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Our earlier claims in support of the eikonal approximation to generalized ladder graph amplitudes are
withdrawn —for the case of scalar-scalar interactions. Justiacation of the eikonal formula is provided,
however, for the more interesting situation where the exchanged objects are vector particles.
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RELATIVISTIC version of the well-known
eikonal approximation introduced by Moliere' for

potential scattering has been discussed recently by a
number of authors. ' The relativistic eikonal formula is
proposed as the high-energy limit of a model scattering
amplitude obtained by summing over all Feynman
graphs of the generalized ladder type. For scattering of
two scalar "nucleons" which interact via exchange of
scalar mesons, the eikonal formula reads

M"~(st) = sf2, ~d b'
f zg2 dms 8-sq b

Xe—ib ~
exp~ — —1, (1)

E 2s (2n-) ' y'+q'

where s is the square of the c.m. energy, t=A' is the
invariant momentum transfer, p, is the meson mass, and

g is the coupling constant. For large values of the
energy the eikonal amplitude is dominated by the
term of order g in its power-series expansion, i.e., by
the first Born approximation. So the compact summa-

tion over orders does not represent a physically interest-
ing achievement. Nevertheless, we may ask in what
sense the eikonal-formula is true for generalized ladder
graphs with scalar-scalar interactions. In an earlier
paper' we took as a measure of truth that the eikonal
formula, in each order of g', should correctly reproduce
the leading high-energy behavior for the sum over all
ladder graphs in that order. Observe that in order
(g') "+' the eikonal formula implies 3II~+i"" (g') "+'/s".
Our claim had been that the eikonal formula, for
scalar-scalar interactions, could indeed be justified in
the above sense. W'e now assert that this claim is wrong.
As will be described below, we had overlooked certain
contributions proportional to 1/s' which are present
to pll orders (g') +' e)3.

The situation for the eikonal method is nevertheless
not so desperate as it may seem. As was said, the
scalar-scalar example for generalized ladder graphs is
anyhow somewhat academic. Greater physical interest
attaches to the case where the exchanged objects are
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vector particles. Here the eikonal conjecture leads to
an expression similar to that of Eq. (1), but with g'
replaced by an effective coupling constant proportional
to s. That is, in each order the amplitude now grows
linearly with s. So, according to the eikonal approxima-
tion for the case of vector-particle exchange, all orders
are of comparable importance; and the compact
summation over orders represents an important
accomplishment. It will be argued here that, for this
case of vector-particle exchange, the eikonal approxi-
mation does seem to reproduce correctly the leading
high-energy behavior, order by order, for the sum over
generalized ladder graphs. Roughly speaking, this
comes about here because of the numerator terms which
now appear in the Feynman integrals; these numerators
have the effect of enhancing the contributions from
those integration regions which the eikonal method
presupposes to be the dominant regions.

Let us erst see why the eikonal formula fails for
the scalar-scalar situation. In determining the asymp-
totic behavior of a'Feynman integral for large s and
fixed t, one looks at the function f which multiplies s
in the denominator of the integral in its Feynman-
parametric form. The function f is a multilinear
polynomial in the Feynman parameters x&, x2,
where x; is the parameter associated with the ith
internal line in the graph. For large s, the integral is
dominated by those contributions which come from
integration regions in the neighborhood of the surfaces

f=0 As in our ea.rlier paper, we shall asslike here that
only "endpoint" surfaces are important. These are
surfaces of the form x;,=x;,= =x;~=0. Graphically,
the corresponding set of lines (ii, i2, . . . , i~) is said to
form a "t-path. "A t-path is a set of lines of the Feynman
graph such that if they are short-circuited, the resulting

graph describes an amplitude which depends only on
the t variable, i.e., is independent of s. It is clear that
the shorter the length of a t-path (by length we mean
the number of lines in the path), the stronger is its
asymptotic contribution. For the case of scalar-scalar
interactions a t-path of length L makes an asymptotic
contribution proportional to s ~. If there are M
t-paths of equal length L, their joint contribution is
asymptotically proportional to (1ns)~ '/s~. The detailed
rules4 involve certain qualifications, but it will not be
necessary to state these here.

4 G. Tiktopoulos, Phys. Rev. 131, 2373 (1963).
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Fio. I. Generalized ladder graph of order (g') "+'.

