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Multiperipheral Nonfactorization, Signature, and Toiler-Angle-Variable Cuts
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It is shown that the assumption of a multi-Froissart-Gribov definition of signature for multiparticle
amplitudes coupled with the existence of discontinuities of internal Regge-residue coupling functions in
Toiler-angle variables in general gives rise to a nonfactorizable expression for the asymptotic behavior of
the full amplitude, even when the signatured amplitudes factorize. Factorizability occurs only in certain
exceptional cases, including strict exchange degeneracy. The formalism can be cast into a two-vector form,
however, which does factorize in a matrix sense. Chew-Goldberger-Low-type equations thus become 2&&2
matrix equations in general. Multi-Froissart-Gribov formalism problems involving analyticity and uni-
tarity of multiparticle amplitudes are ignored.

I. INTRODUCTION interactions, the asymptotic full amplitude should
factorize approximately. In any case, we show that
factorization in a two-vector formalism is always
possible. Unitarity equations of the Chew-Goldberger-
Low (CGL) type' then become 2&&2 matrix equations.

The preceding results all rely on a multi-Froissart-
Gribov (MFG) definition of signature. This definition
is defective. Actually, an acceptable concept of sig-
nature for a multiparticle process using analyticity has
not been formulated. 4 The main difhculties have been
threefold. First, one must write dispersion relations for
multiparticle amplitudes taking into account Gram-
determinant conditions for singularities in dependent
variables. It is required that right (left) half-plane
branch points in each independent subenergy rejected
from the dependent-variable singularities have branch
cuts in the right (left) half subenergy planes. That is,
subenergy branch cuts must not cross the imaginary
axes. ' The positions of these rejected subenergy singu-
larities are in general mutually dependent.

The second difhculty is that the signatured ampli-
tudes must . satisfy unitarity including multiparticle
intermediate states. Drummond' has shown that the
ordinary definition of signature is incompatible with
three-particle intermediate states, even for the 2 —+ 2
amplitude. The third difhculty involves divergent
infinite-helicity sums and will be discussed separately. '

We assume here that it is possible to write all appro-

1
W~NE of the most common ideas connected with the

multiperipheral model has been the notion of
factorizability. That is, the 2 —+ e amplitude at asymp-
totic subenergies should be proportional to the 2 ~ e—1
amplitude with a factor depending on the added vertex.
On the other hand, the factorization of the Regge
residues in the 2 —+ 2 amplitude is proved using uni-
tarity in the momentum transfer for the signatured
partial-wave amplitudes. One would therefore suspect
that the factorization of residues for the multiparticle
amplitude should in principle be formulated for the
signatured multi-O(2, 1) partial-wave amplitude. In the
2 ~2 and 2 ~3 amplitudes this assumption leads to
factorization of the asymptotic behavior of the full
amplitude. Even in the case of three final particles, how-
ever, a surprising result emerges which is connected with
the discontinuity of the internal Regge residue in a vari-
able q related to the Toiler angle co. The likelihood of
these cuts has been discussed by Drununond, Landshoff,
and Zakrzewski, ' where the crucial g dependence is of
the form (—ri) '. The discontinuity gives rise to an
additional phase beyond that of the product of the two
signature factors. ' For the 2 —+ e case with e&3, more
than one Toiler angle co, enters, and the Regge coupling
functions will generally have discontinuities in the
corresponding variables g;. We show that these g;
discontinuities not only lead to additional phases
beyond the product of the signature factors, but also
result in a nonfactorizable asymptotic behavior for the
full amplitude. Factorization occurs only if these
discontinuities vanish or cancel. This occurs in the cases
of strict exchange degeneracy and when Regge tra-
ectories assume physical right-signature j values. If
the strengths of the q; discontinuities are small, due to
approximate exchange degeneracy, near right-signature
values for trajectories, or extreme peripherality of
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priate dispersion relations. The results we achieve are
admittedly based on a nonunitary theory. It would
seem, however, that since the ultimate dehnition of
signature (if it exists) will be more complicated than the
one used here, only miraculous cancellations in the
unitary theory will recover factorization.

