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It is shown that the assumption of a multi-Froissart-Gribov definition of signature for multiparticle
amplitudes coupled with the existence of discontinuities of internal Regge-residue coupling functions in
Toller-angle variables in general gives rise to a nonfactorizable expression for the asymptotic behavior of
the full amplitude, even when the signatured amplitudes factorize. Factorizability occurs only in certain
exceptional cases, including strict exchange degeneracy. The formalism can be cast into a two-vector form,
however, which does factorize in a matrix sense. Chew-Goldberger-Low—type equations thus become 2X2
matrix equations in general. Multi-Froissart-Gribov formalism problems involving analyticity and uni-

tarity of multiparticle amplitudes are ignored.

I. INTRODUCTION

NE of the most common ideas connected with the
multiperipheral model has been the notion of
factorizability. That is, the 2 — # amplitude at asymp-
totic subenergies should be proportional to the 2 — z—1
amplitude with a factor depending on the added vertex.
On the other hand, the factorization of the Regge
residues in the 2— 2 amplitude is proved using uni-
tarity in the momentum transfer for the signatured
partial-wave amplitudes. One would therefore suspect
that the factorization of residues for the multiparticle
amplitude should in principle be formulated for the
signatured multi-O(2,1) partial-wave amplitude. In the
2 —2 and 2 — 3 amplitudes this assumption leads to
factorization of the asymptotic behavior of the full
amplitude. Even in the case of three final particles, how-
ever, a surprising result emerges which is connected with
the discontinuity of the internal Regge residue in a vari-
able 7 related to the Toller angle w. The likelihood of
these cuts has been discussed by Drummond, Landshoff,
and Zakrzewski,! where the crucial n dependence is of
the form (—#)~*. The discontinuity gives rise to an
additional phase beyond that of the product of the two
signature factors.? For the 2 — # case with #>3, more
than one Toller angle w; enters, and the Regge coupling
functions will generally have discontinuities in the
corresponding variables 7;. We show that these #;
discontinuities not only lead to additional phases
beyond the product of the signature factors, but also
result in a nonfactorizable asymptotic behavior for the
full amplitude. Factorization occurs only if these
discontinuities vanish or cancel. This occurs in the cases
of strict exchange degeneracy and when Regge tra-
ectories assume physical right-signature j values. If
the strengths of the »; discontinuities are small, due to
approximate exchange degeneracy, near right-signature
values for trajectories, or extreme peripherality of
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21. T. Drummond, P. V. Landshoff, and W. J. Zakrzewski,
Phys. Letters 28B, 676 (1969).
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interactions, the asymptotic full amplitude should
factorize approximately. In any case, we show that
factorization in a two-vector formalism is always
possible. Unitarity equations of the Chew-Goldberger-
Low (CGL) type? then become 2X2 matrix equations.

The preceding results all rely on a multi-Froissart-
Gribov (MFG) definition of signature. This definition
is defective. Actually, an acceptable concept of sig-
nature for a multiparticle process using analyticity has
not been formulated.* The main difficulties have been
threefold. First, one must write dispersion relations for
multiparticle amplitudes taking into account Gram-
determinant conditions for singularities in dependent
variables. It is required that right (left) half-plane
branch points in each independent subenergy reflected
from the dependent-variable singularities have branch
cuts in the right (left) half subenergy planes. That is,
subenergy branch cuts must not cross the imaginary
axes.’ The positions of these reflected subenergy singu-
larities are in general mutually dependent.

The second difficulty is that the signatured ampli-
tudes must satisfy unitarity including multiparticle
intermediate states. Drummond® has shown that the
ordinary definition of signature is incompatible with
three-particle intermediate states, even for the 2 — 2
amplitude. The third difficulty involves divergent
infinite-helicity sums? and will be discussed separately.®

We assume here that it is possible to write all appro-

3G. F. Chew, M. L. Goldberger, and F. E. Low, Phys. Rev.

%l%tess 22, 208 (1969); 1. G. Halliday, Nuovo Cimento 60A, 177
69).

