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Angular Distributions from Multiyarticle Production Models*
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Using exp( —A pz')d'p/E as the momentum distribution of secondaries produced in ultrahigh-energy col-
lisions —a result predicted by the multiperipheral model, by Feynman s parton model, and by Cheng and
Wu s consideration of hadrons as extended objects with many internal degrees of freedom —we obtain the
characteristic features of the angular distribution. We discuss the dependence on incident energy, mass of
secondaries, and the value of A. W'e find that the c.m. angular distribution on the variable g, .~. =- —ln
tan-, 0, has a two-bump structure, whereas the lab angular distribution in g = —ln tan9~ is Qat. This diBer-
ence leads us to a discussion of the transformation between c.m. and lab angular distributions. %'t: find that
the usual relativistic approximation of the exact transformation leads to incorrect results. Finally, wt: point
out that these momentum and allgular distributions approach limiting distributions.

'N the last two years advances have been made in the
~ - development of theoretical models of multiparticle
production in high-energy collisions. The multiperi-
pheral model (MPM) of ABFST' has been revived and
studied in the form with elementary pion exchange' as
well as the form with Reggeized meson exchange. '
Further developments have been made by Feynman'
with his parton model, and by Cheng and Wu' through
the study of Feynman diagrams. At the same time, the
Michigan-Wisconsin collaboration has collected =800
interactions of cosmic-ray hadrons in liquid hydrogen,
in the range 100—800 GeV. Among other things, they
measured the angular distribution of the produced
secondaries. ~ These new data have offered the oppor-
tunity to test the predictions made by these models
regarding angular distributions. In an earlier work' this
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' Until now the only source of angular distributions from ultra-
high-energy collisions has been from the interactions of cosmic-ray
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produced only a small number of events suitable for analysis,
and these were obtained without a direct measurement of the
incident energy.
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test was performed. In this paper we explore in detail
the characteristic features of the angular distribution
predicted by these theoretical models.

Rather than be constrained. by the speci6c features of
any one model, we discuss the general features common
to all three models. They an predict that the monientum
distribution of the secondaries is given by'

d'X= e ~"r'(d'p/E), (1a)

and hence that the double-diQerentia1 momentum
distribution is given by

p ~
—Xp~2O'V

~pz~pr (pJ.'+ps'+~')'" (lb)

Here pr, and pr are the longitudinal and transverse
momentum components of the secondary, m is its mass,
and E is its energy. Of course, this distribution does not
hold for all secondary momenta up to the kinematical
boundary because of phase-space effects. The over-all
5 function of energy-momentum conservation modifies
the distribution near the boundary, and, hence, Eq. (1)
holds only for secondaries suKciently far from it. For
example, in the center-of-momentum system [see
Fig. 1(a)] we expect the distribution (1) to hold inside
the region 2-3, with modifications outside. In the
labors, tory system [see Fig. 1(b)] we expect the distri-
bution (1) to hold inside the region 2'-3', with
modifications outside. [We emphasize that (1) holds

only for the produced secondaries; the incident particle,
which has an elasticity =0.5, must be handled
separately. ]

It is not hard to anticipate the general features of the
angular distribution predicted by Eq. (1). In the lab

' These three models actually predict d'S = f(py')d'p /E. How-
ever, Tow, in Ref. 2, has shown numerically for the ABFST
multiperipheral model that f(pT') is of the form exp( —Apz')
(here we have ignored the small second bump in the pp distri-
bution found in this paper. )
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FIG. 1. Longitudinal momentum and angular distributions. Solid lines are predictions of Kq. (1) without phase-space corrections;
dashed lines include phase-space corrections. (a) dS/dpi, = j./L in c.m. , (b) dS/d pg =-1/L&' in lab, (c) dS/dg, , and (d) dE/d~ ~.

system Eq. (1) is valid over some range 0«pz«pm~x'
=-,'s, where s is the c.m. energy squared. Since the
transverse momentum distribution is peaked about some
small value pro, and since in the lab pz))pro, the lab
angle 8~ of emission of secondaries relative to the beam
direction will be predominantly small. This leads us to
use the variable g'.

dV Is B1SZ

These general features can be seen in detail by deriv-
ing a closed form for the angular distribution. %e begin
with the center-of-momentum system, and, as a erst
approximation, we neglect the phase-space modifica-
tions to Eq. (1). Changing variables to p= (pz'+ pr") ~'

and g, , we obtain from Eq. (1b)

g=——ln tan8)
= ln(pz/pr) = ln(pz/pro), (2) cosh'g, .~. (pm+~2) z/2

which stretches the 8t, axis in the region of interest. '0

Then, noting tha, t in the lab system pz=E for the
secondaries in the range of validity of Eq. (1), we obtain

BX B)Y BÃ
=pz;—=const.

