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Furthermore, such a breakdown in either the form-
factor dependence or the constancy of ~~ implies con-
sequences more dramatic than the rejection of vector
dominance; anomalous muon behavior at high energies
would be indicated.
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Polarized-hyperon P decay is considered in the center-of-mass frame of the outgoing leptons. Simple and
exact expressions are obtained for the differential intensity distribution function under the assumption of
local current-current interaction and two-component neutrinos. It is shown that by exploiting only the fully
integrated data, it is possible to make a large number of tests on the structure of the b,S= 1 current even
with somewhat limited statistics. These include direct tests on the locality and V—A nature of the interac-
tion without additional assumptions, as well as detailed and rather stringent tests on the Cabibbo theory.

I. INTRODUCTION

HE structure of weak interactions has largely
been deduced from the accumulated experimental

data on leptonic and AS=0 semileptonic decay proc-
esses. The resulting V—A current-current interaction
picture was naturally generalized to the d,S=i semi-
leptonic processes. With the additional assumption of
universality expressed through the SU(3) current
algebra of Gell-Mann, the Cabibbo theory' represents
a unihed picture for all semileptonic processes. The
predictions of this theory are consistent with the avail-
able data (mostly rates, plus some angular correlations)
on various hyperon p-decay processes. ' Because of the
small branching ratios for these processes ( 10 ~
10 '), however, detailed experimental information has
not so far become available. Conclusive verification of
the theoretical picture, therefore, does not exist.

With the gradual accumulation of data on P decay
from polarized hyperons, '' this situation may soon
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change. Finally, a more critical and detailed comparison
of experimental data with theory seems to be within
our reach. In this paper we present a compact and yet
complete description of polarized hyperon P-decay
processes. ' Under only the general assumptions of
locality and two-component neutrinos, we derive a
simple expression for the differential intensity distri-
bution in which the dependence on three of the four
independent variables is explicitly displayed. ' Based on
this formula, we propose methods for effectively ex-
tracting important information from experimental
data even with limited statistics. A series of direct
tests on the locality and V—A nature of the inter-
action without additional assumptions, as well as
detailed tests of the Cabibbo theory, are proposed.

The proposed tests are particularly simple if the
lepton mass is negligible as compared to the baryon mass
difference. This is the case for the electron decay modes
of hyperons. We therefore concentrate on this case in
the main text. The muon decay modes can also be
analyzed effectively with the present method. Since
the results are slightly more complicated and harder

'For previous treatments of this problem, see, for example,
D. R. Harrington, Phys. Rev. 120, 1482 (1960); J. M. Watson
and R. Winston, ibid. 181, 1907 (1969); M. Nieto, Rev. Mod.
Phys. 40, 140 (1968); V. Linke, Nucl. Phys. B12, 669 (1969);
B23, 376 (1970).

6 The method used in this paper is similar to that of T. P.
Cheng and Wu-Ki Tung, Phys. Rev. D 3, 733 (1971),for neutrino
scattering processes.
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to explore experimentally, we give the detailed results
in Appendix A.

II. TRANSITION AMPLITUDE

Let us consider the p-decay processes
B(p, a ) ii

/e vg

A —+ 8+I
he++ v.

where A and 8 are spin- —,
' baryons. Let the 4-momenta

of A, 8, e, and v be denoted by P, P', k, and k', respec-
tively. We also define q= p —p'=k+k'. The masses of
the baryons and their sum and diGerence are denoted
by M&, M&, M+, and M, respectively; thus

Mg ——&~&M~. (2)

The initial hyperon is taken to be polarized with
polarization vector n. For definiteness, we shall treat
explicitly the e decay modes and mention the appro-
priate modifications of the formulas for the e+ decay
modes at the end. To begin with, let us assume that
reaction (1) is described by the usual V —A current-
current interaction. The transition amplitude can then
be written

where j& and J& are the leptonic and hadronic weak
currents, and X, X', 0., and r' are the helicity indices for
A, 8, e, and v, respectively. The lepton current matrix
element is, of course, explicitly known:

(k~,kvl j„t(0)Io) =a,(k)~„(1—~,)., (k'). (4)