41t is not clear that the group-theoretic definition of signature
for multiparticle amplitudes avoids the difficulties mentioned
here, or that it does not also lead to nonfactorizable asymptotic
amplitudes if it is made consistent with crossing. See M. Toller,
Nuovo Cimento 53A, 671 (1968); 54A, 295 (1968); and Rivista,
Nuovo Cimento 1, 403 (1969). I wish to thank M. Ciafaloni
for discussions on this point.

5 For fixed timelike momentum transfers, such unwanted cuts
do appear [S. Mandelstam (private communication)]. We are
concerned here only with asymptotic properties of amplitudes at
spacelike momentum transfers which, as far as we know, may or
may not have these cuts.

( liI.)T. Drummond, Phys. Rev. 140, 1368 (1965); 153, 1565
1967).
( 7Rj L. Omnes and V. A. Alessandrini, Phys. Rev. 136, 1137
1964).

8 J. W. Dash, preceding paper, Phys. Rev. D 3, 1012 (1971).
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3 MULTIPERIPHERAL NONFACTORIZATION- ..

priate dispersion relations. The results we achieve are
admittedly based on a nonunitary theory. It would
seem, however, that since the ultimate definition of
signature (if it exists) will be more complicated than the
one used here, only miraculous cancellations in the
unitary theory will recover factorization.

In Sec. IT we treat the 2— 4 amplitude which is the
simplest case where nonfactorization occurs. We also
discuss exceptional cases in which factorization is
retained, and we formulate the 2X2 matrix CGL
equation. In Sec. ITI we treat the general 2— » case.
The Appendix outlines the MFG formalism.

II. 2— 4 AMPLITUDE AND MATRIX
CGL EQUATION -

We choose the independent variables for the 2— 4
amplitude with spinless particles as indicated in Fig. 1,
namely, the three neighboring subenergies s;, the three
neighboring momentum transfers ¢;, and the two
Toller angles w;. In terms of the full signatured ampli-
tudes fa.s172s(s15953; fifals; wiwe), Where 7;,===1, the
full amplitude is [see Appendix, Eq. (A6)]

8 faa(515253; tabals; wiwa) = 2. D pipeus

T17273 V1V2V3

X f2a™7273(v1S1, vaSa, v3S3; tilals; W1 — V12T, W2 —VesT) ,

(2.1)

where

vi==41
and

1, »=1

ﬂt—{
T, vi=—1,
1, vpia=-—1

Viitl= [
0, vwipa=1.

For a multi-Regge pole in the signatured multi-

partial-wave amplitude, we have the factorized asymp-
totic_expression for_the full signatured amplitude [see

P

Pa

Fic. 1. Kinematics for the 2 — 4 process.
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Fic. 2. Regge residue and trajectory notation for the 2 — 4 process.

Fig. 2 and Eq. (A7)]

Sasa™07273(515083; Libals; wiws) . 841(t1)gv4(ts)
83>

X (—s71) 0t (—gg)@2(t)(— g5)@s(ta)
XBi(tymta)Ba(tansts) , (2.2)

where

it~ [mip 2 —ti—tip1+2 (i)' ?
X (| si] |$iy1]/sisep1) coswi N (Edigamigs®)
"’Si,s'+1/ SiSit1,

(2.3)

where s§;:11 is the three-particle subenergy (pitpit1
+pire)?

The e prescriptions for the 5; are obtained as in Ref.
2. The result is that n; has a —ie prescription if the two
neighboring subenergies s; and si1 both have —ie
prescriptions (v; and »;,1=—1). Otherwise 5; has a e
prescription. Since the full signatured amplitudes
f2-4717278 have only right-hand s; cuts, we may analy-
tically continue from s;<0, where fs.47 (si,li,w;) is real,
to 5;>0 with a-ie prescription asymptotically using
si=(—s)e"" (s;>0). We obtain from Egs. (2.1) and
(2.2)

Jasa(515953; tatels; wiws) s £1(t1) £2(t2) £3(23)

Xyt s a2t sges(te) g 1 (1) g4 () Raa(fatatanine),

(2.4)
where
T1T2 Aﬁz’rﬂ'a T1
R2»4=52<ﬁ1'— ——A&)-— (ﬁ’l'— *‘Mﬁ), (2.5)
&6 £263 1
Ei=emimity,
ABi=Pi(t:, nitie, tiy1) —Bi(ti, ni—ie, tiyr) . (2.6)

We see that an extra phase besides that of the product
of signature factors {1£,£5 is present in Rs.,4, similar to
the result obtained for the 2 — 3 amplitude.? However,
it is easy to see that R, does not factorize into any
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expression of the form
(aB1+bAB1) (cBa+dAB,) -

For calculating (bd) and (ad)(bc)/(ac), we get both
1'1T2T3/£1£2£3 a.nd T1T221'3/21£22£3, Wthh are not equal.