Now in our earlier discussion of the generalized
ladder graphs involving purely spinless particles, we
focused only on the two t-paths represented. by the
"nucleon" lines Lthe upper and lower horizontal lines
in the typical order (g') "+' graph depicted in Fig. 1].
Since each nucleon t-path has length n, the correspond-
ing asymptotic behavior is (lns)/s", the next leading
contribution from these t-paths behaving like s ".
Actually, we found that the (lns)/s" terms cancelled
in the sum over all ladder graphs of given order (g') "+'
and that the s " terms summed up to give precisely
the eikonal result. But for n)3, i.e., for orders g and
greater, there are other t-paths of comparable or greater
importance, and we had overlooked these. For example,
consider the particular eighth-order graph which is
drawn in two different ways in Fig. 2. In addition to
the pair of nucleon t-paths (1234) and (1'2'3'4'), each
of length four, there is another pair of paths of compar-
able length: (12'3'4) and (1'234'). Each pair produces a
comparable asymptotic contribution, proportional to
(lns)/s'. But only the first pair of t-paths is contem-
plated in the standard eikonal approximation. In
general, the eikonal approximation focuses on the twin

t-paths which run solely along the nucleon lines. For
every generalized graph in order (g')"+', a nucleon

t-path has length n. However, for n=3 we have seen
that there are graphs for which other t-paths of compar-
able length can be found; and for n) 3 one can always
And generalized ladder graphs with t-paths of shorter
length. Indeed, however large the order in g', there are
graphs with t-paths of length L=3 /see Fig. 3, with
t-path (abed)]. The amplitude corresponding to such
a graph behaves asymptotically like s ', independent

qi =E ~ijqj+olipr+&'ipz, (2')

where the coeKcients E;;, co;, and v; are functions of the
Feynman parameters x;, x2, . . ., x3N+&. Under this
change of variables the numerator terms 1V and X
are replaced by functions E; and iV; which depend on
the Feynman parameters and are linear now in the
new integration momenta q&, q2, . . ., q„and linear in

pi and p2. The amplitude has the form

of the order of the graph (for I)3). We conclude that
the eikonal approximation makes no sense for general-
ized ladder graphs with scalar-scalar interactions,
unless a truly miraculous cancellation occurs. '

Let us now see how these "non-eikonal" contributions
are suppressed in the situation where vector particles
are exchanged between spin-z particles (e.g., electron-
electron scattering, with exchange of massive photons).
Similar arguments can be given for the scattering of
scalar particles, with exchange of vector particles.
The basic interaction is taken to have the form gpss„tPA „;
and for simplicity we specialize to the case of forward
scattering: p&+p2~ pi+p2 s= (pl+p2)'. Let us
simplify further by focusing on the spin-averaged
amplitude (it will be clear from the following discussion
that the dominant amplitude is helicity-nonQip,
helicity-conserving). The Feynman integral associated
with any ladder graph of order (g') "+' will differ from
that for the corresponding graph with all scalar particles
only through the appearance of a numerator factor

Trg( iy pr—+m).y„,Er'y„,lV, ' .E 'y„„,]
XTrL(—i~ p,+m)v„,X,' "E„'&„„„],(2)

where the propagator numerators E and g are
linear in p pr and p p& and linear in p qi', p qz y ~ ~ ~ y

y q„' (qr', q, ', . . ., q„' being the integration momenta).
In the above expression an appropriate pair-wise
contraction on the indices p; and v; is to be understood.
One now conbimes the propagator denominators by
means of the Feynman identity and diagonalizes the
quadratic form of the denominator by a linear change
of integration variables:

Tr[(—iy pr+m)y»1Vr ]TrD iy p2+m)y„, Nr —]
dory' ' 'dXsrt+y d qy' ' 'd q~

n

(fs+ti+Q A;q;z) '"+'
i=1

(3)
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I"xo. 2. Eighth-order graph, illustrating equivalence
of different t-paths.

where f, h, and A; all depend on the Feynman param-
eters x;. Since the denominator depends only on the
squares q&', q22, .. . , the numerator quantities can be

'The moral here is that intuition associated with the eikonal
approximation in nonrelativistic scattering (where short-wave-
length propagation in a smooth instantaneous potential Geld can
be described by rays} may fail in relativistic situations, where
retardation effects are an essential feature.
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FxG. 3. Graph dominated by a "non-eikonal" t-path.

where n; and P,; are integers and k+P n;+P;&; 2P,;
=n+1. In the corresponding problem with spinless
particles the numerator is simply (A lA2 . A „)" '.