We would like to seek a way of representing the tran-
sition amplitude such that the dependence on certain
variables exclusively associated with the current-
current interaction and the local nature of the lepton
current are explicitly separated from the dependence
on variables which are associated with the strong inter-
action dynamics of the A-8 vertex. This is most
easily done in the frame where the currents (with
4-momentum q) are at rest, i.e., qv=(gq2, 0,0,0). This
frame is also the center-of-mass frame of the lepton
pair. Within this frame, we define the 3-axis to be along
the direction of p (and p') and the 1-3 plane to be that
defined by p and n (polarization vector of A). The angle
between n and the 3-axis (p') is designated by 1P.2 The
polar angles of the electron (with 3-momentum k) are
denoted by 8 and P (see Fig. 1).The amplitude (3) de-
pends on four independent variables which we take to

7 Strictly speaking, P is the angle between n and p' in the A rest
frame, this being the frame in which the A polarization vector n
is most unambiguously defined. We define the polarization vector
n in the lepton c.m. frame by referring back to the A rest frame.
The two frames are related by a pure Lorentz transformation
along the p' direction.

f=(G/~2)&e vl j'(0) lo&&foal J (o) IA)
=(G/~2) &kl~' k'~'I jv'(0&

I
0&&p'~'I ~"(0) IP~& (3)

v(k, &t)

FIG. 1. Kinematics for decay process (1) in the
center-of-mass frame of the lepton pair.

be q', 1P, 8, and tt. It is straightforward to verify that

p"= (~ 0 0 p),
p'v = (E',o,op),
k"= 22(gq2) (1, sin8 cosp, sin8 sing, cos8),
k'"=2(gq2)(1, —sin8 cosp, —sin8 sing, —cos8),

(q2+~A2 ~B2)/2+q2

g = ( q2+~„2 ~~2)/—2gq2

P
—

I (~ 2 q2) (~ 2 q2)j1/2/2+q2

(6)

M~ are defined by Eq. (2) and the lepton mass has been
neglected.

Let us now examine the two components of the ampli-
tude (3). The hadronic vertex function, by definition,
is a function of the invariant variable q' only I cf.
Eqs. (5) and (6)j.We denote it by

&P'~'I ~"(0) I P~& =~"."(q2) .
The leptonic vertex function can be written as

(7)

&kx,kxl j„(0)Io) =&ol j„(0)lkx, kV&*

=(ol q„(o)z(8,y) Ik,~,k,v&*
=D*(8$) "(ol j„(0)lk, li,k, 'X'&*, (8)

where k.=2(gq2)(1,0,0,1), k, '=2(gq2)(1, 0, 0, —1),
and D(8,&) is the rotation matrix for the current
vector. Again, the last factor in Eq. (8) is a function of
q' only and can be designated as the leptonic form factor,

&oI j"(o)lk.~,k.'l '&= j»'(q2) (9)

We can now substitute Eqs. (7) and (8) into (3) and
obtain the expression for the transition amplitude. In
doing so, we shall separate the time component (spin-0
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part) from the space components (spin-1 part) of the
currents, denoting the former by the superscript s
(for scalar) and, expressing the latter in terms of its
spherical components designated by the superscript m
(ns=+1, 0, —1), we obtain

f.;,.= (G/~2) [j."*(q')J"."(q')
—j~'"'*(q')D-"'*((i,ib)J".'"'(q')], (10)

where D „&'i(8,&) =8 ' sd &"(0) is now the usual
rotation matrix for angular momentum 1,' and the
neutrino helicity index is omitted since it is Axed.

Equation (10) compactly exhibits the essential
features of the structure of the effective local interaction
Lagrangian. The factorized form with the tY, P depen-
dence explicitly separated from the form-factor de-
pendence on q' reflects the current-current interaction
picture. The occurrence of the D „«'(0,&) =b and.
D "~(e,p) functions explicitly reflects the vector nature
of the weak current. It is easy to see that the indices n
and ns haec the physical nseaning of being IIelicities of fisc

currents j and J, resPeciisely Angular . momentum
conservation demands

n=) —)', m=o —o'. (11)

The lepton current vertex can be explicitly calculated
using Eq. (4). If we neglect the lepton mass and
substitute the result into Eq. (10), we get

f ".=2G-(V q') 8'"'d "'(0)J '-'(q') (»)
In this limit, the electron helicity is 100%left-handed,

similar to the antineutrino, which is 100% right-
handed. We note that the scalar (time component)
form factors contribute oxQy to terms proportional to
the lepton mass and thus do not enter Eq. (12).

