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The radiative corrections to the process A ~ By ~ Be+e (where A and B are hadrons) can be separated
into a part which is purely dependent upon quantum electrodynamics (the one-photon-exchange diagrams)
and a part dependent upon the hadronic structure (the two-photon-exchange diagrams). Neglecting the
latter because such graphs are not singular when the lepton mass is set equal to zero, we concentrate on the
one-photon-exchange terms, and calculate both the radiative corrections to the total decay rate including
hard photons and the radiative corrections to the differential decay rate in the soft-photon approximation.
Our results are directly applicable to the decay ~' —+ e+e p, where our assumption that the two-photon-
exchange graphs can be neglected is justified because w' ~ 3y and the amplitude for w' ~ 2y —+ e+e y is
proportional to the lepton mass.

I. INTRODUCTION
' 'N competition with the process

A —+By,

one will always And the process

2 ~ Be+e,

where the p virtually converts into an electron pair (a
Dalitz pair). Characteristic examples of such decays are

7i ~pp~ M~7pp) Z ~A+.

Over the past two decades considerable interest has
been focused on Dalitz pair production in the first decay
(rre ~ e+e p). The branching ratio for this decay mode
was calculated by Dalitz' in i95i. It is essentially inde-
pendent of the strong interactions, the result being'

r(n'~ e+e—p) n m 7 a
3

= ——' ln ——+—
I'(s' —+ yy) ~ m, 3 3

Blg

+O( I I . (1.1)
E m.i)

by Nemethy' using the dependence on a of the differ-
ential decay rate. The results are shown in Table I. As
can be seen, the first two determinations of a gave nega-
tive results, while the last one yielded a value consistent
with zero. Theoretically it is very dificult to obtain
values of a which di6er much from the intuitive expec-
tation of a +(m /m, )'(0.033, although the failure
of the 6rst two experimental results to comply with this
value triggered a deluge of papers on the subject. 7

In view of the expected smallness of a (the value
above makes a contribution to Eq. (1.1) of the order
of 0.2%], it is clear that more precise experiments must
take into account the radiative corrections to the Dalitz
pair decay. As the experiments use the differential decay
rate, it will be necessary to evaluate the diRerential
radiative corrections. Joseph' has evaluated the radia-
tive correction to the total decay rate numerically, with
the result

I'" (n-' —+ e+e y)/I'(~'~ 7y) =1.05X10 '. (1.2)

In this paper we rederive this result analytically. We
furthermore evaluate the differential radiative correc-

TABLE I. Comparison between the theoretical and experimental
determination of the strong-interaction parameter a.

Here the erst two terms' are of purely quantum-elec-
trodynamical origin, while the third, involving the pa-
rameter u, is a contribution from strong interactions.

Experimental determination of the strong-interaction
parameter has been made by Samios, 4 by Kobrak, ' and

Theory, p exchange.
Theory, unsubtracted dispersion relations.
Samios, bubble chamber (Ref. 4)
Kobrak, bubble chamber (Ref. 5)
Nemethy, spark chamber (Ref. 6)

Error

0.032
0.046—0.24 &0.16—0.15 &0.10

+0.01 &0.11
*Work performed under the auspices of the U. S. Atomic

Energy Commission.
t This work was started while the first author was at Brook-

haven National Laboratory, Upton, N. Y., and Gnished while the
second author was at CERN.

R. H. Dalitz, Proc. Phys. Soc. (London) A64, 667 (1951).
This equation is derived in detail in Sec. III, together with the

terms in o.2.

'Numerically we have (e/~)P-; lu(m /ra, )—7/3j=0.01185.
4 N. P. Samios, Phys. Rev. 121, 275 (1961).' H. Kobrak, Nuovo Cimento 20, 1115 (1961).

6 P. Nemethy, Nevis Laboratories Report No. 165, 1968 (un-
published); S. Devons, P. Nemethy, C. Nissim-Sabat, E. Di-
Capua, and A. Lanzara, Phys. Rev. 184, 1356 (1969).

7 See, for example, S. M. Berman and D. A. Geffen, Nuovo
Cimento 18, 1192 (].960); H. S. Wong, Phys. Rev. 121, 289
(1961);M. Gell-Mann and F. Zachariasen, ibid. 124, 953 (1961);
D. A. Geffen, ibid. 128, 374 (1962); G. Barton and B. G. Smith,
Nuovo Cimento 36, 436 (1965).' D. Joseph, Nuovo Cimento 16, 997 (1960).
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tions (i.e., the radiative correction to the Dalitz plot)
in the soft-photon limit. Although the general formula
is very complicated, the correction to the Dalitz plot
in the case where the mass of the virtual photon is
large (compared to the mass of the electron) reduces to
a surprisingly simple analytical form involving only one
dilogarithmic function. This correction is valid over
almost all of the Dalitz plot and covers the region vrhere
experiments have been done. We can then find the ra-
diative correction to the spectrum in the virtual-photon
mass. As a check on our result vre get the correct for-
mula for the radiative correction to elastic electron
scattering in the extreme relativistic region by taking
the appropriate limit of our equation. Our 6nal result
that the radiative corrections are large and eegaIiee has
not been used in experiments and helps to reduce the
discrepancy between the theoretical and experimenta1
values of a.

The outline of the paper is as follovrs. We 6rst discuss
the radiative corrections to the decay A —& By —+ Be+e,
where A and 8 are hadrons (see Fig. 1). In general, the
radiative corrections to this process (see Fig. 2) will fall
into two di6'erent parts. The major contribution comes
from the one-photon-exchange diagrams and subsequent
radiative corrections to the lepton line. Such diagrams
as (1), (2), (5), and (6) of Fig. 2 are essentially inde-
pendent of the hadronic structure of A and B as vre only
need to knovr the amplitude for A ~ B together with
one o6-mass-shell photon. Another contribution comes
from the two-photon exchange diagram (4) of Fig. 2,
where we need to know the hadron structure because
there is an integration over a virtual loop involving
A ~B together vrith two oG-mass-shell photons. Such
diagrams are very complicated to evaluate and here vre
draw on the results of a paper by Brown.

