
MULTIPERIPHERAL NONFACTORIZATION.

This simply means that a factor v.; occurs whenever
the colrespond1ng v 1n the argument of Af~-l~
in (A4) is —1. The internal helicity-fhp factors o' ~'
appear whenever neighboring parameters v;, v~l
have opposi. te signs in A(~,.) ~x' ~'».

The full signatured amplitude fi"» ({s;,t;,I,}) is
defined as having fisr. its"'ii({t })as its O(2, 1) partial
waves. It has only right-hand cuts in all subenergies
s;, and is expressed in terms of the fisr,.)ix't({s;,t;})
amplitudes by

A multi-Regge pole occurs as a set of j;-plane poles
in the signatured multi-partial-wave amplitude
fist.ii""i({t;}) since that is the amplitude' which
supposedly can be analytically continued in the j;
variables. The multi-Regge pole also occurs with a
factorized residue (see the Introduction). The resulting
asymptotic behavior of the full signatured amplitude
is therefore factorized as well,

tsi' ' 'tss if -~({nisi) tit ooi &i.i+is })y

f Xs=g, I J

j.
~

pg=1

v" s= —1
(AS)

Xts if~"i({o;s;,t;, io;—r, ,;+isr}). (A6)

and r; and v;„+i are defined above. The (io;—v;„+ter)
dependence is due to the extra e' ~'"' '+' factors in the
Fourier M~ sums for fi xi

The full amplitude is expressed in terms of the
signatured full amplitudes by

Use of Eq. (A6) then yields the asymptotic form for
the full amplitude, as described in the text. For a given
multi-Regge pole, the {r;}sum is absent.

Toto added mrs proof. Professor I. Halliday has em-
phasized to us that cuts in. the subenergies s; arising
from unitarity in dependent variables and Gram-
determinant conditions render the analytic continual
tion of some of the terms in Kq. (A6) to the physical
region to be more complicated than the asymptotic s;
continuations used here. There is the possibility that
mixed ~e prescriptions for the g; in these anomolous
terms may recover factorization for the full amplitude
in the ordinary sense. For a perturbation theory cal-
culation which factorizes, see D. K. Campbell, Phys.
Rev. 188, 2471 (1969).
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It is shown that if the Hamiltonian can be split into a part which is scale invariant and a part which
breaks scale invariance by means of a dilaton, then, if the latter part has a unique dimension, this dimension
must be I if the vacuum does not realize the invariance under scaling. This implies that there must exist a term
which breaks scale invariance in addition to that which breaks chiral SU(3) XSU(3) symmetry in order to
avoid a contradiction with Gell-Mann's argument.

I. .INTRODUCTION

~ ~HE study of the relation of scaling transforma-
tions to the dynamics of strong interactions and

to deep inelastic electroproduction has been the subject
of many recent investigations. ' In the study of the

*Research suppor'ted in part by the National Research Council
of Canada.' Good reviews on the subject to the present are given by the
following: (a) G. Mack and A. Salam, Ann. Phys. (N, V.) 53, kf4
(1969); (b) M. Gell-Mann, Symmetry Violation in Hadron

dynamical consequences of broken scale invariance, two
main approaches have in general been pursued. These
may be classi6ed as to whether it is assumed that the
vacuum is or is not invariant under scale tIa,nsforma-
tions. In the former case, renormalized 6eld. theories
have been the focus of attention and many new and
important results concerning the relationship between

Physics, Summer School of Theoretical Physics, University of
Hawaii, 1969 (unpublished); and (c) P. Carruthers, Phys. Rept.
(to be published).
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scaling and the renormalization group, in soluble models
or in perturbation theory for simple models, have been
obtained. ' It is not clear how the conclusions of these
studies will be affected if it is assumed that the vacuum
is not invariant under scaling. Such spontaneous
breaking has recently been shown to be physically
interesting. '4 In Refs. 3 and 4 and in the lectures
by Gell-Mann, ' there have been attempts made to
ascertain whether (a) the part of the Lagrangian which
breaks scale invariance can be ascribed to the same part
which breaks chiral SU(3)&(SU(3) invariance or (b) a
chiral SU(3)&&SU(3) scalar is needed to break scale
invariance when the SU(3)&&SU(3) breaking is turned
off. It might be thought that the second case must hold,
particularly in view of the recent analysis by Kim and
von Hippe15 of meson-baryon scattering lengths. This
analysis seems to show that the nucleon matrix element
(E i

