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A torsion-free world line is shown to correspond to a particle whose three-acceleration vector points in a
fixed direction relative to its Fermi-transported local inertial rest frame. In Oat space-time this is equivalent
to the three-acceleration vector pointing in a constant direction.

S OME time ago one of us proposed a definition of
what might be meant by the motion with uniform

acceleration of a test par'. icle in curved space-time. '
That definition, which was arrived at by generalizing
the geometric properties of such motion in Oat space-
time ("hyperbolic" motion), consisted in requiring
the world line of the particle to be torsion-free and of
constant curvature. More recently, Gautreau' has
shown —in essenc"- —that this de6nition is equivalent
to requiring the particle to have a constant three-
acceleration vector relative to its Fermi-transported
local Minkowski rest frame. In physical terms, these
frames are a sequence of local inertial frames positioned
along the particle's world line, such that the particle
finds itself momentarily at rest always in one of them,
and their base vectors are related by Fermi transport,
i.e., without rotation.

%e now ask ourselves what is the necessary and
sufBcient kinematic condition for a particle to have a
torsion-free world line xi/holt the extra requirement of
constant curvature. The condition turnp out to be the
following: (A) The three-acceleration vector has a

constant direction relative to the Fermi-transported

local inertial rest frame. In Qat space-time this is
equivalent to the following condition: (3) The three-
acceleration vector' has a constant direction relative to
any inertial frame. (It is perhaps in itself a reasonably
interesting result that the constancy of the direction of
the three-acceleration is a Lorentz-invariant property. )

The condition for a world line to be torsion-free is

Dt Aoq
/=uUo,

dr& n)
where r =proper time, D/dr stands for absolute differ-
entiation, A"=DU"/dr =four-acceleration, Uo= dec&/ds

=four-velocity, and cs= (—g „A"A")' '=tpr oepr accel-
eration; our metric has signature (———+) and our
units are chosen so that c=speed of light=1. (These
conventions agree with those of Ref. 1.) It was shown
in Ref. 1 that only two of the four equations (1) are
independent. Equation (1) is trivially satis6ed in the
limit by A"—=0 (geodetic motion), as can be seen by
performing the differentiation and multiplying by 0,'.
For later reference we note4 that in any local Minkowski
frame

U& =y(u, 1), y
—'=1—I',
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and consequently

A"=v(~u+va, 7), (3)

where p =dy/dt, u = three-velocity, and a = three-
acceleration.

=0, g Reference 1, Eq. (14) (i).
See, for example, W. Rindler, Special Relativity (Interscience,

New York, 1966), Eqs. (4.14) and (4.15).
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To interpret Eq. (1), we now write A"=aV" (assum-
ing a/0), where V& is a unit spacelike vector, which
must be orthogonal to U" since A" is so. Equation (1)
implies that

DV~
— — =~V~= —n-'A A "U~= —V A "U&

dT

But this is precisely the condition for the Fermi trans-
port of Vt" along the particle's world line. ' Relative to
an orthonormal Fermi-transported tetrad of which
V& forms the 6rst base vector and U& the fourth, A&

thus has only a 6rst component, 0.. Relative to the corre-
sponding local inertial frame, a always points in the
2: direction, for, in virtue of Eq. (3), A" reduces to
(a,0) in any local Minkowski rest frame. The necessity
of our condition (A) is therefore established. Its suK-
ciency also follows from Eqs. (4), read in reverse order;
for if a has constant direction in the Fermi-transported
local Minkowski rest frame, the unit direction V& of
At" is Fermi transported, whence

= —V A"U = —-~A„A"U~=nU~,

and Eq. (1) is satisfied.
It is evident that, when augmented by the require-

ment n =constant, condition (A) amounts to the
coestumcy of the three-acceleration relative to the
Fermi-transported local rest frame. This recovers
Gautreau's above-mentioned result.

Simple examples of torsion-free motion in curved
space-times —apart from the trivial case of geodetic
motion (Al"—=0)—are provided by arbitrary radial
motions in all spherically symmetric metrics of the form

ds' =A dt' Bdr' Cr'(d8'—+ sin'8—dye),

where A, B, and C are functions of 3 and r only.
Schwarzschild space and the Friedmann cosmological
models are cases in point.

The special case of Rat space-time is most easily
discussed ab initio. For this purpose we shall use the
fact that Eq. (1) possesses a general solution of the form

variable 8= Jndr into Eq. (1), whereupon the latter
reduces to D2U&/d82= U&; and this evidently has a
solution of the form (5). The metric requirements on
L& and M& become evident on setting 8=0 in Eq. (5)
and in the equation derived from it by the operation
D/d8. We also note that the functional form (6) of 8
is implicit in Eq. (5): It can be obtained by absolutely
differentiating Eq. (5) with respect to r in order to
get A&, and then calculating o.'= —A„A&.

Let us now specialize to Rat Minkowski space-time
(x,y, s,t). Then L" and 3II& will simply be constant. From
Eqs. (2) and (3), we have

A"—jU"=y2(a 0). (7)

i.e., a is a multiple of a constant three-vector, as
asserted in (B).

To prove the converse, let us assume

a=fb, Lb=constant and unit, P=f(t)j.
Integration then yields

u = Pdt b+d, (d =constant)

where X= JiPdt+d b and p=d —(d b)b. Consequently,

Ke now define

p
—2 —1 222 1 g2 p2 (10)

L~= (1—p2)-'t2(p, 1), M~= (b,0),

Thus if the motion is torsion-free, substitution from
(5) into (7) yields

(a,0) =yL~+PM ~

for some functions @, P of r Conse. quently, QL'
+/&4=0; L4/0 since L" is timelike, and thus

f(M'/L'—). Substituting this back into Eq. (8), we
find

M4
a'=4(M' — I, i=1, 2, 3

L4

where

U& =LI" cosh8+M & sinh8, (5)

(6)

so that L„LI'=1, M„M&= —1, and L„MI"=0. Then,
using Eq. (9) in the second step, we have

U"=7(u, 1)=7(~b+P, 1)=7(1 p')'"L"+v~~—"

and LI" and M& are parallelly propagated unit vectors,
timelike and spacelike, respectively, and orthogonal
to each other. This is easily seen by introducing the

' J. 1.. Synge, Relativity: The General Theory {North-Holland,
Amsterdam, 1960)2 p. 15.

Because of Eq. (10) we may put &X=sinh8, y(1—p')'"
=cosh8. The motion thus satisfies Eq. (5), and conse-
quently also Eq. (1); in other words, it is torsion-free,
as we wished to prove.
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