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Divergent Regge Helicity Sums, Distributions, and Toiler Angles*
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Divergent inanite-helicity sums appearing in. complex J continuations of multiparticle unitarity equa-
tions including the Faddeev equations, and in the multi-Froissart-Gribov formalism are made convergent
by regarding the amplitude as a distribution in the Toiler azimuthal angles conjugate to the helicities.
Some aspects of dynamical calculations using this formalism are discussed.

As a simple example, the trace of an 0(3) represen-
tation function is (after rotating coordinates to a frame
where the axis of rotation points along the s direction)

L INTRODUCTION

~HE interpretation of divergent infinite-helicity
J . sums which arise in considering complex angular

momenta in multiparticle amplitudes has been a serious
problem. Such sums arise in thc cxtcnsion of partial-
wave Faddeev equations and partial-wave unitarity
equations for general processes to complex J, as well
as in the straightforward (though nonunitary) multi-
Froissart-Gribov (MFG) formulation of signature for
production processes. %C present a forma1ism which
treats divergent helicity sums in the sense of a certain
type of distribution, with elliptic theta functions used
as test smearing functions. Such sums are treated as
boundary values of functions analytic in upper half-
planes of certain auxiliary parameters r;. It is argued
that physical-J unitarity equations as well as Regge
residue helicity sums, arising in thc MFG formalism,
do not require such an interpretation. Dynamical cal-
culations utilizing unitarity at unphysical J can be
done formally for Imr &D with the limit Imr —+ 0 taken
at the end.

Our philosophy is that multiparticle amplitudes are
indeed square integrable in the multiple 0(2,1) group
parameters. Although the MI'6 representation ap-
parently leads to divergent-helicity sums, consistency
implies that these divergences cancel out when inte-
grated over the lines RCJ,= ——,'. Regularizing these
sums on displaced background integrals would seem
to be necessary to obtain Inulti-Regge behavior for
Ren;& —~. Similarly, with explicitly convergent
helicity sums in Faddeev and general unitari. ty equa-
tions at complex J, Regge parameters may at least in
principle be calculated directly from unitarity.

Actually, the occurrence of distributions is quite
common when representations of noncompact groups
are considered. Traces of representations and Planchercl-
like formulas for noncompact groups are mathemati-
cd,y handled by introducing a set of smearing func-
tions, called the group ring. Well-defined quantities
are obtained by smearing the original distribution
expressions with group-ring elements. '

sinl (J+—')pg

sini~Q
TrD~(g) = g e'~&= , g&0(3)

However, the trace of a discrete-series representation
of 0(2,1) involves infinite-helicity sums. For suitable

g+0(2, 1) we obtain (after a boost to the appropriate
rest frame")

TrD'(g) = Q e'~&=sb(y)+finite

(0(p(2', k~&0 integer) .

Ke see that the in6nite-helicity sum has led to a dis-
tribution in an azimuthal angle.

In Sec. II we outline the MFG formabsm and
examine the resulting divergent-helicity sums. In Sec.
III we consider the formalism of distributions de6ned
on a class of elliptic theta functions. Section IV is
concerned with applying the formalism to multiparticlc
amplitudes.

I.„, I„%i pj p&i

II. MFG FORMALISM

%e consider the expansion of the amplitude for the
multiparticle process 2 —+ e of 0+2 spinless particles,
assumed to be square integrable over the group 0(2,1)
corresponding to an intermediate link in the multi-
particle chain. Ke have'

+P P Dir, ir'(g)f ~,ir'(ii), (2.1)
J=o l~l l~'l&~

where M and 3f are interpretable in thc IIlultiperiphcral
model as neighboring Regge helicities, g&0(2, 1), and
w represents the remaining variables. The form of dp(J)
will not concern us. The discrete series is composed
soieb «nonsens«e~s (~& Ill, lm'1) The»-*Work supported in part by the U. S. Atomic Energy Com-
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fM, M'~(&)
o(2, z)