Bg B[ln(pz/pr, )J zjpz

Integration leads to

—Ap'
Xexp —dp. (4)

cosh'q. .~.

Therefore, the g distribution is Bat over the range of g
corresponding to the pz from region 2'-3' of Fig. 1(b),
and drops to zero on either side.

In the center-of-momentum system, Eq. (1) is valid
over the symmetric region

~
Pz, ~&&P „'=z~s"', and the

peaking of pr now leads predominantly to forward-
backward emission. Hence we use the variable g,

—= —ln tan-,'8, .~, ,

where 8,. is the c.m. angle of emission of secondaries
relative to the beam. The regions pz=+E now give
two Rat sections in the g, .„,. distribution that are
located on either side of g, ==0 (0. =90'), with some
other behavior around q, =-0. For q, near the
kinematical boundary, the distribution drops to zero.

'0 In the lab system almost all events lie within 90' of the beam
direction.

dS 1
{x~*[1~,(x) —z,(x))

dg, 2A —exp[ —2x(p ' /m) ']) (5)

where x= —,'(m'A/cosh'g, ) and Xo, Zz are modified
Hankel functions. For large g, (but small enough
so that t,*))exp[—2x(p, ™/m)'j), Zz dominates
Eq. (5) and gives a fat distribution, independent
of m. When cosh'g, =A (p ' )' [i.e., when

=in(A '~'p,„™)j, the first and third terms cancel
and the distribution drops to zero. The width of the
distribution is therefore proportional to lnp ™or
to lns. Figure 2(a) shows the g, distribution for
several values of p,„™,with A and m fixed, and
Figs. 2(b) and 2(c) illustrate the dependence on A and
rzz when p,„™is fixed. We see that the distribution
has a two-bump structure, with the dip 'at y, =0
proportional to A and m. Finally, from Fig. 1(a) we
know that the correct distribution (with phase-space
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that effectively stretches the p& axis, is then also a
single-bump distribution (see Fig. 3)."

The difference between the q, and g distributions
(the two-bump structure of dÃ/dg. and the single-
bump structure of dX/dq) shows that a rela, tivistic
approximation that has often been used to transform
angular distributions from lab system to c.m. system
can give misleading results. This transformation states
that the dX/dg and dlV/dri, „, distributions are related
by a simple translation of the g axis by an amount 1ny.
This comes about in the following way: The angles Oi

and 8, are related by

O

'o

A=15
rn= rnw-

1 sintI,
tan8) ———

y, (cosg, +p,/p)
(6)

0
I

6
'7

Fxc. 3. dSidq plot.
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where P is the velocity of the secondary in the c.m.
system and p, is the velocity of the c.m. system relative
to the lab system Ly, = (1—P, ') '"j.For large incident
energy, P,= 1; if the secondary is also relativistic, then

P = 1 and one obtains

oi

ta,n8i —:—tan-', 0,.„,.
PctP~& gc

g= in&&,+g. , m. ~

(7a)

(7b)

However, from our derivations of the correct distribu-
tions LFigs. 2(a) and 3j, we know that this transforma-
tion cannot be valid. This can be understood by
examining a c.m. Peyrou plot generated from the
distribution (1) (see Fig. 4). Note that in this plot many
secondaries populate the region near the origin, and
hence are nonrelativistic. The relativistic transforma-
tion (7) cannot hold for them; they must be transformed

by the exact transformation (6).
Cosmic-ray physicists experimentally measure the

angular distribution (lacking momentum analysis) of
secondaries in the lab; then they often use the trans-
formation (7) to get the "experimental" c.m. angular
distribution and compare with various theoretical
models. As we have shown, this relativistic transforma-
tion is a poor approximation. Therefore, a better
approach is to develop theoretical models in the lab