In this paper the interference betvreen one-photon-
and two-photon-exchange diagrams in electron-positron
scattering vras examined in the limit when the electron
mass is set equal to zero. Brown showed that, due to
gauge invariance, the resulting limit is 6nite, so there
are no lepton mass singularities. Fortunately, vre can
immediately use the result because it is precisely the
interference between one-photon- and tvro-photon-ex-
change graphs vrhich gives us the radiative correction
to our decay rate. As the radiative corrections from the
one-photon-exchange graphs are divergent in the limit

Fxo. 2. The radiative corrections to the differential decay rate.
The notation is the same as in I ig. 1.

when the mass is set equal to zero (there are both terms
involving logarithms and the square of logarithms), we
expect these terms to dominate in our 6nal answer. We
therefore concentrate entirely on the purely quantum-
electrodynamical corrections to the lepton line in the
one-photon-exchange graphs (1), (2), (5), and (6) of
Fig. 2. Diagrams (3) and (7) will be discussed later.

In Sec. II we vrrite the general rate for A —+ By where
the photon is off the mass shell, and then in Sec. III we
calculate the radiative corrections to the total decay
rate for this process. Our calculation only needs the
values of the second- and fourth-order spectral functions
for the photon propagator. Section IV contains the
derivation of the diRerential decay rate for A —+ Be+e,
i.e., the Dalitz plot. We then calculate in Sec. V the
radiative corrections to the Dalitz plot in the soft-
photon approximation. Finally in Sec. VI vre apply our
results to the x -decay Dalitz plot. This decay is a case
where vre are completely justi6ed in neglecting two-
photon-exchange diagrams, because the amplitude for+'~ 3y is identically zero and the other class of dia, -
grams (omitted in Fig. 2), where s'-+ 2y —+ e+e y, have
amplitudes proportional to the lepton mass.

II. PROCESS A —+ By
The amplitude for the process A —+ By is'0

Fro. 1. The basic diagram for
the differential decay rate. The
wavy line denotes the photon
while the solid lines denote either
electrons or hadrons.

vrhere ~„ is the polarization vector of the y and J„is the
electromagnetic current. We are interested in the tensor

' R. W. Brown, Phys. Rev. D 1, 1432 (j.970).

spine A,B

~o The negative sign in front of ~„ is consistent with the usual
definition bg I/Ri„even in the case when 8 is a photon.
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which satisies the relations

kI"31„„=Sf„„kI'=0,
where k= PA —Ps is the photon momentum. Using these
conditions" we find the most general form of M„„:

M„„(pA,p~) = (k„k„—g„„k')Mi(k') —[g„„(pA k)'
—(k„PA„+PA„k„)PA] k+LPA„PA„k']M2(k'), (2.2)

where F is a dimensionless constant, f(k') is the so-
called form factor of the neutral pion satisfying

f(0)=1,
and e'„ is the polarization vector for the photon of
momentum k'„(=ps). A simple calculation yields

M, =—
l

I'f(k') l,
M2 ———Mi/m ',

where Mi(k') and M2(k') are real functions of k' free
from kinematical singularities. In particular, we em-
phasize that they are regular as k'~ 0. It is often con-
venient to represent M„„ in terms of a transverse and
a longitudinal part:

so that

MT (1/4m——')
l
pf(k') l'(m '—k')'

MI, =O.

(2.6)

(2.7)

M„„(pA,ps) = T„„MT—(k2) L„.ML—(k'),

where

The result MI. =O could have been anticipated because
(2 3) p, ~(qlJ„lm&=0. Hence we get (remembering the factor

of -,'due to statistics)

and

MT(k2) —k2M1(k2)+ (pA k)2M2(k2)

(2 4)

k2 3

P.-'-'(k&= — l~f(k)l l1- -- - (2.g&
64m m. '

ML(k2) kpl Ml(k2)+mA2M2(k2)]

are the transverse and longitudinal spectral functions.
These functions are positive definite. The longitudinal
projection operator is given by

III. CALCULATION OF TOTAL DECAY RATE

%e now consider the process

A ~ (By) ~ B+e.m. ,

where

L„„=L„L„/L',

L„=k„(pA. k) pA„k', —

where e.m. stands for any electromagnetic state con-
taining electrons, positrons, and photons but excluding
the one-photon state.

It can readily be derived that

and the transverse projection operator is given by

T„,=P„„—L„„,
where

P„.=g„.—k„k,/k'.

The total decay rate into a massive photon is therefore

X"2(mA2 m212 k')
1,(k2) =

l 2MT(k2)+ML(k2)] (2.5)
16xmg3

where we use the notation of Kallen"

),(g,y, z) =2:2+y2+z2 —2'—2yz —2zx.

The kinematical region for k' is

0&k'& Amp = (mA —m21)2

Ke shall assume m,«hm. Let us now calculate the two
functions 3fz and Mi, in the case of x' —+ 2y. Here we
have

(7 l J„I
pr') = (~/m. )f(k') p„...2'"k' k,

"To be more speci6c, we use I.orentz i'.variance, parity con-
servation, and current conservation. If the decay does not con-
serve parity, we must add a term e„„,p& k M3(k').

' G. Kallen, Elemerltury Particle Physics (Addison-Wesley,
Reading, Mass. , 1964).

I'(A —& B e.m.) =
~"'ds 1——ImII(s)l'p(s), (3.1)

where II(s) is the spectral function of the photon prop-
agator, the imaginary part of which is given by

0(p) Imrr(p') = — Q (2~)9(p-p. )
6 2e.m.

