
PHYSICAL REVIEW D VOLUME 3, NUM BER 4 15 FEBRUARY 1971

Does Multiple Reggeon Exchange Produce an Eikonal-Type Formula' ?
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An attractive possibility, much discussed recently, suggests that multiple Reggeon exchange produces a
scattering amplitude of the eikonal form. We investigate this matter on a simple example. The anticipated
eikonal structure does not emerge.

POPULAR theoretical model for the discussion
of Regge behavior bases itself on the amplitude

corresponding to a series of simple ladderlike Feynman
graphs, sometimes called a tower. "An unsatisfactory
feature of this model for two-body scattering is the lack
of unitarity. This manifests itself, for example, in the
fact that by an appropriate choice of the coupling
constant one can make the real part of the leading
Regge trajectory greater than 1 and thereby violate the
Froissart bound.

A number of authors' have considered "unitarity
corrections" to the simple Regge asymptotic behavior
by using an "eikonal" formula (similar to the one
introduced by Moliere' in potential scattering), in which
the "potential" is essentially the simple Regge ampli-
tude. Thus in expanding the amplitude in powers of the
potential the first term corresponds to a Regge pole, and
the higher ones to multiple exchanges of Regge poles,
i.e., a series of Regge cuts. This semiphenomenological
proposal was recently advocated also by Cheng and Wu~

on the basis of their extensive work on high-energy
limits in quantum electrodynamics (QED). They con-
sider certain E-tower-exchange diagrams. These consist
of E oG-mass-shell tower amplitudes being exchanged
in all possible ways between two energetic "fermion"
lines (heavy lines in the example of Fig. 1).Each blob in
Fig. 1 represents a Regge tower characterized by its
order (e4)"' in the coupling constant. For a given choice
of the set n1, e2, . . ., e~, Cheng and Wu' retain the
leading term in an expansion of the amplitude in powers
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of lns. They then sum these leading terms over the set
e;; and finally they sum over S, i.e., over all towers.

Motivated by the work of Chen and Wu, we have
considered an alternative prescription, according to
which each blob represents a full tower summed over all
orders in the coupling constant. That is, each blob is
immediately represented by an off-mass-shell Regge
amplitude. In order to obtain a result equivalent to that
of Cheng and Wu for the over-all amplitude corre-
sponding to multitower exchanges it is sufFicient to
neglect, in the fermion propagators, all terms which are
quadratic in the momenta q; and g of the tower legs.
By means of a remarkable identity, 4 it is then straight-
forward to obtain an eikonal-type formula of the form

is d'xIe'A'*I(e" 'r &*I"—1) .

Here s is the c.m. energy squared, 4 is the momentum
transfer, and f is a complicated function which falls
exponentially, like e "i*I', at large izing. Whereas a
single Regge tower' would behave like s and therefore
would violate the Froissart bound for n&1, the eikonal
form behaves like s for n(1 but changes to s (lns)' for
n& 1 since in that case the important contribution to the
integral comes from the region s 'e &t j.i 1. Thus the
Froissart bound is saturated.
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FIG. 1. General S-tower diagram.

4 M. Levy and J. Sucher, Phys. Rev. 186, 1656 (1969).' In the work of Cheng and Wu, the high-energy behavior of a
tower is dominated by a fixed Regge cut rather than a pole, so that
their formula di8ers from Eq. (1) by certain factors of lns. This
difference is not essential for our present discussion.
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We are here concerned with the question of whether,
in general, the crucial step of dropping quadratic terms
is justified. In fact, we present an argument against it in

Fxo. 2. (a) Two-tower diagram. (b) One-tower diagram. The
Feynman parameters of certain lines mentioned in the text are
indicated.

the context of a theory with spinless electrons and
spinless photons, where we consider the exchange of one
and two blobs, Figs. 2 (a) and 2 (b). First we consider the
two-tower exchange diagram of Fig. 2(a) for forward
scattering. The "blobs" represent towers of Reggeons
for which we simply take the Regge behavior [(qq —qq')']
and [(q4—q4')'] . It can be shown that inclusion of
Regge-residue factors depending on the appropriate
momentum transfers and off-shell masses does not
affect our conclusions. In order to facilitate the dis-
cussion we take u to be a fixed power independent of
momentum transfer (as, e.g. , in the case of QED). The
momentum integrations can then be carried out if one
first uses the Feynman identity in a generalized frac-
tional-power form. The resulting amplitude is of the
form'

F,(s) = A(u u ) duydu2dxylx2' ' 'dx145(ul+ug+P xi 1)

[A (aug+5u2+Culu2+dld2)$ ZE]
(2)

Here u& and u2 are the Feynman parameters corresponding to the factors [(q&—q&')'] and [(q4—q4')']~, respec-
tively, and A, h, a, b, c, d&, and d2 are polynomials in the remaining Feynman parameters x&, x2, . . . , x&4, A and h
also depend on I& and N2. What is crucial here is that, because of the nonplanar topology of the graph, d& and. d2

are nondefinite; i.e., they change sign in the interior of the integration domain.
To obtain the large s behavior of the integral, we first introduce the variables v~= N~s, e2= N2s and drop certain

terms of order 1/s in the integrand, to obtain

F2(s) s'
A(v v )

—~—'dvgdv2dxgdxg . dxg45(Q x;—1)
)

(h —as~ —be~ —dqd2s —ee)

2xig2~ &g (—pgg) ~ ~5(dy)5(dm)dxg 'dx$4d'ogd'v25(p x,—1)
F2(s)

3 2Q (A —$8y —&V2)

obtain for the large-s behavior (n(0)This s' ' behavior corresponds to the well-known
position of the Mandelstam J-plane branch point~ at
J= 2A