To gain some feeling about the hadron form factors
J..'"'(q), we give the connection between these and
the conventional invariant form factors. We de6ne
the latter by the following equations:

Ju= Vi+As
(p'-'I v

I p-&

=u;(p') [y ~f,(q') i(os"q„/M+) f,(q—')

+ (q"/M+) fs(q') 3~.(p),' (»)
(p' 'IA"

I p )
=&"(p') 5"v-gi(q') —i(o""g.vs/M+)gs(q')

+ (q "vs/M+) gs(q') ]I-(p)
Also, for convenience, we write,

[(gqs)/M+M ]J++'"——Vz Az, —
[(gqs)/M+M ]J «&= V,+A„
[(Qqs)/M+M ]J ~&"=.Vs+As,

[(Qq')/M~M ]J~ & '&=Vr Ar, —
8 Speci6cally,

(-', (1+cos8) —(sing)/v2 s'(1 —cosg) )
do&(8) =

I
(sing)/V2 cos8 —(sing)/v2 I.

Ess (1—cosg) (sing) /V2 -,'(1+cosg) /

where the subscripts I. and T stand for /ongitldinal and
Iraes~erse, respectively. Then we get

Vl ——(I—qs/M s)»s[fi+(qs/M s)f ]
(2qs/M 2)1/2(1 qs/M 2)1/2[f +f ]

(16)
(1 q'/M+') '"[gi—(q'/M+M —)gs]

Ar ——(2q'/M ')'~'(1 —q'/M+')"'[gi —(M /M+)g, ].
It is readily recognized that 1/I, and Vp are proportional
to the usual Gz and G~ form factors widely used in
electromagnetic processes for spin- —,

' baryons. The other
two form factors Al, and Az are their axial-vector
counterparts. We shall refer to these form factors as
the helicity fores factors

Before turning to Sec. III, let us make one additional
remark. It should be obvious that the procedure used
to derive Eq. (12) can be readily applied to local current-
current interaction of the scalar and (antisymmetric)
tensor types as well. Since under a rotation [see Eq.
(8)] the scalar current is invariant and the antisym-
metric tensor transforms as two independent vectors
(of spin 1), the contributions due to these currents to
the scattering amplitude are very similar to the two
terms in Eq. (10). If one again calculates the lepton
vertex functions (for S and T currents) explicitly, one
obtains the following form for the scattering amplitude:

T"."'=(p'o'I (T" T")
I po), —

T. "'=(p'o'I (—T"+T"—iT"+iT")
I po&/v2, (17)

T. ,& '& =(p'o'I (T" T»-iT"+iT"—) I
po—&/K2.

In comparing Eq. (16) with Eq. (12), we find that the
S Tinteraction gives r-ise to 100% right-handed elec-
trons with resulting lepton current helicity 0 [reflected
in the second index on the d-function in Eq. (16)], in
contrast to the previously mentioned left-handed elec-
tron and lepton current helicity (—1) in the V—A
interaction. Otherwise Eqs. (12) and (16) are very
similar.

III. INTENSITY DISTRIBUTION

The intensity distribution function for process (1) is

i=p-"[f:",.f:".*+f :"-,.f :-".*]==(18)

where p"=-', (1+pn o) =-', (1+p cosmos —p sin/or) is the
spin-density matrix for particle A with polarization p.
Substituting Eqs. (12), (16), and the above expression
for p" into Eq. (18), writing out the explicit dependence
on the variables f, t), and g, and multiplying by the
differential phase-space factor, we can obtain the

f:",.=2G(v'q') [S".+'"'d-o'"(())T".'-'], (16)

where
s".= &P' 'I s(0) IPo&

and
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detailed differential distribution,

G'M 't'M+
dr =

l [(1 q'/—M+')(1 q /—M ') j'%q'd(cosg)d(cos8)dy
2iz4 (2M'

X{[Ii sin'8+I, X 2 (1+cos'8)+IS cos8]+p cosf[I, sin'8+I, X~ (1+cos'8)+I~ cos8J

+p sing sin8 (I7 cosP+Iz sing)+p sing sin8 cos8 (Iz cosg+Iio sing) }, (19)

der
= (Ii) sin'8+ (I2)-,'(1+cos'8)+(Iq) cos8+p cosP [(I4) sin'8+(Iq) ~ (1+cos'8)+(I6) cos8]

d(cosf) d(cos8) dg
+p sing sin8 [(Ii) cosP+(Is) sing]+p sing sin8 cos8 [(I9)cosP+(Iio) sing], (20)

where
G'M '(M y'

(I') =
I l

dq'L(1 —q'/M ')(1—'q/M-') 1"' I'( q)
2'z4 (2Mgf

(21)

where I; consist of simple combinations of the form factors and are functions of q only. We give the explicit
expressions for {I;}in a later part of this paper [see Eq. (35) and Appendices A and B) and concentrate on the
dependence of dP on the explicitly displayed variables g, 8, and P for the time being.