Now let us assume that AB;=0. This happens, for
example, when a3 becomes physical. We must also
assume its value is of right signature so that £>0. We
then get a factorized expression for R;.4:

Rosa| agym0=B2(B1— (1172/ £1£2) AB1) =B2Ras5 .

We recognize the second factor as the expression
obtained in Ref. 2 for the Regge residue of the 2— 3
amplitude, namely f2.3~ ga1gvs12517152%2R 3.

Next, assume that there are two exactly exchange-
degenerate trajectories azt and «as~ with equal residues
and -

2.7

53:&=6—”a“+7'3:h (T3:|:=:]: 1) ,

respectively. The 73 sum in Eq. (2.1) produces a cancel-
lation of the AB, terms in the full amplitude, again
yielding factorization. We obtain

Sooar~ ErEas1%159%25393g 4104 Ro 4 BX | (2.8)
where
Ry d®X =Ly (&7 &) [B1— (1172/ £1£2) AB1]
—ABs(r5t4757) (ro/ £2)[B1— (71/£1) A1 ]
=2e"3,[ 31— (T172/£162) AB1] (2.9)

We have seen that factorization of the 2 — 4 ampli-
tude has been spoiled by the presence of the AB; dis-
continuity terms. If AB; is small for some dynamical
reason, we will obtain approximate factorization. Two
obvious cases are approximate exchange degeneracy and
trajectories assuming approximate right-signature phys-
ical values. Another possibility arises from a peri-
pherality argument. If B;(fn::r1) is highly peaked in
Li, tiy1 so that only t;~t; 1= {f)<<m, contributes, we
see from Eq. (2.3) that »; becomes approximately
independent of the cosw; term. We get

2(t) /1+ |5l hHllCOS@)g)]

My 12\ NPAPAS |

N

Ny m,-+12L

so that AB;=0.
We next exhibit the two-vector factorization. We set

Sos=(1o/E)[Br1— (11/£1)AB1]

and
Raos (2.10)
Vz..3=( >.
S2->3
We obtain from Egs. (2.5), (2.7), and (2.10)
Ry 4=P2Rs 35— (7'3/53>Aﬁ252—>3 (2-11)

In Sec. III we will obtain a definition for S, in such
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a way that

< B2 —(r3/ fs)AA32> (R2—>3

), (2.12)
(r3/83)B2  —(73/£3)AB2/ \ S0

or

Vz_,4=K(vertex 2) Vg_,a . (213)

We will also show that this matrix factorization is a

general property of the 2 — » amplitude. Thus we will

obtain

Voan=K(vertex n—2)Va,n1. (2.14)

With this accomplished, we may imagine writing
equations of the CGL type.® From unitarity, we have
(suppressing the variable dependence which duplicates
that of the CGL equation)

Imf2—>2=z /f2anf2»n*pn- (2-15)

We consider the following matrix equation, where the
11 element is the unitarity equation:

Imfa,e --- B /(fZ»nf2»n* f2»nf2»n*)
( ) 2 Fomnfaan® o

f?—»nf2—>n*
_—"Z /F2»nF2*nTpn, (2.16)

where fs.. and F,., are defined by

f2—>n n—1 )
FZ*F(” >~g.,1gb,,(n £ V. (2.17)
=1

2->n.

But from Eq. (2.14)

Vz»nV2-»nT=K(V2—>n—1V2—>n—1T)KT . (2-18)

Suppressing irrelevant factors and “backing up a
rung,”® we obtain

BEZ / .. Vz-nVZ-»nT
=Z /~ . 'K(VZ»n—1V2*”_1T)KT

=B+ / KBK'. (2.19)

This is the generalized CGL equation, a 2X2 matrix
equation. Once the matrix B has been calculated, we
add back the last rung and obtain Imf,.,; from the 11
matrix element of the result in Eq. (2.16).
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Fic. 3. Kinematics for the 2 — # process.