In Sec. II we treat the 2 —+ 4 amplitude which is the
simplest case where nonfactorization occurs. We also
discuss exceptional cases in which factorization is
retained, and we formulate the 2)&2 matrix CGL
equation. In Sec. III we treat the general 2 —+ m case.
The Appendix outlines the MFG formalism.

P( P
'

a~ a& a&

Pg

IL 2 —+ 4 AMPLITUDE AND MATRIX
CGL EQUATION

We choose the independent variables for the 2 —+ 4
amplitude with spinless particles as indicated in Fig. 1,
namely, the three neighboring subenergies s;, the three
neighboring momentum transfers t;, and the two
Toiler angles co;. In terms of the full signatured ampli-
tudes f2 4 "3'4($1$2$3, tlt2t8, cd1402), where r;=&1, the
full amplitude is Lsee Appendix, Eq. (A6)]

gfbm4($1$2$8q tlf233 j 401442) = Q Q i4118298

Fig. 2 and Eq. (A7)]

f2~4 ($1$2$8j $132/3) 4111402) Sgal(/1)gb4(/3)

where

X(—$1)~' &' (—$2)"'(i' (—$3)~' 18

XP1(hg14)P2(4g24), (2.2)

Fre. 2. Regge residue and trajectory notation for the 2 —+ 4 process.

&1~2&3 &1&2&3

Xf2~4 (P1$1qv2$2qv3$8i flkbtbj &1—P122r) M2 —P232r) y

(2.1)
where

li;-1- [tg~12—t;—t;+,+2 (V;+1)' '
X ()$;

~ ~
$;+1~ /$;$4+1) cos~;]X '(t;t;+1288~12)

$i, i+1/$i$i+1 &
(2.3)

and
vi=&1

1
y

vi=1

v v+y= 1

0, vivi+q =1.

For a multi-Regge pole in the signatured multi-
partial-wave amplitude, we have the factorized asymp-
totic expression for the full signatured amplitude /see

where $;,;+1 is the three-particle subenergy (p,+p;+1
+P'+2)'

The ie prescriptions for the gi are obtained as in Ref.
2. The result is that gi has a —i e prescription if the two
neighboring subenergies si and s~~ both have —ie
prescriptions (v; and v;+1= —1).Otherwise q; has a +i&
prescription. Since the full signatured amplitudes
f2 4'1'2'3 have only right-hand $; cuts, we may analy-
tically continue from $;(0, where f2 4"($;,t;,01;) is real,
to $;)0 with a+ib prescription asymptotically using
$,= (—$,)e ' ($4&0). We obtain from Eqs. (2.1) and
(2.2)

f2~4($1$2$8) $1$233j 401402) tl(/1)$2(/2)$3(~3)

P) P2

]( ](
l 2 3

X$1 1 $2 $8 8 g~l(/1)gb4(/8)82~4(/lf2$3Y/17j2)y
(2.4)

where

tp

Cd( Cd

f 2'1'T2 l +P2T2r3 Tl
&8

l

— 8 ——&8), ~2R
tl)2 ] (258 $1

e iwa4+ r . —

Fxo. 1. Kinematics for the 2 -+ 4 process.

Pb

We see that an extra phase besides that of the product
of signature factors tlb$8 is present in E2 4, similar to
the result obtained for the 2 —+ 3 amplitude. ' However,
it is easy to see that R2 4 does not factorize into any
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expression of the form

(ops+»Pl) (~ps+dAP2) .

For calculating (bd) and (ad)(bc)/(ac), we get both
T1T2Ts/$1/2)s and T1T2'Ts/bb'$8, which are not equal.