Provided the assumption about local current-current interaction is valid, Eq. (19) exhibits the maximum amount
of information contained in reaction (1). In other words, if we can extract from experimental data the form of the
coefFicients I;, then we know everything about reaction (1).In practice, hyperon P-decay processes have very small

branching ratios and large statistics are hard to come by. The question is, therefore, how to extract the maximum

amount of information with the least number of assumptions under the condition of limited statistics.
As a first step we can integrate over the q variable in Eq. (19).There are two reasons for doing this: First, as

just mentioned, we would like to increase the statistics; secondly, since we do not know the exact g dependence
of the form factors, integrating over this variable frees us from the necessity of making any assumptions about
the q' behavior in the following discussions. The result can be written

We now show how the individual coefficients (I,) and
combinations of these coefficients can be extracted from
experiments by exploiting the complete data in various
different ways. In Sec. IV we use this information as
the basis for various tests of the nature of the basic
interaction responsible for the decay process (1).

(A) The total decay rate is obtained by integrating
Eq. (20) over the full phase space; thus,

where cos8& is defined by the equation

C0881

d(cos8) sin'8 =3 cos8i —cos'8i ——1. (25)

Again denoting the integrals of Eq. (20) over the four
sections of the phase space by I'&, j. 2, F3, and j. 4,

respectively, we can form the asymmetries

r=(16 /3)((I )+(I )). (22)

(B) Letting Aii be the difference of number of events
with 0(f(—',z and ,'~(f(vr, we obt—ain the asymmetry
of particle 8 with respect to the spin of particle A:

where

A D Pi+ P2 P P Sir+1(I2)

A&'= r,—r,—r,+r, =4~pa, (I,),

ai=2lcos8il —1.

(26)

(27)

Aii = (Slrp/3) ((I4)+(I5)). (23)

(C) Let us divide the phase space into four parts,
characterized by (0(8(~~, 0(f(—',~), (0(8(i2m,
—,'~&P&~), (-,'~&8&~, O&P&-,'~), and (-,'«8&~,
—,'n-&f(z), respectively. Denoting the integrals of Eq.
(20) over these four regions by Pi, P2. P&, and P4,
respectively, we can form the following asymmetries:

(E) In complete analogy to (D) we can define four
sections of the phase space as above, substituting 8~

by 82 which satisfies

CO882

d(cos8)(1+cos'8) =3 cos82+cos'82 ——2. (2S)

The corresponding asymmetries are

A, = r,+r,—r, —r, =4~(I,),
Ac'=P —I'2 —I'3+I' =2irp(Ig).

(24)
A ii = 16m a,(Ii),

A x' 87rpa2(I4), ——(29)

(D) Similarly, let us divide the phase space into
four parts characterized by (l cos8l (

l
cos8i l, 0(P(2n.),

(lc»81 & lcos8il i~&a&~) (lc»8I) lc»8il
&~ir), and (lcos8l ) lcos8il, ~ir(P(m), respectively,

where
a, =2lcos8, l

—1. (30)

(F) Now divide the phase space into four sections
characterized by (0(8( 2n., cosP) 0), (~z & 8&~,
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cosP) 0), (0(8&-',v, cosg(0), and(-,'7r& 8&v, cosg(0),
respectively. As before, denoting the integrals of Eq.
(20) over these sections by r&, r&, r&, and r4, we can
form the asymmetries

A =r,+r,—r,—r, =~'p(I, ),
A, '= r,—r,—r,+r,=-,'~p(I, ). (31)

(G) Finally, dividing the phase space into four sec-
tions characterized by (0&8(~~v, 0($&v), (~~v (8(sr,
O&y&~), (0&8&-',~, ~&y&Z~), and (-',«8&~,
sr(P(2v) and forming the asymmetries as before, we
get

Ao ~'p(I p), Ao'= p~p(I&p)-. (32)

Obviously, there are other asymmetries that one can
form. For instance, the electron and neutrino asym-
metries A„A„(with respect to the spin of particle A)
as well as the e-v correlation A,„ in the rest frame of
particle A are commonly used quantities. ' We shall
come back to these other asymmetries in the latter part
of Sec. IV.