&&(0l~.le m &«l~" le m &*

Equation (3.1) can be interpreted as a probability

ds 1——ImII(s)

for a heavy photon to convert into any electromagnetic
state of invariant mass between s and s+ds, times the
decay rate into a heavy photon, summed over all mass
values. This equation is exact in the one-photon-ex-
change approximation. Because ImII(s) only depends
on the electron mass and I'p(s) essentially only depends
on masses of the order of hm, it is clear that the integral
in Eq. (3.1) splits into two disjoint parts, one where
Imll(s) can be considered to be asymptotic and one
where s~4m, 2, where I'p(s) can be approximated by
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I'0(0). To be precise, we write

1. ~ 'ds
I'(A ~ B e.m.) = I'0— —Imli(s)

p $

so that if we define

~"' ds—[E(s)—1],
p s

(3.3)

1 ~ 'ds+- —ImII"(s) [I'o(s) —I',(0)]+R,

where R is the overlap between the regions, i.e.,

which must be of order unity, we get

I'"'(A ~Be+e ) a (Am) 5
I

—-+31~
I'(A ~Bp) n (me)

am~

R=-
p

ds
[ImII(s) —Imii-(s)][I'o(s) —I',(0)]—. f t'm, )

&k~m) )

irnlI(s) —ImII" (s) =0(m.2/s) for s))4m 2.
n 4m, 4

—[Imli(s) —Imll" (s)]& ——
3x' s

s& 4m. '.It can be shown that" R=O(m, /hm), and we shall
therefore disregar i . sd t It should also be noticed that

r mason that the correction term is of or er m,II"~s~ is chosen so that The reason a eWe have here assumed that Im ',s, is
follows from the inequality

1 ~ 'ds—Imli(s)
p s

is the cuto6 quantum-electrodynamical charge renor-
malization constant. Dea.ning

E(s) =r, (s)/r, (0),

we obtain [with I'(A ~By) =I'0(0)]

1 ~"'ds 1 ™dsI'(A -+ B e.m.)

r(A B~) ~, s

&(IrnII-(s) [E(s)—1]+O(m,/hm) . (3.2)

A. Lowest-Order Branching Ratio

e14In lowest order of n/n, we have

2 4m 2 it21 o. 1( 2m )f 4m,—ImII"'(s) = ——
I
1+ II

1— 0
~3&

B. Fourth-Order Branching Ratio

The same method can be applied in fourth order,
where the e.m. state can be either e+e or e+e y. Here
we have"

1 ds ( ) 4 (llNs)—I~II"'(s) =I —
I

-»'I
s &~) 9 m,7F p

13 (amp ~' 65
I+1 (3)

54 Em, ) 27 648

+o
(harn) )

The asymptotic form is'

—Imli&4&-(s)

15from which we obtain

1 ' 'ds n- (amp 5

7l p s
Thus we get

(~)' 4 (Am 13 2 5m'

En.) 9 4 m, 108 9 s
(3.6)

The asymptotic behavior is

1 1 cx
—Irnil &'&-(s) = ——,3~'

tion has been given by B. E. Lautrup"An analogous calcula o

Ph '0, dtd b S. Fl'4G. Kallen, in Handblch der ysz,

h' the subtraction constant."See Ref. 14, p. 284, where t Is is e su

I'&'&(A ~ B e.m. ) (~ '-4 (&m)

I'(A ~ By) E~ 9 Em, )

+I -I ——Il I I+@3)-—
(4 13' famq

~9 54) km, ) 27

I, I,+O I—, -(3.7)
648 108 9 Am)

K 1. Danske Videnskab. Selskab,' G. Kallen and A. Sabry, g.
Mat. -Fys. Medd. 29, No. 17 (1955), evaluate m s .
gral (3.5) is evaluated in Ref. 9.
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e

FIG. 3. The square of the mo —+ e+e p7
amplitude. Diagram (1) represents the
direct square of a term such as that repre-
sented in diagram (5) of Fig. 1. Diagram
(2) represents the interference term spe-
ci6c to the wo decay because the two
photons are identical.

77

I2=
~ 'dS hm2—ln LE(s)—1j.

s s
(3.8)

85 25
Im= ——+—a.

36 24

Here the fina, l branching ratio is

1'(s'~ e+e-y) n 4(m -7 a ( (m. ) 'q
—-+-+0

F(s'-+27) s 3 Em, 3 3 (km / )

+(—
~

—ln'(
~

—(———n
~ 1n( )+2/(3)

C. ~' Decay

For the case of so~ 2y, Eqs. (3.4) and (3.7) have to
be multiplied by a factor of 2.because the photons are
indistinguishable. From Eq. (2.8) we have

I~-(s) = (1—s/m ')'I f(s) I'

so employing the usual expansion for the form factor

f(s) =1+as/m '+0((s/m ')') (3.9)

and retaining only the first-order terms in u, we find

ii 8
Ii= ——+ —,

6 2

proximation to drop all terms which are finite in the
limit when the lepton mass is set equal to zero. This is
our justification in using Eq. (3.7) and dropping terms
from diagrams where two photons are exchanged be-
tween the lepton and hadron lines.

It should be emphasized that for ~ decay, the above
calculation does not include interference terms between
the radiative photon and the decay photon. If we repre-
sent the ordinary square of the x —+ e+e p radiative
correction by diagram (1) in Fig. 3, then the interference
term can be represented by diagram (2). This rate is
thus proportional to part of the general fourth-order
photon-photon scattering amplitude. However, because
we have a two-photon exchange between the x' and the
lepton loop, we will get two additional factors of m, from
diagram (2) relative to diagram (1).Hence there cannot
be any logarithmic term from diagram (2) in the limit
when the lepton mass is set equal to zero. We are there-
fore justified in neglecting such an interference term in
Eq. (3.10).

The final radiative correction is positive and rather
small. However, this does not mean that the radiative
corrections to the Dalitz plot are small because there
are usually large cancellations between positive and
negative regions. Therefore, it is wrong to apply this
correction to the whole of the Dalitz plot. We will now
evaluate the radiative corrections to the plot and to the
spectrum in the mass of the virtual photon.