Owing to the presence of numerator factors in Eq. (3),
it is no longer true, necessarily, that the asymptotic
behavior of the amplitude is governed by the length of
the shortest t-path. Suppose we scale a parameter X

out of the Feynman variables x; associated with a
particular t-path of length 1., so that f is proportional
to X in the limit X -+ 0. For a particular term in Eq. (4)
it may happen that CI„(,.~, {p,, ) vanishes like X .
This term will then make a contribution proportional
to s~ ' ~. In order to 6nd the dominant behavior one
has therefore to survey all possible t-paths.

We begin by considering the asymptotic contribution
coming from the two "eikonal" t-paths, the paths
formed exclusively from the two nucleon lines. In the
original momentum space integration let q,

' be the
momentum carried o6 by the ith meson in the succession
of mesons emitted by nucleon 1. The momentum pl
is therefore being routed exclusively along the line of
nucleon 1, the momentum p2 along the line of nucleon
2. With this assignment of integration momenta, each
E in Eq. (2) contains a p Pl term, but is independent
of p2, each¹'contains a y p2 term but is independent
of pl. Let xl, x2, , x be the Feynman parameters
associated with the lines of nucleon 1. As usual, intro-
duce a scaling parameter P j according to

x;=A,gx , i= 1,2, . ..,e

The "A,&-reduced" graph obtained by short-circuiting
the t-path along the line of nucleon 1 does not depend
on pl. Therefore, for small Xl we have f 4 and w;~hl.
The asymptotic contribution from this t-path is not

reduced according to the pattern

(Pl' gl) (P2 ' g2) (gl' g2) ~ l6 (Pl'P2)gl g2

etc. Using pl p2 s, we may write the numerator as a
sum of terms, according to

Numerator= g s2c2 I;}{q .)(g (q;2) ~)

affected if we set X&
——0 everywhere in the integrand

except in the factor f M. oreover, the numerator in
Eq. (3) will be dominated asymptotically by a term
proportional to s"+' coming exclusively from the factors
y.Pl in all the X;.In short, the asymptotic contribution
from the t-path corresponding to X~ ~ 0 can be obtained
as follows: In the original Feynman integral set
E ~iy pl (i.e., omit terms depending on the g );
and in fermion propagator denominators, omit terms
quadratic in the q . For the rest we can now proceed
as in Ref. 3. The approximations described above
permit us to sum in compact form over all generalized
ladder graphs of the given order (g') "+'. The resulting
integral di8ers from that for the scalar-scalar case only
by the presence of the numerator factor of Eq. (2),
of course with E ~ iy p—l In c.asting the integral
into Feynman parametric form, we 6nd, as in Ref. 3,
that its leading behavior now comes from the t-path
formed by the lines of nucleon 2. But this means that
in the E; we can ignore the part of the origin shift
which is proportional to P2. 'That is, the dominant term
in the numerator of Eq. (2), the term proportional to
s"+', is obtained by setting X; —+ —iy p2. . Moreover, in
the propagator denominators for fermion 2 we can drop
terms quadratic in the q . To summarize, the contribu-
tion to the asymptotic behavior which comes from the
twin fermion t-paths is obtained, in the original Feyn-
man integral, by dropping q terms in the numerator
and terms quadratic in the q, in all fermion propagators.
But these are precisely the approximations adopted in
the eikonal method and they lead to the eikonal
formula, of Eq. (1), with g' —+g2s: in order (g')"+',

eik~ (g2) e+lg

To justify the eikonal formula for vector-particle
exchange, we have now to show that all other t-paths
make asymptotic contributions which grow less rapidly
with s. In fact we will see that these other contributions
are weaker by whole powers of s.