2/An Asqr=-I +-
3 k Gy 2op)

(33)

and from Eqs. (23), (26), and (29),

(34)

We emphasize that these tests do not depend on assump-
tions on time-reversal invariance or properties of the
hadron form factors.

(b) V —A strnctgre of the weak clrrent. If locality
holds, the next question is whether the weak current is
pure V—A in structure as is the case for leptonic and
AS=0 semileptonic processes. To see what tests are
possible, we have to know the contributions of the

IV. TESTS FOR VARIOUS ASPECTS OF THEORY

Assuming that the asymmetries mentioned in Sec.
III are all experimentally measured, how can we use
these numbers effectively as tests for various aspects
of the theory? In the following, we shall proceed step
by step, starting from tests of the locality and V—A
structure of the interaction with no assumptions and
ending with detailed tests of the Cabibbo theory with
certain minimal assumptions on the q' behavior of the
form factors.

(a) Locality. We remind the reader that Eqs. (19)
and (20) were derived under only the assumption of
local current-current interaction with pointlike lepton
current vertex and two-component neutrinos. Tests
on the validity of these expressions are therefore direct
tests on this assumption. From the decay rate and
asymmetry measurements, two such tests can be made.
Thus, from Eqs. (22), (26), and (29) we obtain

various currents to the coeKcients I; in Kqs. (19) and
(20). For practical reasons, we shall only write out the
V—A contributions:

Ix [Vz——f
'+ [As. f

',
I,= I,= —

/
V, [

'+
/
A, ['

—Ip ——Ip ——2 Re(VrA r*),
I4= —2 Re(VzAs. *),
I7=&& Re(VrVz, *+ArAr. *),
I,= —v2 Im(VsAz*+ArVz*),

Ip —v2 ——Re(VrAz*+ArVz ),
hp =%2 Im(Vr Vr, *+ArAz*) .

(35)

Note that the erst four lines are diagonal in the longi-
tudinal and transverse indices while the last four are
interference terms. Similarly, I&, I2, I6, I&, and Iyp are
diagonal in V and A while the others are V—A inter-
ference terms.

In view of Kq. (35), we see that measurements on
the asymmetries furnish two direct tests on the V—A
nature of the weak current. Thus, from the second and
third lines of Eq. (35) and Eqs. (21), (24), and (26), we
obtain

and

A g&/A o' ———4ug/p

Ag)'/Ao= —asap.

(36)

Ag =Ag'=0 (37)

if time-reversal invariance is valid. This test is well
known; we mention it here for completeness.

(d) Detailed comparison with Cabibbo theory The.
Cabibbo theory correlates all AS=0 and AS=1 semi-
leptonic decays in terms of a few parameters in the

It is straightforward to show that the presence of S
and/or T currents would spoil these relations. We shall
give the relevant formulas in Appendix 8 to provide a
basis for experimentally setting limits on these other
currents.

More detailed tests of the V—A current structure are
also possible, provided additional assumptions are
made. Thus, if time-reversal invariance is valid, all
form factors must be real. One can then derive more
relations among the I; which, in principle, can also
serve as the basis for tests of the V—A interaction. But
these additional relations are not preserved under the
q' integration of Eq. (21). Consequently, comparison
with experiment must be made either at 6xed q' or
under further assumptions about the q' dependence of
the form factors. We shall come back to these tests in
Subsec. (d) below in connection with comparison with
Cabibbo theory.

(c) Time reversal invariance-. It is obvious from Eq.
(35) that Is=Imp=o if time-reversal invariance holds.
This is true even if other types of current are present.
In terms of the measured asymmetries, this means



H YP ERON BETA DECAY iii9

TABLE I. Decay rate and 14 measurable asymmetries as functions of the form factors fi, f2, gi, and g2. The second column gives the
zeroth-order term and the third column the first-order term in B(=M /M+). All quantities are in units of 1 p= (Gy sin8gfgg)2M 5/
60+(1+8) . All asymmetries are corrected for 100% target polarization. They are defined to be the difference in rates in the appropriately
defined halves of the phase space. This definition differs by a factor of 2 with similar asymmetries defined as the coefficient of the cosine
of an angle. The asymmetries in parenthesis are not independent if the tests of locality and V—A interaction, Eqs. (33), (34), and (36),
are satisfied. The last column gives the equation number in which the quantity is defined.