Now let us assume that AP2 ——0. This happens, for
example, when 0,3 becomes physical. We must also
assume its value is of right signature so that )8/0. We
then get a factorized expression for E2 4.

a way that

R2~4)

Ss 4/

( P2 (Ts/$8) AP2 R2~3

&( /$)P —( /$)AP S „
Vs 4 ——K(vertex 2)V2 s. (2 13)

R2~4l 632=0 P2(pl (T1T2/hts)dpi) ~psR2 s . (2.7)

We recognize the second factor as the expression
obtained in Ref. 2 for the Regge residue of the 2 —+ 3
amplitude, namely fs 8 g, lgss&1&sslnsss 2R2 8

Next, assume that there are two exactly exchange-
degenerate trajectories +3+ and e3 with equal residues
and '

P+=e '-'+T + —
(T,+=a1),

We will also show that this matrix factorization is a
general property of the 2 —+ e amplitude. Thus we will
obtain

Vs„„——K(vertex n —2) Vs„n 1. (2.14)

With this accomplished, we may imagine writing
equations of the CGL type. ' From unitarity, we have
(suppressing the variable dependence which duplicates
that of the CGL equation. )

respectively. The Ts sum in Eq. (2.1) produces a cancel-
lation of the AP2 terms in the full amplitude, again
yielding factorization. We obtain

Imfs 2=2 fs fs-.*p.. (2.15)

where

f2~4 $1/2&1 '&2 '&8 'gnlg04R2~4 p We consider the following matrix equation, where the
11 element is the unitarity equation:

Rs 4 =Ps($8++4 )pl (T1T2/fr—b)&pl]
AP2(T8 +'rs ) (T2/$2)[P1 (T1/$1)AP1]

P2yl (T1T2/$152)~plj ~

Imfs 2

(2 9)
~ ~ ~

2~n 2~n 2~n 2~n

~f2~nf2~n f2~nf2~n

We have seen that factorization of the 2 ~ 4 ampli-
tude has been spoiled by the presence of the AP; dis-
continuity terms. If Ap; is small for some dynamical
reason, we will obtain approximate factorization. Two
obvious cases are approximate exchange degeneracy and
trajectories assuming approximate right-signature phys-
ical values. Another possibility arises from a peri-
pherality argument. If P, (t;st;t,+1) is highly peaked in

t 4.1 so that 'only t,= t;+1=(t)((228,+12 contributes, we
see from Eq. (2.3) that q; becomes approximately
independent of the cosa&; term. We get

Ps Ps tP (2.16)

where fs„and Fs„„are de6ned by

V)~nV2 +n —K(V2~n —1V-2~n—1 )K (2.18)

l-g. g -(II E; '")V . (2.17).
kfs „)

But from Eq. (2.14)

m j+l2 SiSi+l

2(t) 18'I I8'+ll
1+ 1+

mi+1 2
costa;

)

Suppressing irrelevant factors and "backing up a
rung, '" we obtain

so that AP;=0.
We next exhibit the two-vector factorization. We set

~ "V2 nV2 n'

S2„8——(Ts/$2)[ pl —(Tl/$1)Apl] ~ K(V2 „1U2 „ lt)K"

(Rs 8)

&S2„3/

(2.10)
=80+ KBKt. (2.19)

We obtain from Eqs. (2.5), (2.7), and (2.10)

R2~4 P2R2~3 (Ts/$8)AP2S2~8 (2.11)

In Sec. III we will obtain a definition for S2 4 in such

This is the generalized CGL equation, a 2&2 matrix
equation. Once the matrix 8 has been calculated, we
add back the last rung and obtain Imf2 2 from the 11
matrix element of the result in Eq. (2.16).
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'
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directly

Err 2$—» lr-—r 2~» Pn —3P»—2&n—I+2v» —2

+tn —2(P»—2 +An —2)2»—1+2~»—1 r (3'7b)

and using Eq. (3.4), we again obtain Eq. (3.7a).
Finally we obtain

(A- ) 0 2 — —(~n—I/»n —1)~P»—2'«

(r.-i/4-1)P. -2 (~=—I!k. I)~P-=2i

[, (3.S)
(2('2»»—I'«

&S2„„1i
'

which is of the form Eq. (2.14). If Ap„2/$„1=0, we

obtain multiplicative factorization 2(!2 n=pn 2R2 n i.
If some hP;/$;+I ——0 or if exchange degeneracy occurs
in the 2+1 rung, the amplitude factors multiplicatively
into two parts, depending on variables to the right and
left of that rung.