D-,M'*(g)f(g, p)dl (g) (2 2)

Certain conditions must obviously exist for the M,
M'~~ behavior of fM, M.~(p) so that the helicity
sums in the expansion formula PKq. (2.1)] converge.
It is thus probable that some arbitrary assumption for
the form of fM, M ~(s) will, lead to divergent-helicity
sums. That is in fact what happens here. We remove
the most obvious i-kinematic singularities, defining
amplitudes fM, M (P,p) by

&M, M (t)fM, M (f',&)

version formula for the partial-wave amplitude

fM, M' (&) is
Equation (2.6) is the Froissart-Gribov formula. If a

multiple expansion is made in angular momenta along
the multiperipheral chain, we call the result a MFG
expansion. ~

Resumming the partial waves, we obtain

f(~i.~', ) = du(&) Z g" '(~'t-i-', )

where
+discrete, (2.7)

g""(~'E', )p= E s ™s' "dM.M'(f')
M, M'~oo

XeM, yM (f')TMM' Jz, M M (~f')AM, M'(~f', v). (2.8)

&zM p&zM'p' f(ygyz &)dy+z
(2s.)' p p

where g= (Qg,p') and

(1+/) &M+M'& "(1—f') ~M M'~"

&M, M (&) =I—
2 2 2

We write a dispersion relation for fM, M. g,p) for'
u (assuming no subtractions)

II. DISTRIBUTION FORMALISM

We have been led to consider sums of the form~M, M '(f'P), (2 4)
(~'-f.)

As Omnhs and Alessandrini noticed, e the exponen-
(23) tially increasing behavior of dM, M.~(f')eM, M.~(f') for

arbitrary f', i' as M, M' —&~ leads to divergence of the
sum in Eq. (2.8). The product EM M. (&p')hM, M'
X(&f', s) is well behaved as M,M' —+~ since the
sums in Eq. (2.5) are assumed to converge. At any
rate, its 3f,M' —+ behavior is dynamically deter-
mined, and cannot a priori be assumed to give rise to
the cancellations needed for convergence.

fixed

where the C; are contours which generally lie in the
complex f' plane. Hence, we obtain

f(4'N' )p) 2 2 ItM, M'(f)~M, M' (f p)
i g ~ MM'

g(4)= Z
3f=~

(3.1)

where ~uM~ O(e"M) as M —z~. We shall treat gQ)
as a distribution on the class of elliptic theta functions
8p(p(p' —p), q) where q=e'z' is a complex parameter
with

~ q ~

&1 (Imr) 0). These functions are defined by'
)(g

—sMpg —i M'@' (2.5)

and, using integral relations for eM, M ~Q') functions
along with the symmetry of the principal-series integral
under J~ —J—1, we obtain' '

IfM,M'(~f )~M, M' (~g z p)

y (Z q) P +zMzqMz
3II=—oo

(3.2)

The convergence factor q~' damps all divergences of
exponential order e"~ in M, and the theta function is
an entire function of s and is analytic in v for Imv &0.
If we set z=ip(P' —P) where p,p'g(0, 2'), we obtain

XpMgM ~(t') rM, M'dl', (,2 6)
~ (-'. (~'-~), q) = Z

M=oa
where the contours C; have Ref')0 All e ' ~ fa.ctors
have been replaced by r;=~1 and v~ ~'~7" may
also have factors e™or e™(see Ref. 4 for a more +.(-:(~' e), q) 2 -&8' ~)
complete discussion of the FG formalism).

(3.3)
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We dh6ne smeared functions g'(g) by

2

g 8)= — & (-:(~'—~), q)gQ')~'. (3.4)
2'

We have

(3.5)

This sum now converges for all p, and is entire in P.
Thus all singularities in g of g(P) have been removed
(i.e., pushed off to ao).

P) P2 P~ P Pn-2 n-)

S)
]s

Sn 2 Sn-)
]s

f2 ~n-2 ~n- )

( J2) (Jn-2)

M) (M) (M

P

Fze. 1. Kinematics for the multiparticle 2 ~ n process.