III. 2— n AMPLITUDE FOR GENERAL n>4

In this section we generalize the results of Sec. I. In
particular, we prove that the full asymptotic 2 —»
amplitude factorizes in the matrix sense described in
Sec. II, and that strict exchange degeneracy recovers
factorization in the multiplicative sense.

We consider the 2— » amplitude for spinless par-
ticles f= fs.» with kinematics defined in Fig. 3 as the
n—1 neighboring subenergies s;, the #—1 neighboring
momentum transfers #;, and the #—2 Toller angles w..
From Eq. (A6) of the Appendix, we see that the full
amplitude is the sum of the signatured full amplitudes,
each of which factorizes for a given multi-Regge pole.
We define R;.., by

n—1 :
f'\’ galgbn(I_-_Il Eisz:ai)RZ-»n ) (3-1)

where, as before, £;=e i"*i{-7; Pictorially, Ra.n
results from the sum of signatured amplitudes with
both signs for all subenergies s; (see Fig. 4). We also
define Se., using the sum of signatured amplitudes
with both signs for all subenergies except for s,—1, which
is negative. Explicitly, Si., is defined by [see Eq.

S2—n

FiG. 4. Diagrammatic definition of Rz, and Sa.,n.
See Eqgs. (3.1) and (3.2).

NONFACTORIZATION: - .

1019

Ra—n R2-°n-2

it -t

Fic. 5. Diagrammatic equation for Ri., leading to Eq. (3.5).

(A6)]

Tamt 2o pr e o fUN({0isiy sy 0i—vs,000m}) | ypima

Vit vn—2

n—2
Nzn_lgalgbﬂ(H Eis'iai)sn—la”_l(gn—ls2—>n) o (3~2)
=1
We also have
2 mr e Baeaf U (s, biy wi—vi,ipam}) |inimt

Vit vn—2

n—2

~2" g agen(IT £i5i%)sn1971(Bn-2R2n-1). (3.3)
=1

Using Egs. (3.1) and (A6), we obtain

E’IL—-IR2->’7L =B7L—2R2->n—l+£n—152—>n . (3.4)
Using similar reasoning (see Fig. 5), we get
En—2£n—IR2->n =»6n—36n—2R2->n—2+fn—zﬂn—zs‘z—.n—l
+ Tn—an—a‘,B n—ZRZ >n—2 .
+ (ﬁn—-2_A,8'n-—2) En—frn—lS?—»n—l
=§u-18n—2 (Bn—3R2-»n—2+fn—252-m-1)
_'Aﬁn-2£n—2Tn—1S2_>n_.1 . (3.5)
Using Eq. (3.4), we get
R2-n=ﬂn—2-R2-n—l—Aﬁn—2 (Tn—l/gn—l)Sz-n—l . (3~6)
From Egs. (3.4) and (3.6), we obtain
En—152-—n = En—l[ﬂn-—%RZ-»n-—l
_"ABn—Z(Tn——l/fn—l)SZ»n—l]_67»-2R2—>n—1
=Tn—l(Bn—ZR2»n—1_A,3n—wS2—>n—l) (3.78.)

or, using Egs. (3.1) and (3.2) and Fig. 6, we have

Ra—n-2 Sa—n-1

Sz—n

Fi1c. 6. Diagrammatic equation for .Ss.,, leading to Eq. (3.7b).
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directly

gn—-2£n—1S2->n =,3n—3,8n—27'7a—1R2—>n—2

+En——2(6n—2_A,3n—2)Tn—-152~)n—1 5

and using Eq. (3.4), we again obtain Eq. (3.7a).
Finally we obtain

<R2->n> ~< ﬁn——-Z
Sz-m (Tn—l/«fn—-l)ﬂn—?.

(3.7b)

- (Tn—l/gn—l)Aﬁn—2>
- (Tn—l/ En1)ABn—2

R2->n—1
><< ) (3.8)
S.

2->n—1

which is of the form Eq. (2.14). If ABu—s/En1=0, we
obtain multiplicative factorization Rs.n=8n—2Ron 1.
If some ABi/§:,1=0 or if exchange degeneracy occurs
in the 41 rung, the amplitude factors multiplicatively
into two parts, depending on variables to the right and
left of that rung.