"This flat lab distribution has raised doubt as to whether the
multiperipheral model can explain the two-bump structure ob-
served in some cosmic-ray events. However, O. Czyzewski and
A. Krzywicki, Nuovo Cimento 30, 603 (1963), using a Oat distri-
bution in g to generate events by a Monte Carlo method, found
that the experimental two-bump structure can be explained as
statistical fluctuations of the multiperipheral flat distribution.
Recently, E. I. Daibog and I. L. Rozental, Yadern Fiz. 10, 818
(1969) I Soviet J. Nucl. Phys. 10, 473 (1970)g, claimed that, using
the momentum distribution e»d'pipL„ they get a two-bump
distribution in the lab system. However, they incorrectly eval-
uated the Jacobian by replacing dpL, with dp. If they had not
made this replacement, they would get essentially the same distri-
bution as ours for the case m =0. They also claimed that Czyzewski
and Krzywicki made a mistake in changing from pL, to p by
neglecting the two-valued property of pL, . However Czyzewski
and Krzywicki made this approximation in the lab system,
where pL„except for a very small fraction of particles, is always
of the same sign.

Pri & Pi, —
w=tanh ' —~= —ln—

jV j (p 2+m2) 1/2

This variable satisfies

p 1l2

&c.m. = —ln —+%i,b .
1

(8)
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FIG. 4. Peyrou plot in c.m. system. Lines are level curves
of constant density; numbers denote densities of particles per
unit area along each curve.

~ P. Ciok et al. , Nuovo Cimento 8, 166 (1958); 10, 741 (1958);
G. Cocconi, Phys. Rev. 111,1699 (1958);K. Niu, Nuovo Cimento
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and compare directly with the measured lab data. If
some theoretical models, such as the two-fireball
model, " are most naturally formulated in the c.m.
system, then one should transform to the lab system
without using this relativistic approximation. One
method is to specify the c.m. momentum distribution
in the model, and transform it exactly into the lab
system by Eq. (6). For example, in Ref. 8, the c.m.
momentum distribution was determined by a Monte
Carlo procedure, and the individual secondaries
generated were transformed into the lab system by
Eq. (6).

The possibility of a simple transformation between
the lab and c.m. systems is retained by using a variable
zv, called rapidity, which was recently introduced by
Feynman4:
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I go. 5. dEjdw in lab system for two incident energies, ~jth
p'hase-space eRects included by the method of Ref. 8. dN/g~ jn
the c.m. system is related to the lab distribution through Eq.
(9) by a translation.

(In the limit of pr'» jjj', hajj reduces to —ln tan28. ) Using
this variable and the distribution (1), we obtain a flat
distl lblltloil fol dÃ/dijj lil botll the c.m. alld 'the lab
systems that scales with ins (see Fig. 5). When experi-
ments are done with storage rings or at the National
Accelerator Laboratory, where momentum distribu-
tions can be measured, the Feynman rapidity variable
shouM replace the usual ln tan8 variables.

Recently, Benecke, Chou, Yang, and Yen postulated
the hypothesis of limiting fragmentation" which states
that the momentum distribution of the fragments of

"J.Benecke, T. T. Chou, C. X. Yang, and E. Yen, Phys. Rev.
F88, 2159 (1969).

the target (or projectile) approaches a limiting distri-
bution in the lab system (or projectile system) as s ~ ~.
Since the distribution (1) describes those secondaries
with small pr, in the c.m. (so-called pionization products)
and (1) is derived for large s and is independent of s, it
implies that the momentum distribution of these pioni-
zation products approaches a limiting distribution in
the lab system or any other system related to it by a s
boost Lthe distribution (1) is invariant. under s boost].
Furthermore, the momentum distribution (1) also leads
to a llillltlllg allglllal distribution; 111 Fig. 2(a) we See
that the distributions, except for end effects, approach
the same value. This approach to a limit at smaller q
comes about from the sharp pz cutoff of Eq. (1).

1Vote added j'jj, proof After . the completion of this
paper, we received a report LD. Silverman and C.-I
Tan, Princeton University report (unpublished)] which
shows that, rigorously speaking, for general multiperiph-
eral models the right-hand side of Eq. (la) in general
has an extra dependence on x—=2pr. '~/(s)'*, where pr,
and s are, respectively, the c.m. longitudinal momentum
of the secondary and the c.m. energy squared. However,
using an amplitude similar to the Chew-Pignotti multi-
Regge amplitude (see Ref. 3) and treating phase space
exactly, we have shown numerically that this x depen-
dence is negligible for small values of x; this conclusion
is also true in the more rehned Caneschi-Pignotti multi-
Regge model (see Ref. 8). Therefore, Eq. (1a) is a rea-
sonable approximation to the true distribution pre-
dicted by the 1VI~PiYI. Ke thank. Chung-I Tan for a cor-
respondence clarifying this point, .