'So+ cQS
~
Ã) is small Lwhere eo and e8 are scalar

components of a (3,3)+ (3,3) representation j.However,
there are possibly large systematic errors arising in this
evaluation from the complicated extrapolation and ap-
proximation procedure used, so that this result i

albeit
the most compelling evidence at the present time for the
existence of an SU(3))&SU(3) singletj is not sufFi-

cient' 4 to decide between alternatives (a) and (b).
Another interesting problem which has been con-

sidered in the spontaneous-breakdown approach is to
try to determine if the non-scale-invariant operators
have a unique dimension and, if so, what that dimension
d is. The phenomenological tests proposed so far'& ) '
have not been able to settle the first of these two points.
The data, under certain assumptions at least, are
compatible with the unique-dimension hypothesis. On
the value of the dimension there does, however, appear
to be some contradiction between Ref. 3 (which, on
considering baryon matrix elements and making certain
assumptions about the smoothness of form factors in the
scale-invariant limit, finds that d= 1 in lowest order)
and Gell-Mann' (who considers the shift in energy of
pseudoscalars to show that d should be 2 if only a chiral-
symmetry-breaking term is present).

A resolution of this contradiction was shown in Ref. 3
to follow if there exists an SU(3)&&SU(3) scalar which
breaks scale invariance. The present paper is devoted to
analyzing further the problem of dimension. In par-
ticular, we shall strengthen the proof given in Ref. 3 by
removing some of the assumptions contained therein.
Vile shall isolate the crucial step in this proof, which
involves consideration of the behavior at infinity of

~See, e.g., the recent papers by K. Wilson, Phys. Rev. D 2,
1473 (1970);2, 1478 (1970);SLAC Report No. 737 (unpublished).
Also see the following: C. G. Callan Jr., Caltech. Report Nos.
CALT-68-257 and 259 (unpublished); R. Jackiw, MIT report
(unpublished). Further references and discussion, are given in
Ref. 1(c).

3 S. P. de Alwis and P. J. O'Donnell, Phys. Rev. D 2, 1023
(1970).

4 P. Carruthers, Phys. Rev. D 2, 2265 (1970).
~ J. K. Kim and F. von Hippel Phys. Rev. Letters 20, 740

{1969);F. von Hippel and J.K. Kim, Phys. Rev. D 1, 151 (1970).

massless Goldstone particles. In Sec. II we develop the
notation and discuss the problems arising from the
introduction of spontaneous breaking of scale invari-
ance. Section III gives, in detail, the proof of the state-
ment that if the Lagrangian which breaks scale invari-
ance has a unique dimension, then to lowest order this
dimension is unity. Section IV concludes and summa-
rizes the work.

II. SPONTANEOUS BREAKDOWN
OF SCALE INVARIANCE

From the work of Callan et a/. ,' we know that we can
define the energy-momentum tensor 8„„in such a way
that the generator of dilations D may be written

Such a stress-energy tensor has the property that in
renormalizable field theories its matrix elements are
finite. Breaking of scale invariance is then simply re-
lated to 8„1"since

Now suppose that we may write the energy density
000 as a sum of two parts, one (800) which is scale
invariant and thus has the dimension d = 4, and a
remainder (world scalar) eL' which —breaks scale
invariance. That is,

Opp =Ilmepp —eLI
q-+p

=Hp()
—eL',

where we have defined epp=lim, p8pp. If I.' consists of
pieces w„of dimension d„, then we have the "virial
theorem) 7i(b) 3

e„&=+ (4—d„)w„.

Since, as mentioned in the Introduction, the evidence
for the existence of different d„ is scanty, we shall
assume that all of the parts making up I.' have the
same dimension d, in which case

We note here, in passing, that this equation may not
be as simple as it looks when scale invariance is broken
spontaneously in the Goldstone way. A simple field-
theory example illustrates the difhculty. Consider the
Lagrangian density of a simple scalar-meson model:

with

C. G. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (N. Y.}
59, 42 {1970).
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Now redefine p by

@o

energy-momentum density, we have' (where M is the.
nucleon mass)

Ei(0)+2MFs(0) = 1. (3.2)

where Q')=0. In this case the Lagrangian density
becomes

I ~ —r (g y~)s rrrisyjs+gy~s+ fy14

0'„"=m2@ 2—g@ 3.