IV. DIFFERENTIAL DECAY RATE
IN LOWEST ORDER

The basic diagram for the di8erential decay rate in
lowest order is shown in Fig. 1. The kinematics are de-
termined by

pA pB+ql+q2 1

pA2 —mA2 pB2 —mB2 q&2
—q22

—m 2

We define the vectors q =q&+q2, Q =qr —qm, satisfying

q~=Q2+. 4m, 2, q.Q=0

and introduce the kinematical variables

x= q'/Am' 1&x&r'= (2mn/dm)'.

It is also necessary to introduce the energy partition
between the electrons in the rest system of the A particle

2 137 63 (m,y-
——e'+ ——— a+Ol

I
(3 1o)

27 81 108 Em.) Iqi+qml

In invariants this quantity is given by

y= —P cose,

Numerically the second-order term in n has the value
(for a=0) of 1.05X10 4, in agreement with the result 2pA Q
of Joseph. s The dominant term is obviously the one in
ln'(m /m, ), although it is partially canceled by the ,m& ~ji2( 2 2 23

term in ln(m /m. ). All finite terms (in the limit when and in the rest system of the pair we have
the electron mass tends to zero) are smaller by approxi-
mately a factor of 4. Hence it would not be a bad ap-
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where P = (1 4—m, '/q')'l'= (1—r'/x)'l2 is the velocity of
the electrons in this system and 8 is the angle between
the momentum of the positron and the A particle. Thus
the kinematic range for y is

—p(y(p.
The decay rate is found to be

d'I'(A ~Bt:+e—) 1 Am4

[(1—x) (p2 —x)]"'
dxdy 512~' m&'

X g I(etc BITIA)I2 (4.1)
spins

Of these seven diagrams, (1)—(4) are the virtual correc-
tions while diagrams (5)—(7) are the real corrections
(or inner bremsstrahlung corrections). While diagrams
(1), (2), and (5), (6) can be calculated explicitly in
terms of Mr, and Mr, diagrams (3), (4), and (7) depend
on the nature of the strong interactions. In writing down
these diagrams, we have furthermore assumed that the
renormalization program has been carried out, so there
are no corrections to the external lines. The case where
particle B is a photon will be treated in Sec. VI.

We shall evaluate the correction to d'I'/dxdy, i.e.,
the correction to the Dalitz plot. We write it in the fol-
lowing way:

where
mg +kg

p= —— — &1.
mg mg

d2I'ra~ d'F
=8(x,y)

dxdy dxdy
(5.1)

Our matrix element is

(e+e Bl TIA&= (e/q2)2ty s(B

where u and e are electron and positron spinors. Thus
we get

2 I(e+~-Bl Tl»l'
spins

g2

«[y, (ql—m.)&,(F2+—m.)]Ms"(p&,ps)
q4

28

g

r2)
1gy2+ —IM,+(1 y2)M~ . —

x/

where d'I'/dxdy is given by Eq. (4.2). Clearly we have

~virt«1+ ~real r

corresponding to the seven diagrams of Fig. 2. The
quantity 8„,& will depend on the experimental configura-
tion. We shall assume that the experimental situation
only allows inner bremsstrahlung photons in a certain
energy interval:

0&co&hE.
If AE is sufficiently small (how small will be determined
later), we can use the soft-photon approximation which
is a major calculational simpliication.

Integrating Eq. (5.1) over y, we obtain

Finally we obtain the well-known result'~

n Dm L(1—x)(p —x)]' 'd21'(A ~ Be+e)

64m' mg'dxdy

Integration over dy yields

r2)
x 1+y'+ —IMr+(1 —y2)ML, . (4.2)

xP

dprad dr=S(x)—
dx

dr & pp—= —-I 1+—Ii,(*).
dx 32r xE 2x/

A. Virtual Corrections

which defines h(x) because we know that

(5.2)

(5.3)

dl'(A —2 Be+e ) & p/ rpqam2
-I 1+—

I

482r2 x k 2x) m~'

XL(1—x)(p x)] l (2Mr+Mz—,)

The second-order virtual corrections arise from the
interference between the virtual diagrams and the low-
est-order graph. Using Eq. (4.1), we obtain

d 2 /virtual

p/ r2)
= —-I 1+—lp.(),

3~ x& 2x)
(4 3) dxdy

X P 2 Re((e+e Bl TplA)
with I'p(x) defined by Eq. (2.5).

V. RADIATIVE CORRECTIONS TO
DIFFERENTIAL DECAY RATE

The radiative corrections to the diGerential decay
rate are determined by the diagrams shown in Fig. 2.

~ N. M. Kroll and W. Wada, Phys. Rev. 98, 1355 (1955).

spins

X(.+.-Bl T„,,„„., IA&*)
so that

5;,t«l = p 2 Re(e+e B
I
Tp I

A )(e+e B
I T„;r«» I

A &*/
spans

& I
(e+.-B

I To
I » I

'.
spins

The amplitude for diagram (1) in Fig. 2 is evidently
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given by which reduces to

(e+e Bl T—IA)= —II")(q')(e+e—Bl TplA),

where 11(')(q') is the second-order approximation to the
renormalized photon spectral function. Explicitly, we

so tnat
have" for g2&4m

2e' — r')
Fu")(x) 1 —y' —-- IMr+y'Mr,

q& x)

with

o, -g P~ 1 P~)
11(')(q') = — ———+p ———

I
lny

9 3 2 6)

()&"(x,y) =Fp")(x)

L(1—y' —r'/x)M +ry'Mrj

[(1+y'+r'/x) M r+ (1 y') M—r,j

We obtain

~ = (1-P)/(1+P). This is the only virtual correction which is a function of
y. We find upon integration

S,(x,y) = —2rr (» (q'),

which only depends on x.
In diagrams (2) of Fig. 2, we represent the electro-

magnetic vertex by

(q —q~).
jem y (p (2)+p (&)) - p&(~) p (5 4)