We explicitly consider the effect of exchange de-
generacy in the #—1 rung. We have from Eq. (3.6)

n—2

fz-.n"’galglm(II1 £i5:%9)

Xsn*la”ﬂ[(fn-—l-‘-'*' En—l—)ﬁn——ZR?—»n—-l
_Aﬁn—2(7n—1++Tn—l—)S2->n.—1] .

But &, 1T +E, 1 =2¢""" 1 and 7,1t 471 =0, prov-
ing multiplicative factorization.

ACKNOWLEDGMENTS

I wish to thank Naren Bali, Marcello Ciafaloni, Ian
Drummond, Alberto Pignotti, and David Steele for
helpful conversations.

APPENDIX

In this Appendix we briefly outline the multi-
Froissart-Gribov formalism for the 2— % amplitude,
since most of it has already been presented.”®1° The
procedure parallels the 2— 2 case. The kinematics are
illustrated in Fig. 3. We use the neighboring subenergies
s; interchangeably with the more conventional z;, and
take the case with all particles spinless.

The full amplitude f({sfi,w:}) with Fourier com-
ponents fiar, ({si,t:}) is expanded in a multi-O(2,1)
expansion!! in terms of multi-partial-wave amplitudes
Ffluw¥3({#:}). We separate out the right- and left-hand
subenergy-plane cuts of fiar;)({si,t:}) (but see the
Introduction):

foadsot)= X fuea®I({sit:}), (A1)
{X,'=R,L}

9 J. F. Boyce, J. Math. Phys. 8, 675 (1967).

107, B, Hartle and C. E. Jones, Phys. Rev. 184, 1564 (1969);
T. K. Gaisser and C. E. Jones, bid. 184, 1602 (1969).

11 See, M. Andrews and J. Gunson, J. Math. Phys. 5, 1391
(1964); M. Toller, Nuovo Cimento 37, 631 (1965); and N. F.
Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163, 1572 (1967).
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where an R (L) sth place superscript in fi) X1 Xn—1
indicates the presence of only right (left) half s;-plane
cuts.

Writing a dispersion relation for each fiar;) (X3 ({s:,4:})
function in the s; at fixed #<0, we have (neglecting
kinematic singularities)

1 /‘ dSl’
71 J e 51 =51
’
dsn—l

dSz’ /
’
Cn-1(81"++sn-2") Sn—1 —Sn—-1

s
Ca(s1’) S2 —S2
XAt X0 ({si t:}), (A2)

where the discontinuities are taken over subenergy
contours C; that are in general mutually interdependent
due to Gram-determinant conditions, and which lie in
the R (L) half s; plane accordingly as X;=R (L). Since
many singularities are present, C; generally represents
unions of contours. If we now insert Egs. (A2) and
(A1) into the multi-O(2,1) expansion inverse formula
for fiar 7 ({£:})," and use the integral identity

sinw(j—N\) /“’ ex(2")ds’
1

2 —z

Sl X3 ({sut:}) =

e)‘"j(z) = g:‘:iﬂ'(j—‘)\)[ —
™

2/

we obtain a formula for fiu3t1({t;}) in terms of
integrals over the Ay,)(¥% %), [In doing this, one must
add in the finite integrals  ,!d%--. in appropriate
places in order to use Eq. (A3). Doing so makes no
contribution to the principal-series integrals over
Rej;= —1% because of symmetry under j;— — 7;—1.%]
For a left half s;-plane contour C;, the s; variable in
A )Xo ({s4,t;}) will get a minus sign, and a factor
e~ivii will occur. The signatured multi-partial-wave
amplitudes fiar,)t% 7} ({£;}) are defined by replacing all
such e~ factors by 7; (ri==1). The result is the
multi-Froissart-Gribov formula

1 /1 dx_,ﬂ'(—z’)dz’:l’ 9

2’ —z

n—1 1

forara(eh)= ¥ Il -
{x

=R,L} =17 J§;

dzierri_y (i)

XWA(Mz‘) (Xi Ei} ({Visi,)ti}) ) (A4)

where the C; are the C;, but flipped over into the right-
half s; plane if C; lies in the left-half s; plane. Also,