Here we have defined m' = —12fQs' and the external (no
linear term present) condition is

Now either Lagrangian L, or 1.' forms a suitable one
for scalar-meson theory, but in this latter case there are
mixed dimensions in the toms which break scale
invariance. Thus in model calculations, in lowest-order
perturbation theory, at least, one needs some additional
criterion to determine a starting point for the theory
when the field can have a nonzero vacuum expectation
value. This example also shows where much of the
trouble arises in trying to trace backwards from the real
world to what we may consider as the symmetric world
which underlies this real world. For when the field @ is
massless and has nonzero vacuum expectation value, the
diRerence between H„„and 8'„„will not necessarily go to
zero fast enough at large distances. ~ In Sec. III we shall
discuss this further since the basic step in our proof of
the value of d is concerned with just such a problem.

III. BROKEN SCALE INVARIANCE
AND DIMENSIONS

In this section we shall assume that the part of the
Lagrangian density which breaks scale invariance has a
unique dimension d. For definiteness we shall only
consider nucleon matrix elements. This has an advan-
tage over considering pseudoscalar matrix elements in
that we shall not be led into comparing terms involving
the pseudoscalar masses with at least comparable terms
coming from symmetry breaking. '

The matrix element of O„„between nucleon states is

Taking the trace in Eq. (3.1) and evaluating at k'= 0
gives' 4. 'o

fsguNN

The proof of the dimension of I' now proceeds as
follows. First, note that

(3.3)

jP2
lim(p'I e,.l p) = —

I P,(0)+m J,(O))
I 0 M

Hence
=E'/S/.

jv2
. limlim(y'lo„lp)= —.

~~0 k-+0 3I

(3.4)

=&p'I limeoo
I p&

—(p'I &u I y&/(& —4), (3 S)

using the broken-scale-invariance conditione

g„u= (d 4)el.'. -
Wi.thout a complete theory of strong interactions we

cannot calculate the matrix elem~~t (y'l»m. se»lp).
Since such a matrix element involves a massless
(Gold'stone) particle, we cannot assume that the limit
may be taken outside the matrix element when the
states

I p) are the usual (covariant) momentum states.
This is related to the point mentioned in Sec. II with
regard to the example of scalar-meson theories.

Vive can proceed. , however, if we 6rst normalize the
nucleon states in a box of volume V (less than e ') and
then let V —+~ to restore relativistic invariance. With
this procedure understood, we may write

The limit k —+ 0 ensures the absence of the 0-pole term;
the limit e~o is taken to emphasize that we are
working to zeroth order in ~. As mentioned in Sec. II,
we may write

~oo =hmeoo —~I
e~o

Hence

&p'I ~«l p&
=&y'1(»m~se —«')

I p&

=N(p') a(7uI'. +v&u)I" i(k')+st'uIP s(k')

fagua%
+(g„„k'—k„k„) +Ps(k') N(y), (3.1)

m.2 k2

&y'l»m~»I p&=»m&p'I ~«l p)

%e also have'

1'm&p
I
e "Ip) =3fg.

(3.6)

where I'u= (p'+p)„.k„= (p' —p)„and where we have
explicitly displayed the pole term arising from the
"Goldstone" particle with the quantum numbers of the
vacuum, the dilaton denoted by o.s Since 8ou(x) is the

7 C. .G. Callan and P. Carruthers (unpublished).
The normalization of the fermion states is (p' ( p) = (2s.)'(po/M)

XB'(p y) a' n—dgl=t. The constant f, is define by(0[8u„)e(k))= fa(g pvk' —

krak.

).
9 H. Pagels, Phys. Rev. N4, 1250 (1966);D. Gross and J.Wess,

Phys. Rev. D 2, 753 (197'0). The latter authors also state that
Py. I'0) =0 follows from considering x„80„4'x)—x,80„(x)as the angular
momentum density. We do not need to use this result explicitly
in our proof.

'0 We shall always be considering the limit e —+ 0 so that all
results are to order e0. Note that m '=0(e).
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so that Eq. (3.5) gives Lusing Kq. (3.6)j

3frrgrNN
lim lim(p'I 8ooI p) =lim lim(p'I 8„Ip)—,(3.7)
~~0 R~o k~o e~o (d-4)

showing that for arbitrary (but finite p), the interchange
of limits of the matrix element of 000 is nonuniform, as
already noted in Ref. 3.