2m.

where F~(2) and F2&" are the second-order renormalized
electromagnetic form factors of the electron. Explicitly
we have"

1+2P' 1+P'
lny—

4P 2P

XI Li~(1—y) —-',s'+~ ln'y]

1—r'/x
()g"(x) =Fg"'(x)

1+r'/2x

Finally, we expand the virtual corrections for q')&4m, ',
i.e., for x))r2, and obtain to lowest order in r

r 10
S,(x,y) = -I —

3 ln- ——+-', lnx
2 9

Cl r mg r
82'(x,y) = —2 .1+2 ln——lnx ln

7r 2 2

r r
+2 ln —lnx —3 ln ——

~ ln'x+~~lnx —2+—
2 2 6

1)p"(x,y) =0.

n1 —p'
— in&,

4

1+p' y (m,q
+I 1+ -»v I»I —

I

2P

Thus the total virtual corrections from diagrams (1) and
(5 5) (2) of Fig. 2 give, expressing our result in terms of the

variable R =4x/r' =q'/rNP,

(5.6)
()(,g(x,y) = — 2(1—lnR) ln——-', ln'R

7r
where Li&(x) is the dilogarithm'0 defined by

4

* ln(1 —t)
Lip(x) = — dt

p in this approximation.

~3 28
+—lnR ——+— (5.9)

6 9 6

and 1( is the photon mass (infrared cutoff). Correspond-

ing to the two terms in Eq. (5.4), we have two contri-
butions to 52 ..

8g = ()g'+1)g".

It is obvious that

2(Pi(&)+Fz(&))

and we find 52" from

g ReL(e+e Bl Tol A)(e+e BI T~"IA)*g-
HPins

~2
= —Tr v»(q& m, ) F—&(')(qQ+m. ) M»"(p~,pe),

2m'

's See Ref. 14, p. 284.

B. Inner Bremsstrahlung Corrections

In this section we calculate the contributions from
diagrams (5) and (6) of Fig. 2 in the soft-photon ap-
proximation. The amplitude for these diagrams is

(e+e yB
I
T5,6l A.)=e'—

$2

y"(y ek —2q) e) (—ky e+2q, .e)y»
QN + 'V

2qg k 2q2 k

' See Ref. 14, pp. 304 and 305. To be explicit, FI(@+F2(»
(—Q') —8( ) (0)—S( ) (—Q') +S( ) (0), and F&(» =S(0) (—g)."L. Lewin, Di log urithnss aed A ssociuted Functions (Mac-

Donald, London, 1958).
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where k is the momentum of the bremsstrahlung photon
and e„ is its polarization vector. The virtual photon has
mome'&turn

l =q+k, q =qr+q2.
and

L(1-*)(~'-*)]'&'

We shall assume that the experimental resolution is such
that only photons up to a certain energy AE go unde-
tected. We shall also assume that both electron and
positron are highly energetic (in A's rest system),

Eg,E2»m. ,

and that the opening angle 0» is nonvanishing" such
that

q' =2226,'+ 2E~E2 (1—21~212 cosg»)
will satisfy

q2»4m, 2.

In the soft-photon limit we also take

aE«E„E„

R=4x/r2 =q2/222. 2.

C. Total Correction

We now find the total correction b(x,y) from diagrams
(1), (2), (5), and (6):

n / q' q'(o' —y') 13)
b»56(x, y) = — —

~
ln —1 ln

226,
2 4AE2(o2 —1) 6 )

17 o+y p / 1—y'~
+I L121

[
——

I . (5.13)
18 o—y ( ko2 —y2) 6 y'

Note that

so that
)2~q2

0 2 f2

4q'
0' —1

and then

(e+e yB~ T5 6~A) = eb. e(e+e —B~ To~A),

where

qy q2
b=

q& k q2 0

where

85,6(x,y) = g ) eb 6 )
' (5.10)

1 2 1 & 15 26 256(22r )6 11n &

($2+) 2)1/2

Integrating over all photon directions and all photon
energies within the interval AE, we obtain the real con-
tribution from diagrams (5) and (6):

so that the condition for the photons being soft is
obviously

AE«(ErE2)'12.

Setting y=0, we obtain (E=E2=E2)

q' / E' 13
b1256(x,0) = — —(»

E ZE

17 / 1) 2r2——+Li,)
—

~

——. (5.14)
18 ~o2) 6

If we define 8 as the angle between the electrons,

q'=4E' sin'(-', 8),
In the Appendix this integral is evaluated with the result we obtain

85,6(x,y) = (52/2r) L2G2(x) ln(26E/X)+G2(x, y) j,
where, for all x, we have

1+p2
G2(x) = — — ln7 —1,

2

Gr(x) = —1+lnR, (5.11)

o' —y2)
G, (n, y) = ——1n'R —6nR —1)(—1+In ~+1——

o' —1) 3

which is just the negative of the coefficient of the infra-
red term in Eq. (5.5). For x))r2, we have

1/o' =cos'(-'0) .

