other intermediate frames, including
the c.m. Therefore, this diagram satisfies the properties
of limiting fragmentation of Benecke et al. ,

' and of
pionization of Cheng and Wu."Note, however, that it
gives rise to a smooth distribution f(x), with no breaks
that would allow us to split its contribution into
fragments of the target, of the projectile, and pioniza-
tion products.

APPENDIK

We discuss here the evaluation of the integrals of
Eq. (3.1) as s~~, with the approximations of Eqs.
(3.2) and (3.3), for x)0 and x=0. Our taskissimplified
if we evaluate the integrals in the c.m. frame for the
decay of a missing mass (s')'" into two masses (s,')"'
and (sq )'t', and in which the relative incident momen-
tum Pq —P points along the s direction. In this frame,
the orientation of the momentum of the b blob is
specified by two angles 8 and tt, upon which we integrate.
We have

ps ym & ts, 2~Et

f(»qi)-& ' (&-')""'(»')""'I—,
l

ks.') ksg'

X (S )S~ )Sp )
XexpLQ(t. +tq)] dQds. 'dsq', (A1)

S
with

t +tq=m cos8+v,

tt=rg't~ ],—,—
s' s' ) s s

s'
y

't ' - xq ' x'q '- '~'

XI I
1——I+ (A2)

(s'+q, '1 2) 4s'

x
i =2m'+s. '+s~' —sl 1——

2

s.' —s~' sx ( m' m')—~it2l1, —,—l. (A2)
s' 2 4 s sJ

When s ~~, I grows linearly with s, and the integral
over cos8 can be estimated using asymptotic techniques:

f(x q ) ~ov ~0m cos8P(g)
~(ts+ v) 0

Xd cos&f =F(0) . (A3)

"H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 1311 (1969).
Note, however, that a diferent definition of pionization is adopted
by T. T. Chou and C. N. Yang, Phys. Rev. Letters 25, 1072
(1970). If we use the latter definition, the multiperipheral model
predicts that the pionization disappears like (lns) at high
energies.
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Neither e, e, nor F(0) depend on the azimuthal angle g, with
and thus this integral is trivial.

From Eqs. (A2) and (A3) the argument of the
exponential is a monotonic function of sg' which
decreases with increasing sg'. In the approximation of
large 0, which turns out to be good for typical experi-
mental values of this damping coe@cient, we can keep
only the constant and linear terms in the expansion of
the exponent as a function of sq', and write for the
resulting integral

2q, '(1 —x) ( 1
4 =0 2/)b'(1 —x) — +/b'I 1

x(2 —x) k x

(Ag)
2 —x

8=0 m'.
1—x

Note that here the value of a (0) plays an essential role,
in contrast with nb(0). The cross section is nonvsnishing
in the s~ao limit only for n (0) =1. The change of
variables

ds, 'e-"b'G(s, ', ~) (.,').b('

mf,
'

y' = Ah+8—/(1 5) 8— —
ds Ie—xsb'(s I) ab(&)=G(mb', ~)

mf,
' leads to the following expression for f(x,q)), valid

G( g)i ( (0)+1 x ]x— ( )— (A4)

where f(x,q,) e"'(s') ~.(') ' e &'77(y, x,q&) dy, (A9)

x /b' (1—())(1—x)
G(sb', 8) = 1+ +—1+—

(1—x)(1—i)) sb' x

where —x'm'

1—x

q~ m' —my'
(2 —3x)

2 —x 2(1—x)
4q, (1-x)(1—S) "'

(AS)
sb' x(2 —x)'

(A6)

and the function H does not contain exponentials.
If we now consider the point x=o, we can proceed

as before up to Eq. (A3). It is now important to notice
that x~s '/', and as a consequence, the coefficient of
s&' in the exponential is also of order s '/', namely,

l) =s,'/s'. X=2Q(q, '+/b')/Qs . (A10)

(mb-'—m') (2 —3x)

2(1—x)
d~ s-.(')G(~ ' s)

X i
S(1—x)

—2M @~ A eB/ b(1 b) /1—
~

—+m', (A7)
x kx

The upper limit in this integral grows with s and its
contribution can be neglected.

The remaining integral can be performed numerically.
We describe the case in which nb(0) =1, but different
values of nb(0) can be treated in the same fashion, and
lead to the same type of results for x)0. We have

(1—x) 'f- (s')" "-'exp 0 m'(x+2)—
2 —x 2 —x

The integral over sb' is again of the form (A7) and
yields a factor g[~y(o)+11/2 Qy symmetry an analogous
factor comes from the s, ' integral, so that we obtain

f(0 qb) e()~o(s/~2)(~~(o)4ab(())l/2 &jb(qb)
— (A11)

where now
1 2

A factor s ' has been picked up from the s ' in Eq.
(A1) and 1/u in Eq. (A3).

Finally, we would like to remark that we have
performed numerical comparisons between our asymp-
totic formulas and calculations with the nonasymptotic
expressions at 30 GeV/c for reasonable values of the
parameters, and found the agreement to be within 15%