%e explicitly consider the e8ect of exchange de-

generacy in the 23—1 rung. We have from Eq. (3.6)

's—2

f2~» gnig3»(rr hi~i ')

where an R (L) 2th place superscript in f(22.«xi'"x"-2
indicates the presence of only right (left) half s;-plane
cuts.

Writing a dispersion relation for each f«Ir,.«(x'«({&;,&;})
function in the s; at fixed «!,&0, we have (neglecting
kinematic singularities)

f«2r;«(x'«({~',&')) =
g1 Sy —Sy

«r

02(«rI') $2 $2
I

+n-1 (&1 ' ~ ~ s'n-2') Sn—1 Sn—1

X&«2r;««x' o'«({r,&;)), (A2)

where the discontinuities are taken over subenergy
contours C; that are in general mutually interdependent
due to Gram-determinant conditions, and which lie in
the E (L) half s; plane accordingly as 1;=E (L). Since
many singularities are present, C; generally represents
unions of contours. If we now insert Eqs. {A2) and

(A1) into the multi-O(2, 1) expansion inverse formula
for f«2i,.««'*'«({««;)),"and use the integral identity

X&n—1 ". $($n—1 1$n—1 )Pn 2R2~» 1— —

~P» 2(&n I—+&» -1)~2«»——I] ~

Input tn —1 +4—i =2s ' " ' and &n—I +&n—i =0, pr»-
ing multipHcative factorization.

(,I v'(s) =skin(v' &)—Sln2r(J —«() 8g v{S )dS

I

(A3)
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APPENDIX

In this Appendix we brieQy outline the multi-
Froissart-Gribov formalism for the 2 —+ e amplitude,
since most of it has already been presented. 7' "The
procedure parallels the 2~ 2 case. The kinematics are
illustrated in Fig. 3.Ke use the neighboring subenergies
s; interchangeably with the more conventional s;, and
take the case with all particles spinless.

The full amplitude f({s;,3;,~;)) with Fourier com-

ponents f«32,.«({s;,t;)) is expanded in a multi-O(2, 1)
expansion" in terms of multi-partial-wave amplitudes

f(2i, «« "«({3;}).We separate out the right- and left-hand
subenergy-plane cuts of f«3r, «({s,,«, )) (but see. the
Introduction):

fair;«({s;,t,))= Q f(,~,«« '«({s;,«';}), (A1)
~X;=R,I

~

f Xs=B,L l i=1 g
dSi &M(2'Ir( r' '(S'i ), '

Xgrg(2r. «( i, Ci«({ g. Ir(.}) (A4)

where the C; are the C;, but Qipped over into the right-
half s, plane if C; lies in the left-half s; plane. Also,

1 1'=R
X =I.

n—1 n—2

gT TT &, (1 vi)/2 rr Si—»2fivi, i+1

we obtain a formula for f«2r, ««"«({t;)) .in terms of
integrals over the 5«2r,.««x' o'«. LIn doing this, one must
add in the finite integrals J'1'd" in appropriate
places in order to use Eq. (A3). Doing so makes no
contribution to the principal-series integrals over
Rej;=—2 because of symmetry under j;—v —j;—1.2$

For a left half s;-plane contour C;, the s; variable in

6(«2(.««x' c'«({s;««;)) will get a minus sign, and a factor
e—'"&' will occur. The signatured multi-partial-wave
amplitudes f«2r,.««" "«({ll;})are defined by replacing all

such e ' " factors by r; (r,=&1). The result is the
multi-Froissart-Gribov formula

{)J. F. Boyce, J. Math. Phys. .8, 675 (1967).
'0 J. B. Hartle and C. K. Jones, Phys. Rev. 184, 1564 (1969);

T. K. Gaisser and C. K. Jones, ~bid. 184, 1602 (1969).
"See, M. Andrews and J. Gunson, J. Math. Phys. 5, 1391

(1964); M. Toiler, Nuovo Cimento 3'7, 631 (1965); and N. F.
Bali, G. F. Chevy, and A. Pignotti, Phys. Rev. 163, 1572 (1967).