A non-eikonal t-path must contain at least one photon
line. Consider the graph obtained by short circuiting
the t-path to a point T. This reduced graph can now be
characterized in the following way. Focus 6rst on the
fermion lines of the reduced graph. The four lines
attaching to the external fermions all enter the point T.
Two of these, in an evident sense, we may speak of as
external Pl lines, and the other two are external P2
lines. In general there will also be fermion lines which
form loops, one end of the line emerging from T, the
other end returning to T. I.et Iij be the number of
loops referring to fermion 1, Ii 2 the number referring to
fermion 2. Next consider the photon lines of the reduced
graph. Let E be the number of photon loops (ends at the
point T). Let 222 be the number of photon lines which
run from T to one or another of the external Pl lines,
e~ the number which run from T to one or another of
the external P2 lines. Denote by 2222 the number of
photon lines running from an external pl line to a
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FTG. 4. Example of a reduced graph obtained by shrinking a
"non-eikonal" t-path to a point T.

fermion loop (necessarily, a type-2 fermion loop), and
denote by m2 the number of photon lines running from
an external p, line to a fermion loop. Let M~ be the
number of photon lines which run between a fermion
loop of type 1 and a loop of type 2, and let mr, be the
number of photon lines which run from T to a fermion
loop. Finally, let 3f; be the number of photon lines
which appear on the t-path in question (these lines are
all shrunk into the point T in the reduced graph).

For a graph of order (g') "+' the length of an eikonal
f-path is L„~——e; and evidently

L„g=u =u~+n2+m~+m~+Mq+mg+M, +P—1 .

On the other hand, the number of lines which compose
the t-path in question is

L,=I~+n~+ m~+ 2M;+ 2P 1. —
Since the numerator factor in Eq. (4) never contributes
a term which grows more rapidly than s"+', and since
this limiting growth is in fact achieved for the eikonal

path, we need never consider situations for which
L&&L„.~, i.e., we need focus only on the cases where

mx+m2+Mq)M;+P. For this purpose let us return
to the original Feynman integral. We assign the
integration momenta q,

' in such a way that the momenta

pq and p2 never appear in the lines which compose the
fermion loops of the reduced graph, nor in any photon
lines which appear in the reduced graph. Consider the
reduced graph shown in Fig. 4. We think of it as being
composed of two parts, separated by an imaginary
horizontal dividing line drawn through the point T.
This dividing line is not crossed by any lines of the
reduced graph. The symbol 2 on a fermion loop signifies

that it is composed of type-2 fermions; the symbol 1
on a loop has a corresponding meaning.

Now one of the photon lines contributing to the
quantity m& is the line joining the points A and 8. In
the numerator expression of Eq. (2) the factors asso-
ciated with the vertices A and 8 and with the im-
mediately adjoining propagator factors is displayed in
the following expression:

Tr{(—ip p&+m). [ ip—
(p&—q&' —q2')+m]

Xy„[—iy (Pi—q&
—

q2
—

qa )+m]
XTr{(—iy p,+m) ( ip —q4'+m)

Xy [—'y (q '+q ')+ 7 . }. (5)

It is easy to see that for all q appearing in the uPPer
half of the reduced graph, the shift parameters e; of
Eq. (2') will be proportional to the (small) scaling
parameter A, associated with the 3-path under discussion.
Noting that Xp& p2 counts asymptotically as zeroth
order in s, as does p~ p~= —m', we see that the factors
displayed in Eq. (5) in the square brackets count
altogether as zeroth order in s. Similar remarks hold
for factors associated with photon lines contributing to
m2 and M~. The numerator as a whole, for the t-path
in question, grows no faster therefore than s"+'
The over-all contribution from the t-path under study
is bounded by s"+' ~~ "~~ &=s' ~' . Recall that
the eikonal contribution grows linearly with s. Since
3f;&1 for any non-eikonal path, the contribution from
such a path is clearly negligible. This completes our
justification of the eikonal approximation for general-
ized ladder graphs with vector-particle exchange.

It must be recalled that we have been dealing here
with the case of fermion-fermion scattering, where for
simplicity we specialized to the case of forward scatter-
ing. A similar justification of the eikonal formula can
be given for the scattering of charged, spinless bosons,
interacting via exchange of vector particles. In the
fermion case the forward amplitude has in general the
c.m. structure

A+Bag am+Cog P(rm. P,
where p is a unit vector along the collision axis. It is the
spin-independent amplitude A that we have been
discussing. It should be clear, on the basis of trivial
variations on our analysis, that the A amplitude
dominates over the others for large s. Finally, let us
recall an important qualification on the present results:
We have focused exclusively on the "endpoint" surfaces
f= 0 [see Eq. (3)g in discussing the asymptotic behavior
of our graphs. We are unable to rule out the possibility
that there are comparable or more important contribu-
tions arising from other surfaces f=0