Using well-known relations between dilogarithmic func-
tions, we can cast our result into the form

e' (2E ) 1 E 13
b»56(x, 0) = —— ln( sin-', 0

~

—— ln
(225, f 2 hE 12

17 1 ir2

+——— 4 (—sin2(-'0))+—
72 4 12

—ln(sin'(-', 0)) ln(cos'(-', 0)), (5.15)

& That iS, e»»7 .(8182)"

2 o+
y2]

'
&o y)

(5.12)
Where 4 (X)= ——2'22r2 —Li2( —X), and thiS reSult iS identi-
cal to that given by Kallen22 for potential scattering in

~' See Ref. 14, p. 309.
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0.0
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1.0 VI. DECAY ~' —+ e+e y
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-0.02-

-0.05—
8(x,y)

-0.04—

-0.05-

-0.06-

-0.07—

-0.08-

-0.09

y=0.0

6E=5MeV

In the case of pro decay, diagrams (4) and (7) in Fig.
2 are identically zero. Diagram (3) is a radiative cor-
rection to the form factor and must therefore be of
order (n/ir) times the n' form factor. It will therefore
not influence. the determination of the slope of the form
factor, Hence the formulas found above are applicable
to the determination of the slope. Using 3EJ.=O, we
now have

A
lm~

b(x,y) = — —2 ln —1+lnx
1

1r me )
m 13 ((1+x)'—y'(1 —x)')

x 2» ——+»1
26E 6 E 4

FrG. 4. 5 (x,y) as a function of x for fixed values of y. The solid lines
are for ~E=10MeV and the dashed ones for hE =5 MeV.

the extreme relativistic case (apart from the sign which

stems from our definition of 5). It is interesting to note
that all terms in 8»«(x,y) are negative so that the total
correction becomes negative.

By means of Eq. (5.2) we obtain the radiative correc-
tions to the spectrum in x,

dy 5(x,y) [(1+y')Mp+(1 —y')Mr, g

17 (1+x+y(1 —x)———-', 1n'1
18 (1+x—y(1—x)

n ( m
5(x)= — —

~

21n —1+lnx)
m,

( m 13
— ——+-',g(x)

12aE 6 )
17 ir2

+g(*),
18 6

dy [(1+y')M&+(1—y')Mz J. (5.16)
(1+x)

g(x) = — — — —',+Sx+-,'x'+3x lnx .
(1—x)' (1—x)

with

Ml,
~»56(x) =fi(x)+ fi(x),

235r+M J.

After some algebra, this becomes

(5.17)

In Fig. 4 we plot 8(x,y) for fixed values of y with AE =5
and 10 MeV. In Fig. 5 we plot 8(x,y) for fixed values of
x and DE=5 and 10 MeV. Then we also plot b(x) for
various values of AE in Fig. 6. The figures show the
following features: For constant x, 8(x,y) varies very

u ( q' g 13
fi(x) = — —

~

ln —1 ln ———+if(0)
m, ' 46E' 6

o+1 17 m2

+0.ln ——2 +f(~) (5 1g)
o.—1 18 6

0.0

-O.OI-

-0.02-

0.2 0.4 0.6
I I

X=O.I

X=0.5

0.8
I

I.O
I

f2(x) = -I » -4 1f(~),
~& m. ' )

where
o.+1

f(a) =1—20'+-,'(0' —1)o ln-
o' 1

(5.19)

(5.20)

-0.05-
8(x,y)

-0.04-

-0.05-

-0.06-

-0.07-

X=O I

X=0.9

X=0.5

X=0.9

Note that as x ~ 1, o —+~, f(o) —+ —1/So'; also note
that f2(x) does not have a term in ln(q'/46E') and the
coefficient 1n(q'/m, 2) —4 is of order unity, so that f2(x)
is numerically much smaller than fi(x).

-0.08-

-0.09

FIG. 5. 5 (x,y) as a function of y for fixed values of x. The solid lines
are for hE = 10MeV and the dashed ones for AE =5 MeV.
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3(x)

-0.04-

-0.05-

-0.06-

0.2
X

0.4 0.6
I I

0.8 1.0
I

where

m.2

Defining
(qi k)' (q2 k)'

1 dk 1
~(qi, q1) =-

4&
I gl(g@ Q7 qj ' kq2 k

dk q' —2m, '
G(x,y) =—

4'~ I&l(~& q& kq2 k

m.2

(A2)

(A3)

-0.07-

-0.08-

-0.09

FIG. 6. 8(x) as a function of x for values of DE.

we obtain

G =J(qi, q2) (q' 2m—,') m—,'(J (qi,qi)+J(q2,q2) 7 (A. 4)

Using well-known techniques for combination of de-

nominators, we have

little with y but for constant y it changes by a factor of
4 for variation with x. The plot of 8(x) in Fig. 6 shows
that the radiative corrections to the spectrum are eega-
tke and change appreciably as one varies the photon
cuto6 AK The total correction is, as we have remarked
before, positive, and this must be caused by two sepa-
rate phenomena: first, that the small-x corrections,
which we cannot calculate because of our approxima-
tions, are large and positive; second, that the hard-
photon contributions, which are excluded experi-
mentally, are significant. Both these extra contributions
need to be calculated before one can integrate 8(x) to
find the correction given in Eq. (3.10). As far as experi-
ment is concerned the radiative corrections to the Dalitz
plot and to I'(x) are large and negative in all of the
region investigated. Hence the determination of a should
probably yield positive results rather than the nega-
tive ones given previously, provided that a reliable AE
can be estimated from the experimental setup.

dk
5/;, p(x,y) = 2 I ~b'I',

~
g~&g/1 2(a(2s')1 vo1

(A1)

APPENDIX

In this appendix we calculate the integral defined in
Eq. (5.10),

~(qi, q2) = dn E(qi q2 n) (AS)

where

E(q11q»n) =
41r o (k'+l1')"'

Putting

X
{Lqin+q2(1 —n)7 k)'

A =nE1+(1—n)&2

and (note that A)B)
&=I q+(1—)q I,

we have

(nq, +(1—n)q2) k="A lkl»~

E(qi, qm, n) = (A6)
(1+.(2)1/2 (2(A2 g2)+.A2

We now write

where s is the cosine of the angle between k and nq~

+(1—n) qm. The angular integration is now trivial and
using the integration variable P, where lkl =/X, we

obtain

where

(k2+ lb 2) 1/2
where

E=E1+E2, (A7)

and

We define

qy q2
b=

q& k q2. k

b, I/ /X

A' —132 p

A'
E2=-

A' —82

d$

(1+p2) 1/2
(AS)