A similar result already emerges at the level of one
tower or one Reggeon exchange [Fig. 2(b)]. After
performing the momentum integrations and making a
change of variables in the Feynman parameters, we
obtain'

Bv——'(kdxdy

(P—xyv —i e) '-~
Fg(s) s~

The s" factor corresponds to the familiar Regge be-
havior which is expected of diagrams of the type in
Fig. 2(b) on general grounds. What is of interest to us
here is the fact that the leading high-energy behavior
did not come from vanishingly small values of the
Feynman parameters x&, x2, x3 and x», x», x&4 of the
energetic "electron" line in the two-tower case or from
z= y ~ 0 in the one-tower case. Therefore the dropping
of quadratic terms in the momenta q, and q in those
lines would modify the quantities ii, h, a, b, d&, d2, B, and

BN, " 'dudxdy
7

(P xyus ie)'— —Fg(s) =

where I is the Feynman parameter associated with the
factor [(q&—q&')'], and x and y are the Feynman
parameters associated with the energetic "electron"
lines. The functions 8 and I' are polynomials in the
Feynman parameters.

The leading behavior at large s comes from small
values of I in the above expression; introducing the
variable s=us and dropping terms of order 1/s, we

Strictly speaking, the integrals in Kqs. (2) and (3) exist only
for Reo.&0. It is, however, straightforward to discuss the case
Rea&0 by, for example, analytic continuation. Our conclusion is
not affected.

7 S. Mandelstam, Nuovo Cimento 30, 1148 (1963).

where the bar indicates that for the large-s limit we have set v~/s=v2/s ~0. The leading behavior of this last
integral comes from that branch of the hypersurface (d~=0, d2=0} which lies in the interior of the integration
domain. The final result is, for Ims&g0,
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P (by the omission of certain monomials in them) and
thus would lead to a different coeKcient of s'~' (or of
s in the one-tower case). This means that the "eikonal"
approximation of dropping quadratic terms does not
here give the correct leading asymptotic behavior for
these Regge-type graphs, although it happens to give
the correct power of s. This means that we have no way
to perform the correct summation or to anticipate the
form of the result. Obviously, exponentiation rests
crucially upon the E dependence of the coefFicient of the

general term s~~ ++', Ã being the number of towers
exchanged.

The essence of our argument remains valid in the case
of QED with vector photons. In view of the recently
announced calculations by Cheng and Wu, ' in which an
eikonal form was obtained by summing over only the
leading logarithmic terms of individual ladder diagrams,
we must assume that, in general, terms other than the
leading ones sum to a result of comparable importance
In its energy dependence.
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In an earlier paper, we suggested a model of weak interactions where the divergences of higher-order
amplitudes are properly ordered. In this paper, we show that the introduction of Yang-Mills self-couplings
preserves this ordering. Ke show, in particular, that the worst divergences of Feynman amplitudes are like
(g'A')", despite the fact that individual Feynman diagrams diverge like (g'A.'}".

I. INTRODUCTION

"N a previous paper, ' a new model of weak interactions
- ~ was introduced for which the divergences of higher-
order weak interactions are properly ordered. That is to
say, divergent Feynman amplitudes of order (GA')"
induce no symmetry breaking, and those of order
G(GA.')" satisfy the observed selection rules of weak
interactions. Only a single charged intermediate vector
meson is needed; the ordering of divergences is ac-
complished by means of the introduction of a fourth
quark.

A more symmetric model of weak interactions is
obtained with the introduction of a third intermediate
vector meson coupled to the neutral current corre-
sponding to the commutator of the weak charge with its
adjoint. The three weak charges satisfy the algebra of
the rota, tion group, thereby explicitly implementing the
notion' of algebraic universality. The ordering of
divergences persists, and. the predicted neutral lepton
processes are compatible with experiment.

However, in this model, the weak currents are not

*Work supported in part by U. S. Atomic Energy Commission,
in part by the Ofhce of Naval Research under Contract No.
N00014-67-A-0028, and in part by the Air Force OS.ce of Scienti6c
Research under Contract No. F 44620-70-C-0030.' S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2,
1285 (1970).

~ S.L. Glashow (unpublished); see M. Gell-Mann, in Proceedings
of the Teeth Ace@a/ Iritereationa/ Rochester Conference oe High-
Feergy I'bye. s, 1NO, edited by E. C. G. Sudarshan, J. H. Tinlot,
and A. C. Melissinos (Interscience, New York, 1960),pp. 508-513.

partially conserved, i.e., they are conserved in the limit
of vanishing quark and lepton mass, but only to zeroth
order in G. To make the symmetry exact in the Inassless
limit, it is necessary to introduce Yang-Mills self-
couplings of the three intermediate vector mesons. The
purpose of the present paper is to demonstrate that the
introduction of these self-couplings does not upset the
proper ordering of divergences. 3 Although individual
Feynman diagrams will have a degree of divergence
worse than (GA.')" we shall show that the sum of all
diagrams contributing to a given amplitude, to each
order in 6, diverges no worse in the presence of the se
couplings than in their absence. Thus, we may introduce.
a Yang-Mills model of weak interactions which pre-
serves the observed selection rules.

II. THEORFM

First, we review the analysis in the absence of Yang-
Mills self-couplings. %e envisage the existence of certain
fundamental massive fermion fields f (quarks and
leptons) which are symmetrically coupled to a triplet of
8"s with an interaction Lagrangian:

gW Py„CP,

where the C involve a factor of I+ps and are otherwise
numerical matrices satisfying the commutation relations

s This question was also considered by T. Appelquist and C.-K.
Carlson, Phys. Rev. 187, 2119 (1969).