r
A,„

(A —A )
A t. '(Ag), A g)
Ag

Ag
(A +A)

A g(AD')A E')
Ag'

Ag
Ag'

Term of zeroth
order in 8

If&I'+3lgil'
I foal'- Igil'
—lg~l'

(15gro/128)lgglo

—(5/4) Re(f,g,*)
Re(f g *)
0
—-,'Re(f,g,*)

Im(f g *)
0

Term of first
order in 5

—4 Regig2*

2I f—~ I' 6I g—~ I'+4 Re(g~g2*)
—ol:If~I'+lg~l'+Re(f~fm 5g&g~*)g

Re (gig2*)

(15'/256)/If, I'+Re(f&f2" 3g&g—o*)g

(5/12) Rel 2(f~+f2)g~o+figo*j
—-', Re(2figi*+g1f2*+fig2*)
—(5/4) ReL(f1+f2)gl
—-', Re(figi*+g1 f2*—fig2*)

—
&m Im(figi* —gi f2 +flg2 )

(Svr/64) Im( —f1f2 +glg2 )

Eq. No.

(22)

(24)
(31)

(23)

(24)
(31)

(32)
(32)

SU(3) limit. We note that in the symmetry limit, all
mass differences vanish. Consequently, the range of
momentum transfer squared q' in hyperon P-decays
shrink to a point, i.e., q'=0. Since definitive theoretical
predictions are confined to this point, it is necessary to
adopt some approximations in the general equations
previously derived in order to bring about a detailed
comparison between theory and experiment. Thus, we
assume as usual, that the invariant form factors fi, fo,
g~, and g~ are constant over the range of q' under con-
sideration (0&q'&M '). We shall also evaluate the q'

integral in Eq. (21) by neglecting terms which are quad-
ratic (or of higher powers) in the small parameter
5=M /M+. The two approximations are consistent
with each other since the terms neglected in the first
approximation are expected to be of the order M '/A. ',
where A. is some effective (S= 1) vector or axial-vector
meson mass.

Using Eqs. (15), (19), (21), and (35), we obtain an
expression for doF/d(cosg)d(cos8)dg in the form of
Eq. (20) with the following coefficients:

&I &=Io[3l fil'+5lgil' —45 Re(glgo )],
(Io)= —(Io)=4Io[l gil

' —25 Re(gigo*)],
—(I,)=(I ) =5I 8 Re[(fi+fo)gi*],

(Io) = ——,'Io[3 Re(figi*) —8 Re(f,go*)],

&Ii& =io~Io[2 I gil '+&I fil'
+h Re(fifo*—3gigo*)],

(38)

&I.&=-4I.[-f-(f'g.*)
+5 im(figi* —gifo*+fige*)],

(Ig) = 4Io[Re(figi*)+5 Re(figi*+gifo* —figo*)],

&Ilo& ioorI05 Im( flf2 +glgo )

Here
(Gv»necks)

Ip= M. ',
2'X 15or4(1+5)'

where Gy is the universal Fermi coupling constant, tIg

the Cabibbo angle, fez the f-type SU(3) Clebsch-
Gordan coefficient, M =M~ —Ms, and 5=M /M+.

In Sec. III we have shown how the various experi-
mentally measurable asymmetries yield direct infor-
mation on the quantities (I;) [cf. Eqs. (22)—(32)].
The ten equations in (38) provide a system of over-
constrained equations from which the numbers fi,
fo, gi, and go can be solved even without very high
statistics. In fact, we can improve the situation even
more by adding to the above equations several more,
corresponding to the commonly measured. electron and
neutrino asymmetries A, and A„(with respect to the
polarization vector of particle A) as well as the e-v

correlation, both in the rest frame of A. '
We have, therefore, a total of i5 kinematically inde-

pendent quantities (the total rate plus 14 different
asymmetries) which are, in principle, experimentally
measurable using integrated data alone. If the locality
as well as the V—A interaction conditions [Eq. (33),
(34), and (36)] are satisfied, the number of independent
quantities is reduced by four. In Table I we list the
remaining 11 measurable quantities as functions of the
four independent invariant form factors (evaluated at
q'=0). Note that, if time-reversal invariance holds,
these form factors are real and the nine remaining non-
trivial measurable numbers are functions of only four
unknowns. In any specific experiment, some particular
asymmetries may be hard to get because of the bias
of the experimental setup. But with many possible
asymmetries to choose from, it seems not very hard to
measure enough numbers to allow a determination of
thy form fact;org with a, reasonable confjdepce level,
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Such determination of the values of the form factors
without (2 priori prejudice certainly provides a most
critical test of the Cabibbo theory.