(A9)
(1+.$2) 1/2 $2(A2 2i2)+An

5;.6(x,y) = —G(x,y), E2 is finite in the limit of X —+ 0 so that we can replace
the upper limit by inanity. The integration over t is
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hrforwa d with the «suit («r ~

ln(26E/&)
Ey= =—

A2 —8' (AIO)

ne thechange vana e
'

bl. t move the square root. Defin
variable t by

~ 1+2gyo+ Ly'+ (o'—1)P ]P) =~t+

so solving for $ we find
A+1~

ln—
A —8

(A11)
where

q =2(y.-t)/(t'-")
o& =y'+ (o'-1)P'

~It is now clear that G can be written as

G(x,y) =2Gi(x) ln(2AE/li)+G2(x, y), A12
t2+e' —2yot

d$= 2 — dt.
(t2 o2) 2

where, if
1

J~(qi, q2) =—
2 0

Jg(qi~q2) = ' do
0

The interval —1&/&1 becomes ti&t&t2 with

t.=[( +y)' —( '—1)(1—P')]"'—1

In terms of these variables,
,A14)

A' —8' 28 A —8

(A17)

(A18)

then G& and G2 are related to J& and J2 by q. ,E . ,A4). For
q] =q2q anA d 8 are independent of x, and

A' 8'=m/2, 8—/A =it,

Am x2

,(o+1)E(t—y)' —P'(o —1)'],

the velocity of the electron. Hence A+& = — ( —1)L(t+y)' —p'( +1)'],
2 t' e'—

Ji(qi, qi) = 1/2m, ',
1 1 1+v

J,(qi, qi) = — —ln
8$g 2V

For q&~q2, we ne find by direct integration that

and

Thus we find

Am ( df) t' —e'
a= — -x,

i
——

i

2 E dt's

1 1 /1+Pq
Ji(qi, q2) = — lnI

q' p W1 —p/

where is e ne ind fi ed in Sec. IV. The integral J&(qi,q2) is
vastly more comp ica e .I' t d. De6ning (x and p are used in
Sec. IV)

0'

+
-(t—y)'-P( —1)' (t+y)' P'(.+1—)'

o 1(-t+—y)' —P'(o+ 1)'-
Xln - — — — -- -- — . A19

o+1 (t—y)
'—P'(o —1)

Defining the denominators

and

we find

x,= — P(1-x)(p'-x)]'&'
p+1

xi ——(x+x22)'",

Ni(t) =t+y+p(o+1),
N2(t) =t+y p(o+1), —
1V8(t) =t y+p(o 1), — —
N, (t) =t—y —p(o —1),

Hence

Ei+E2 ——hmxi,
E&—E2=Dmx2y.

A =-,'hm(x&+x2&y),

le. Thuswhere g= o.— isj=2 —1 s a new integration variab

A' —8'= ~id''x(1 —p'p),

and, de&ning o =xi/x~) 1, we can solvolve for A and 8, i.e.,

A =-', Amx2(a+$y), ,A15)

(1+2' +b'+( '—1)p']e)'".
It is now evident from the form o q. ,of E . (A13) that x2no

2~. gow we mustlonger appears expbcitly m Jz&q&,q».

then

1
J2(qi, q2) = —— dt

q'2

X — +
1V4(t) Ng(t) N2(t) 1Vi(t)

(o —1)1Vi(t)Ng(t)-
Xln

(o+1)N, (t)N, (t)
We now put

1 1 0 1
1,= ——M ln +I)

q' 2p o.+1
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where

1
cD

N4(t) N3(t)

1 1
dt

N4(t) N3(t)

+
1V2(t) 1V1(t)

N, (t) N1(t)

and

(A20)
L;& ——Dn

~
N;(t) —N&(t)

~
lnN&(t) j

t2

N;(t)
Li2~ . (A25)

(1V;(t)—N&(t)
-N, (t)iV2(t)-

Xln — . (A21)
N3(t).V4(t)

Using these relations, we obtain

Note that t1 and t2 are symmetric in lg and if o ~ —0 or ,—,)N1(t)i-'* —
N3(t) -"

L= +-', ln' + 21 12

E1V4(t)& 4, N4(t) —14

+L13 L31+L34 L43+L42 L24. —(A26)
This implies that as functions of P, 0., and y

under

M —+ —M, L~ —L
We shall now show how to bring L2~—L~2 into a con-
venient form. If we omit the argument of the various
E's where there is no ambiguity, then clearly

and

under

M —+ —M, L~+L

t2

L21 L12 —2L» —[in) 1V1~ ln) 1V, ) ]
t2

=[2»IN1 —N2I»IN21 —»IN1linlN2I j
t1

and furthermore that

0~ —0

In the last term we use the relation

under

y~ y

Li2(x)+Li2(1 —x) =Li2(1)—lnx ln(1 —x),

so that

1 t2

=Dn)N;(t) )],
1V,(t)

(A22)

We will exploit these symmetry properties during the
calculation to keep track of various terms.

It is possible to prove the following inequalities:

tg&t2,

N1(t))0, N2(t) (0,
N, (t) &0, N, (t) &0,

when x and y are in the interior of the physical region.
This shows that the basic integral is well defined, as we

would expect. We now define the basic integrals

1V2 ( N1
L12 ————L12i i+L12(1)

1V2 N1 EN—1 N2)—
ill' N) (S N)—, —

t2

L12 L21 p»)N1 —N2~»~N2) —»)N1)ln)N2[]
t1

1V1(t1) 1V2(t2)—2 Li2 — — —2 Li2
1V1(t1)—N2(t1) .V2(t1) —N1(t1)I

Lik ln)N, (t) ).
N;(t)

We obviously have the symmetry relation

(A23)
N2(t1) 1V1(t3)

+2 Li2(1) —2 ln —— —ln =
N2(t1) —1V1(t1) N1(t1) —N2(t1)

L;2+L3; Dn)N;(t) )ln)N2(t) )—]— (A24) Remark that the dilogarithms explicitly exhibit the
symmetry under y~ —y. In the same way we also
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obtain the other terms, using