0~ PsPs+j =1
~

Iand 3E;+.g'= v;„+gM; .

My ~
py= p2=

+Iivl 1, otherwise
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This simply means that a factor v.; occurs whenever
the colrespond1ng v 1n the argument of Af~-l~
in (A4) is —1. The internal helicity-fhp factors o' ~'
appear whenever neighboring parameters v;, v~l
have opposi. te signs in A(~,.) ~x' ~'».

The full signatured amplitude fi"» ({s;,t;,I,}) is
defined as having fisr. its"'ii({t })as its O(2, 1) partial
waves. It has only right-hand cuts in all subenergies
s;, and is expressed in terms of the fisr,.)ix't({s;,t;})
amplitudes by

A multi-Regge pole occurs as a set of j;-plane poles
in the signatured multi-partial-wave amplitude
fist.ii""i({t;}) since that is the amplitude' which
supposedly can be analytically continued in the j;
variables. The multi-Regge pole also occurs with a
factorized residue (see the Introduction). The resulting
asymptotic behavior of the full signatured amplitude
is therefore factorized as well,

tsi' ' 'tss if -~({nisi) tit ooi &i.i+is })y

f Xs=g, I J

j.
~

pg=1

v" s= —1
(AS)

Xts if~"i({o;s;,t;, io;—r, ,;+isr}). (A6)

and r; and v;„+i are defined above. The (io;—v;„+ter)
dependence is due to the extra e' ~'"' '+' factors in the
Fourier M~ sums for fi xi

The full amplitude is expressed in terms of the
signatured full amplitudes by

Use of Eq. (A6) then yields the asymptotic form for
the full amplitude, as described in the text. For a given
multi-Regge pole, the {r;}sum is absent.

Toto added mrs proof. Professor I. Halliday has em-
phasized to us that cuts in. the subenergies s; arising
from unitarity in dependent variables and Gram-
determinant conditions render the analytic continual
tion of some of the terms in Kq. (A6) to the physical
region to be more complicated than the asymptotic s;
continuations used here. There is the possibility that
mixed ~e prescriptions for the g; in these anomolous
terms may recover factorization for the full amplitude
in the ordinary sense. For a perturbation theory cal-
culation which factorizes, see D. K. Campbell, Phys.
Rev. 188, 2471 (1969).
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It is shown that if the Hamiltonian can be split into a part which is scale invariant and a part which
breaks scale invariance by means of a dilaton, then, if the latter part has a unique dimension, this dimension
must be I if the vacuum does not realize the invariance under scaling. This implies that there must exist a term
which breaks scale invariance in addition to that which breaks chiral SU(3) XSU(3) symmetry in order to
avoid a contradiction with Gell-Mann's argument.

I. .INTRODUCTION

~ ~HE study of the relation of scaling transforma-
tions to the dynamics of strong interactions and

to deep inelastic electroproduction has been the subject
of many recent investigations. ' In the study of the

*Research suppor'ted in part by the National Research Council
of Canada.' Good reviews on the subject to the present are given by the
following: (a) G. Mack and A. Salam, Ann. Phys. (N, V.) 53, kf4
(1969); (b) M. Gell-Mann, Symmetry Violation in Hadron

dynamical consequences of broken scale invariance, two
main approaches have in general been pursued. These
may be classi6ed as to whether it is assumed that the
vacuum is or is not invariant under scale tIa,nsforma-
tions. In the former case, renormalized 6eld. theories
have been the focus of attention and many new and
important results concerning the relationship between

Physics, Summer School of Theoretical Physics, University of
Hawaii, 1969 (unpublished); and (c) P. Carruthers, Phys. Rept.
(to be published).