Quite independent of the Cabibbo theory, there is
the interesting question concerning the existence of
second-class currents. The concept of second-class
currents for AS=1 transitions is well defined only in
the SU(3) symmetry limit. The existence of such
currents is manifested by the nonvanishing of the
invariant form factor g2. Since it has been suggested
that second-class currents may exist in nuclear P decay
(BS=O) with a rather large form factor, ' it is most
interesting to see whether they also show up in hyperon
P decays and, if they do; with what magnitude.

ing the structure of the AS= 1 current and the validity
of the Cabibbo theory can be clarified in the very near
future.
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V. CONCLUDING REMARKS

(i) The formulas in the text were derived explicitly
for the (eF) decay modes of hyperons. It is not hard to
see that for the (e+)) decay modes, the same formulas
hold with only modifications due to the fact that the
leptons (and hence the lepton current) have the op-
posite helicities. This means, for instance, that the
function d 1(')(()) in Eq. (12) is to be replaced by
d 1("(0) and, consequently, in Eqs. (35) and (38),
I3, I6, I7, Is, I9, and Iio change sign. ' The corresponding
changes in Table I are that Ag, Ag, A~, Ap, AG, and
Ag change sign.

(ii) We have emphasized the application of these
considerations to the AS=1 hyperon decays. It is
obvious that the same formalism applies to all semi-
leptonic decay processes. The case for spin-~~ baryon
decay where the lepton mass is not negligible is dis-
cussed in some detail in Appendix A.

(iii) The AS=1 P decay which offers the most inter-
esting possibilities at present is h. -+ p+e+r. The rate
and e-s correlation data'" from unpolarized A as well
as some very crude measurement" " of A. seems to
agree with Cabibbo theory. More refined experiments
using polarized A. with significantly increased statistics
are underway. '4 Preliminary results from these ex-
periments, though not sufhcient to allow any definitive
conclusions, seem to give indications of some very
interesting surprises. ' '" It is expected that when the
complete data become available, detailed analyses such
as those proposed in this paper may well be feasible.
Since some of the measured quantities which are avail-
able for the first time in these new experiments offer a
much more sensitive test of the theory than the pre-
viously available rate and e-r correlation measurements,
it is hoped that the very important questions concern-
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APPENDIX A

In some p-decay processes, for instance, free neutron
p decay and the muon decay modes of hyperons, the
lepton mass cannot be neglected as is done in the main
text of this paper. In that case we can go back to Eq.
(10) (which is perfectly general) and evaluate the lepton
form factors without any approximation. We get

J1/2" (q') =g1~2("(q') =2m(1 —m'/q') "'
j 1)2' ')(q') =242(q —m')' ', (A1)

where m is the lepton mass. Substituting (A1) into (10),
we get

f,*;,=v2mG, (1 m'/q') '—)'[I;,(')(q')
+g™gd()

(1)(g)I, (m) (q2)] (A2)

f ~, 2G(q2 m2) 1/2simgd (1)(g)I, (m) (q2)

Note that, aside from a simple factor, the second line
of (A2) is the same as the old result, Kq. (12), while the
first is identical to the contributions of the scalar and
tensor currents, Eq. (16), with S replaced by I(') and
T( ' by I( '. Substituting (A2) in Eq. (18), we obtain
the differential distribution function dF, which is
again of the form Kq. (19) with a trivial change in the
kinematic factor,

G'M 2/M+q2-/ q' ( q' -')2( m' '

222r4 E23II„) E M+' 4 M 2 4 q'

Xdq2d(cosf) d(cos8) d(t1

X f LI1 sin'0+I2X-,'(1+cos'0)+I2 cost)$

+p cosp LI2 sin20+I2X 2 (1+cos2())+I2 cosg)

+p sing sine L(I; cosp+I2 sing)

+p sing sin. g cose (I2 cosp+I1() sing) ), (A3)
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where

I~=
I v~l'+ I

A~I'+(~'/q')-'(I V.I'+ I A. f

'
+lV I'+IArl' —IV I' —IA I')