6E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge U.P., Cambridge, England, 1963), Chap. 21.

7Actually each Toiler angle is the sum of two azimuthal
angles. For details, see N. F. Bali, G. F. Chew, and A. Pignotti,
Phys. Rev. 163, 1572 (1967).

IV. APPLICATION TO MULTIPARTICLE
SCATTERING

We choose the independent variables for the 2 —+ n
amplitude for spinless particles to be the e—1 neigh-
boring subenergies s;= (p,+p;+q)', the e—1 neighboring
momentum transfers t, , and the rt —2 Toiler anglesr P;
(see Fig. 1). The Toiler angles are the conjugate vari-
ables to the "Regge" helicities M; which are responsible
for the divergent-helicity sums (we set Mo ——M„,=O).
Smearing the amplitude in each Toiler angle p; with

Ps(2 (P —P;), q;) leads to convergent-helicity sums
because of factors q;~". Since all helicity sums are now
convergent in complex- Junitarity equations (see below)
or in the MFG formalism, we may imagine formally
carrying out dynamical calculations at complex J, ob-
taining Regge trajectories and residues, and letting all

q;~ 1 at the end. Of course, it must be demonstrated
that the results are independent of the manner in which
the q; —+ 1. As a partial solution to this problem of
limits, we 6rst notice that since physical t;, integral J;
crossed-channel partial-wave amplitudes have only
finitely many possible helicities, these helicity sums do
not require convergence factors at all. [To see this ex-

plicitly, we imagine an inverse Sommerfeld-Watson
transform being performed on the ith 0 (2, 1) expansion.
Boyce' has explicitly demonstrated the cancellation of
the nonsense terms from the principal-series integral
with those of the discrete series, so that the crossed-
channel 0(3) expansion possesses only sense terms, as it
should. ] Hence the q, ~ 1 limit in this important case
is trivial.

Next we show heuristically that the q;~ 1 limit for
the asymptotic behavior (s;~~) of the amplitude is
well behaved even though the q,™factors are required
in the MFG formalism for the background integral.
The point is that the helicity dependence of the internal
Regge-residue coupling psr, (t;,t;+~) as M, ~~ is com-
pletely diferent from the M; —+~ behavior of the
esr, . , ~,~'(f', ') function appearing in the Froissart-
Gribov formula I Eq. (2.6)]. Neglecting dependence
on irrelevant variables, we have

psf~ z(tq 1&t'-~)pllr—3(ti&t;+1)

If we substitute Eq. (2.6) into Eq. (4.1), we must erst
look at the f,' —+ao behavior of e~, , sr, *O') since the
divergence of the FG integral produces the Regge pole.
We have'

[r(n; —M,+1)I'(n~+M~+1)]"'f —'—'. (4.2)

The M, —+~ behavior of Eq. (4.2) is power bounded
in M, of order M,"'+'~' for nonintegral o.;, and is thus
much better behaved than the exponential e"&&'&~'

behavior of e~, , M, *(g') for 6xed f' which led to the
original divergence problems. We have already seen
that the M, —+ behavior of E~,. ~'A~' 1~' must
be reasonable in order for the series [Eq. (2.5)] to
converge away from singularities in @; &, p, . In fact, it
must decrease, ' so without much loss of generality we
assume it to be of order 0(M, &t), y,)0. Then we
obtain p~,. 0 (M, '+l &*') which decreases if Ren;
+2 (y, .The contribution of the Regge pole to the total
amplitude is proportional to

f . Qrsr, .e—™~*'[I'(n;+M;+1)1"(n;—M;+1) '"

Xp~;(t', t'+x)g' *
(~ r~;

~
=1), '(4.3)

where we have used the asymptotic form for der, , sr,.g';)
as i,~~. The M; sum converges without a conver-
gence factor q;~".

Thus we see that calculation of some important
quantities of physical interest do not require a distri-
bution interpretation, even though the original helicity
sums from which these limits were taken did diverge.