1, X,=R n—1 n—=2 .
,,1.={ , W=]II =02 II eivMivivitr)
-1, X;=L =1 i=1
1, V,'Vi+1=—1 -—Ml, V1=V2=—1
Vi1 = { M= {
O, ViVip1= 1, +M, y otherwise

’
and M¢'+1, = lii,¢+1Mi .
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This simply means that a factor 7; occurs whenever
the corresponding »; in the argument of Agpr,}{¥XéCs)
in (A4) is —1. The internal helicity-flip factors ei":
appear whenever neighboring parameters v;, viy1
have opposite signs in Ay} (XeCil,

The full signatured amplitude fU7é({ss,t:,0:}) is
defined as having fiur )57 ({t;}) as its O(2,1) partial
waves. It has only right-hand cuts in all subenergies
si, and is expressed in terms of the f(ar,} (X3 ({s:,t:})
amplitudes by

FUa({sitigwi})
= 3 1w fEV{wiss, by wi—viiam))
{Xi=R,L)
where
1 y Vi= 1
= (AS)
Tiy Vi= —1

and »; and »;41 are defined above. The (wi—w;,ip17)
dependence is due to the extra e™¥ivi.i+t factors in the
Fourier M; sums for f{¥il,

The full amplitude is expressed in terms of the
signatured full amplitudes by

1

PIIDBYTEE

271 () i)

F{(sitiswi}) =

Xpn—-1 fr3({visi, tiy wi—vii1m}) . (A6)

1021

A multi-Regge pole occurs as a set of ji-plane poles
in the signatured multi-partial-wave amplitude
Slua¥mid({t;}), since that is the amplitude which
supposedly can be analytically continued in the j;
variables. The multi-Regge pole also occurs with a
factorized residue (see the Introduction). The resulting
asymptotic behavior of the full signatured amplitude
is therefore factorized as well,

n—1

f{ 74} ({siyti,wi})’\’zn_lgal(tl)gbn(tn—l) H (_si)ai(“)
=1

n—2

><H1 ﬂi(ti;'ﬂj;tjﬂ)‘- (A7)

Use of Eq. (A6) then yields the asymptotic form for
the full amplitude, as described in the text. For a given
multi-Regge pole, the {7;} sum is absent.

Note added in proof. Professor I. Halliday has em-
phasized to us that cuts in the subenergies s; arising
from unitarity in dependent variables and Gram-
determinant conditions render the analytic continual
tion of some of the terms in Eq. (A6) to the physical
region to be more complicated than the asymptotic s;
continuations used here. There is the possibility that
mixed de prescriptions for the 7; in these anomolous
terms may recover factorization for the full amplitude
in the ordinary sense. For a perturbation theory cal-
culation which factorizes, see D. K. Campbell, Phys.
Rev. 188, 2471 (1969).
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It is shown that if the Hamiltonian can be split into a part which is scale invariant and a part which
breaks scale invariance by means of a dilaton, then, if the latter part hasa unique dimension, this dimension
must be 1 if the vacuum does not realize the invariance under scaling. This implies that there must exist a term
which breaks scale invariance in addition to that which breaks chiral SU (3) X.SU (3) symmetry in order to

avoid a contradiction with Gell-Mann’s argument.

L. INTRODUCTION

HE study of the relation of scaling transforma-
tions to the dynamics of strong interactions and

to deep inelastic electroproduction has been the subject
of many recent investigations.! In the study of the

* Research supported in part by the National Research Council
of Canada.

! Good reviews on the subject to the present are given by the
following: (a) G. Mack and A. Salam, Ann. Phys. (N. Y.) 53, 174
(1969); (b) M. Gell-Mann, Symmetry Violation in Hadron

dynamical consequences of broken scale invariance, two
main approaches have in general been pursued. These
may be classified as to whether it is assumed that the
vacuum is or is not invariant under scale transforma-
tions. In the former case, renormalized field theories
have been the focus of attention and many new and
important results concerning the relationship between

Physics, Summer School of Theoretical Physics, University of
Hawaii, 1969 (unpublished); and (c) P. Carruthers, Phys. Rept.
(to be published).