In addition, we see from the presence of the pole term
on the right-hand side of Eq. (3.7) that, i~respective of
the validity of Eq. (3.6), we must have a pole term in
the matrix element (p'Ilim, o8ooI p) if the splitting up of
800 into a scale-invariant and sca1e-noninvariant part is
valid. In Ref. 3 the right-hand side of Eq. (3.7) was then
calculated usslmimg that the form factor F&(0) behaves
smoothly as a function of e as ~ —+ 0.We shall now prove
that the form factors F&(0) and F&(0) are regular func-
tions of ~ in this limit of ~ —+ 0, To do this, we first of all
calculate the right-hand side of Eq. (3.7) in an arbitrary
frame using Eq. (3.1).This gives

E'—LF,(0)+mF, (0)j
3f

I'-(1"i~-)f'g.- 3f.g.=-«d 4), (3-»
k~0

where F;(0) denotes the form factor F;(0) calculated.
with ~ set to zero. This is permissible since we see that if
we now Iet

I pI —+~, then Kqs. (3.4) and (3.» give

»m»m&p'
I 8oo I p) =»m»m&p'

I 8oo I p) i (3 9)

i.e., in the in6nite-momentum frame, the matrix element
of 000 becomes uniform under the interchange of the two
limits, the pole terms arising from the zero-mass
Goldstone particles vanishing in this frame. Equation
(3.9) also tells us that F~(0)+23EFo(0)=1, the result
assumed in Ref. 3. If we use this and now evaluate Eq.
(3.7) in the rest frame p=Q, we obtain d =1.

IV. CONCLUSlONS

In Sec. III we have strengthened the proof 6rst given
Ref. 3 of the dimension of the broken scale-invariant
part of the Lagrangian. The crucial steps in this proof
consist of using the in6nite-momentum frame to de-
termine the behavior of the form factors as functions of

0, and also being able to extract the limit ~ ~ 0 from
inside the matrix element. To do this, we proceeded by
normalizing in a box (or alternatively using a narrow
Gaussian distribution), in which case the limit as o ~ 0
may be taken outside the matrix element. This pro-
cedure is necessary since in theories with massless
particles the integrands may not go to zero fast enough
at in6nity to make the integrals finite. This same be-
havior will also affect the 6eld-theory calculation of
Ref. 2 for, e,g, , Ward identities may now have addi-
tional surface terms present. In view of the fact that

most of the physical content of broken scale invariance
has come from considering a degenerate vacuum (Gold-
stone) approach', ~"~ o 4 it would seem necessary to allow

for such a case in the model 6eld-theory approach. '
If we now assume that d remains one when higher-

order terms in ~ are introduced, then, as already noted
in Ref. 3, the contradiction between this value and
those considered in Ref. 1(b) is removed by the presence
of an SU(3) XSU(3) scalar term b in I.' in addition to
the usual breaking term No+clo.

With two terms 8 and I now breaking scale invariance,
there is, of course, no reason for both to have the same
dimension, and indeed there are various choices of
dimensions d„and dq which give reasonable solu-
tions. '&b~ 4 In the present case we have also shown that
there exists the possibility that these are equal, in which
case d„=dq=d= i. There is a further implication that
can be drawn from having 0=1. Carruthers4 and Gell-
Mann' have shown that a solution of the virial theorem
is

~(v,X) =gv I *1
loof (z)

where z=X', I'. vjv'io*, provided the dimensions are inde-
pendent of v and X. Here we assume that the part of 800

which breaks scale invariance is written as yh+XN, with
8 an SU(3)XSU(3) scalar. Also x=4—do, y=4 —d„,
where d~ and d„are the dimensions of 8 and u. If we

suppose that these dimensions are the same and are
both unity, x=y=3. In order to obtain m'~X for
pseudoscalars and MO-. X for baryons, we must have

fu(z) oos' and fg(z) ~s', respectively. Such behaviors
for f(s) will be singular in v as v -+ 0 unless we write

vb+XN =v(b+qN),

i.e., unless we switch oB both terms in going to the
scale-invariant limit.

It should be emphasized that in our work we have
assumed the absence of interactions which break scale
invariance and which arise from sources other than
spontaneous breaking. If these interactions have a zero
matrix element between dilations and the vacuum, they
will not affect our arguments since our results about the
dimension of the terms which break scale invariance are
derived in the limit of turning o6 the breaking part of
the Lagrangian. Within such limits, it would seem that
this work, together with that of Gell-Mann, ' requires
that scale invariance be broken by at least two terms 8

and e. It is still an open question whether these terms
have the same or diferent dimensions.
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