I,= I Vr I'+ IAr I'+(m'/q')
X ( l Vs l

'+
l A s l

'+
f Vr, f

'+
l A r, f

'),
I3= —2 RevrAr*+(m'/q')2 Re(vsvr, *+A sAL ),
I4 ———2 Revz, Ar, +(m'/q')

XRe( VsA —s*+VrAr, *+VrAr*),
Is ——2 ReVrAr* —(m'/q')2 Re(vsAs*+VrAr, *),
I6= —(I vr I

'+
I
Ar I') —(m'/q')

'
(A4)

X2 Re(vsAr, *+VrAs ),
I7 ——v2 Re(vrvr, *+ArAr, *) (m'/—q')

X&2 Re(VsAr*+A sVr*),
I,= —K2 Im(vrAr, *+Arvr, *) (m'/q')—

Xv2 Im(VsVr*+A sAr*),
Ig = —V2 Re(V rA r,*+Ar V r,*)(1+m'/q'),

I» ——v2 Im(vrvr, *+ArAr, *)(1+m'/q').

Here, in analogy to Eq. (14), we have defined

f (V'q')/M+M )I++& &=V,—A„
E(Qq')/M+M )I "=V—,s+—A s,

(A5)

where Vg and A8 are related to the invariant form
factors fa and g» by

Vs=(1 q'/M+')—"'tfr+(q'/M+M )fs], -
As (1 q /M ) f gl— (q /M )g3]

(A6)

Integrating Kq. (A3) over the variable q', one obtains
a differential rate formula identical to Eq. (20) with
coefficients

G'M '(M+q'
&I') =

2's4 (2M')

( q2 )/ q2 $ ~I2 A@2)

X f
1—

lf
1—

f
1—

f
I;(q'), (A7)

M,2/E M '/ q')

where I,(q') are given by (A4). The total rate I' and the
asymmetries A&, A&, . -, Ag' are related to the coeffi-
cients (I;) by the same formulas as given in Sec. III,
Eqs. (22)—(32).

It should be quite obvious that the proposed tests
for locality, Eqs. (33) and (34), as well as that for time-
reversal invariance, Eq. (37), remain applicable even
in this case. On the other hand, because of the similarity

between the V—A lepton mass correction terms

f
first line of Eq. (A2)] and the scalar and tensor cur-

rent contributions f Eq. (16)), the simple test for V—A
interaction, Eq. (36), no longer holds. This is easily
checked by examining Eqs. (24), (26), and (A4). More
detailed tests of the V—A theory can, however, be
carried out following the same procedure as in Sec.
IV(d). The 15 kinematically independent measurable
quantities mentioned there (total rate plus 14 asym-
metries) are reduced by four if the locality and time-
reversal invariance conditions hold. The remaining 11
quantities can be expressed in terms of six real form
factors if the current is of the usual V—A type. Because
of the more involved relations between measured quanti-
ties and the invariant form factors, however, a de-
tailed comparison between experiment and theory
necessarily needs much more refined data than in the
previous case. The relevant formulas corresponding to
Eq. (38) and Table I for the present case shall not be
explicitly given here. They can be obtained in a straight-
forward manner from Kqs. (A4)—(A7) and Eqs. (22)—
(32) by any interested reader.

P(V'q')/M+M ]S+~=S P, —
tt(Qq')/M+M )S =S+P,

[(Qq')/M+M )T~~«&=Tr, Tr„—
P(gq')/M+M )T «&=T,yZ;.

(B2)

From Eqs. (35) and (B1) we see that the following
quantities can be used as measures of deviation from
the V—A structure of the weak current:

&I.)+&I.) &I )+(I.)
&I2)—&I~) (Im) —&I~)

(B3)

APPENDIX B

In connection with the proposed tests of the V—A
structure of the weak current, Eq. (36), we give here the
contributions of the 5 and T form factors to the
relevant coefficients &I;) of the distribution functions
Eqs. (19) and (20). Since the tests involve I2, Iz, I5,
and I6 we shall list only these four coefficients. From
Eqs. (16), (18), and (19) we obtain

I2 ——2( f Sl '+ f
P

l
'+

f Tr, f
'+

f
Tr, f

')

I» ——4 Re(STr,*+PTr,*),
(B1)I5= —4 Re(SP*+Tr,Tr, ~),

I,= —4 Re(STr, *+PTr,*),

where, in analogy to Eq. (14), we have defined