J. F. Boyce, J. Math. Phys. 8, 675 (1967).'E. C. Titchmarsh, The Theory of Functions (Oxford U. P.,
London, 1964), p. 404.
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Finally we show that the bilinear terms appearing
in crossed-channel unitarity equations possess con-
vergence factors in each helicity sum, thus providing
a -formalism for analytically continuing the unitarity
equations to complex J.'o The crossed-channel O(3)
expansion in J; partial waves is accomplished by
analytically'continuing the 2 —+n amplitude into the
rt —i+1~ 1+i amplitude (see Fig. 2). We define

cos(ie;) =f'; and s;=cos8;. Smearing in it i and ii;, we
obtain the 0(3) partial-wave expansion for the smeared
functions

fib lei(p. —&s.$.p)

~~+~
--

Pn-i Pn

Fn. 2. Kinematics for the 2 —+ e amplitude
continued to the timelike t& region.

J =0 )M'-1(, JM'( & J;
D3zigli , (it'i i&i+—i)

)(g. iiiz~-i
q

az~ f~ .~ &iei i@i(p). —(4 4)

N (t)
dtixdrxpx(t, ox)fpx(r pxv p t zix )--—

Xfxz(rxztix+t+sz+) (4 5).

Here r~z is the rotation between 6nal and initial frames
with parameters Q; is;it;) and equals rz 'rp, where rz
(rp) rotates a standard frame into the initial (6nal)
body-fixed frames. $+=$&b6 spcc16es thc M prcscrlptlon
of the total c.m. energy, where t is de6ned by

(4.6)

~OThis crossed-channel unitarity approach is complementary
to equations of the Chew-Goldberger-Low or Halliday-Saunders
type. There, Regge parameters at spacelike arguments t; are
examined using asymptotic forms for the amplitudes in s-channel
unitarity equations rather than using J-plane analytic continu-
ations of the crossed t;-channel unitarity at timelike t;. See G. F.
Chew, M. L. Goldberger, and F. K. Low, Phys. Rey. Letters 22
208 (1969); I. G. Halliday, Nuovo Cimento 60A, 177 (1969);
I. G. Halliday and L. M. Saunders, ibid. 60A, 494 (1969}.For
discussions of unitarity calculations with in6nite helicity sums,
see I. T. Drummond and G. A. Winbow, Phys. Rev. 161, 1401
(1967); G. A. Winbow, ibid. 1/1, 151/ (1968).

The unitarity equation for a process I—+ Ii, where the
initial (final) state I (F) is characterized in body-fixed
frames by variables ziz (op), is written as

(1/2i)[fpz(rpzvp+t+tz+) fpz(rpzv—p t biz )5—

and the amplitude has been continued to the region
where t; is timelike. Also, p~ is the phase-space factor,
and the ~ on the variables eg, . . .,

specifying

prescrip-
tions for these variables.

We take the smeared functions fpz'p" to satisfy
unitarity among themselves. This ensures that the
smearing procedure is consistent with unitarity regard-
less of the q; parameters. For simplicity we take the q;
to be reaL Using the expansion Eq. (4.4) in the unitarity
equation (4.5) 'in which the original functions fpz are
replaced by fpz'p", we obtain

(1/2j)/f~ ~ &ispqz(zip+t+ziz+) f~ ~ &iiipcz(zip t-i' )-5—
X(t) Js

d&xpx(tax)fjzpjzx "p'x(&p»x )

Xf~ ~ J'ex'n(&x+t+&z+)ztx~x'ztx'3Ex' (4 7)

(for t'i =2, the Ma sum is absent).
Since convergence factors are now provided in each

helicity sum, the unitarity equation (4.7) can now be
analytically continued in J;, and the resulting in6nite-
helicity sums will continue to converge. The three-body
Faddeev equations are treated in the special case n=4,
i=2, where aH but k=3 body intermediate states are
excluded. The complex-J extensions of these equations
then have bounded kernels.
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