Li2( —x)+Li2(—1/x) = —Li,(1)——', ln'x,

t2

L» —L»=l »INll»IN3I —»nlN1 —N3I»IN3I3
t1

N3(tl)

N, (t,) -N, (t,)—2 L12 —2 Li2(1)
N3(t2)

2

L34 —L43 =L2» I
N3 —N4I in

I
N3 I

—»
I N3 I

» I N4 I]
t1

a&4(t2)
+2Ll.l-

(N4(t2) —N3(t2)

N3(tl)
+2 Li,

l

— —
I

—2 Li2(1)
(N3(tl) N4(t—l) l

N3(t2) N4(t2)
+2 ln ln

N3(t2) N4(t 2) N'4(tl) N3(t2)

Hence we can write

N3(t2)—ln'
N, —N, where

L =Ll+L2+L, ,

Ng
Ll= ——ln' —+-', ln' —+2 lnl Nl N2I lnl N2I —lnl Nll lnl N2I —2 lnl Nl —N3I lnl N3I+lnlNlllnlN3I

N4 N3

+2»IN2 N41»IN4I —»IN21»l V4I+21nlN3 —N4I»IN3I —»IN3I»IN4I

N2(tl) N 1(tl) N3(t2) N4(tl)
—21n ln —— =—ln' ——-- — —ln'

N2(tl) ~ 1(tl) Nl(tl) A 2(tl) tl 3(t2) A 1(t2) N4(tl) N2(tl)

N3(t2) N4(t2)
+2 ln — — — ln-

N3(t2) -N4(t2) N4(t2) -N3(t2)

( Nl(tl) ) ( ~ 2(t2) ) / N3(t2) Nl(t2) t N4(tl) N2(tl))
L2= —4L»(1)-2 L121 —- - —- - I+Llll = — —— — — I+L»l = ——+Ll.l —,

(N1(tl) N2(tl)) (N2(t2) Vl( 2)tl E N3(t2) i N4(tl)

( N (t,) ( N4(t2) ) ( N3(tl) N4(t2)
- I+2 L»l — — = +2Ll.

(N3(tl) —Nl(tl) i l 4(t2) N2(t2)) (N3(tl) N4(tl) N4(t2) N3(t2))—

We also find

M=LlnIN4I —lnIN3I+ln IN2I —lnINll j
Using

0 —1 N3 —N4

o+1 Nl N2—
we get after a long calculation

0 —1 NB'2
M ln- -+Ll ———-,'ln'

o+1 N4(N1 —N2)

N3 N4 (N3 N4)N2-
+ln 1——ln

Ng —N2 NjN4
—-', 1n'

N4 N4'
+ln 1——ln — — +(y~ —y),

N2 N2(N2 N4)—
(A27)

where all the N's have argument t=t2. Now for r —& 0,
we find (for t=t2)

Nl ——2(o+y), N, = —2(1—y),

N3=2(o —1), N4=-
2x 0+/

so that we finally get in this approximation

o 1 — -4x (o+y)'- o —1-
M ln -- —+Lj———

2 ln' —— — — — —
2 ln' — ——

o+1 r' (o'—1) o+1
4x (o —y)' o —1)—-' ln' — — —-' ln' ——

2 2r' (o' —1) o+1)
Also in this same approximation, we get

1+yi . (1 y5
L2= —4 L12(1)—2 L» — I+Llll

1+oJ ho+1)

+L12l - I+Ll I

- — -
Ik1-o) E1-o)
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L3——0.
Hence

Introducing the variable R=4x/r'=g'/m, 2, we obtain

g2 y2

Gg(x, y) = —
~ ln'R —lnRI —1+in

(o+y)' (o—y)'—-' ln' —— -- ——ln' — — —-' ln'—2
g ~ ] o2 —1 o+1

o' —y' 1+y) 1—y——+in— —L~u—
3 o' —1 1+of 1+o

1+y . (1—y)

E1 oi-

(A28) By means of Abel's relation, 2' we get

Li,
~

— -)+Li (- )+Li I I+L4( — )
y /o+y o+y y= —Li2 — ——', ln'I — — —ln—ln

o' —y' k&r y —o —1 a —1

o+y o —y—ln-- — -- ln
o+1 o+1

so that we can finally reduce G2(x,y) to

g2~y2
G2(x,y) = —~~ ln'R —(lnR —1) —1+in

g 1

1—y' (o+yq
+1——+Li2 — ——', ln'I

3 o' —y' ko —yi

(A29)

"See Ref. 20, p. 245.

1 4x (o+y)' 4x (o —y)'
J(q„q,) = ——-', ln' ——— — —-', ln'—

q' r' (o' —1) r' (o' —1)

—
~ ln —--- - ———I.&2

- -—

-'( '-)-""( -~~

which exposes the symmetries very clearly. Remark also
that the integral is dominated by negative terms. All

terms except the last two are negative. This expression
is valid for x»r2, in which case we also have g' —1))r'.
We now find the functions Gz(x) and G2(x,y):

1+0' 1+0
Gq(x) = —ln——2,

2P 1—P
4x (o+y)' 4x (o —y)'-

Gs(x,y) = —-', ln' —— ——-', ln'—
r' (o' —1) r' (o' —1)

fo 1s.2 — 1+y) (1—y—-', ln'( — — ———Li —
/

—Li,
(

ho+1 3 1+oi (1+a
/1+y /1 y4x—(o' —y')—Li,

~

- — — —Li,
~

—- - +ln—
(1—o k1 —o r' (o' —1)

This expression can be reduced into an even more com-

pact form by combining the logarithmic terms:

4x (o+y)'-
Gg(x,y)=-', —-', 1—ln-

r' (o'- 1)
4x (o —y)' ' t'o —1

1—ln ——— — ——1n'~
r' (o' —1) ho+1
1+y)

3 1+oi %1+oi

. /1+yi
&1-oJ 1 oi-


