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1 MARCH 1984

Antonio F. Ranada
Departamento de Ftsica Teorica, Universidad Complutense, Madrid 3, Spain

Manuel F. Ranada
Departamento de Fisica Teorica, Universidad de Zaragoza, Zaragoza, Spain

(Received 23 September 1983)

We investigate the effect of spin-dependent forces in a recently proposed approach to the problem
of extended particles with structure. The forces are introduced by means of two different fourth-
order interactions of Fermi type, a vector coupling and a combination of a scalar and pseudoscalar
terms. The mass parameter is 286 (393) MeV in the vector (scalar-pseudoscalar) case and the mass
of the spin-zero meson turns out to be 582 (552) MeV, close to that of the g, those of the baryon and
the spin-one meson being 1200 and 800 MeV in both cases. As the model has only one flavor, it
does not allow other particles.

I. INTRODUCTION

The purpose of this work is the developinent of a re-
cently proposed nonconventional approach to the problem
of extended particles with structure. In a previous paper'
(henceforth to be referred to as I) the authors presented a
mechanism of confinement which combines two basic ele-
ments, the use of classical extended particlelike solutions
and the representation of the strong interactions by means
of direct nonlinear couplings. More precisely, the model
defines an extended particle as any particlelike solution of
the field equations and does not make use of any inter-
mediate boson as carrier of the strong forces, which are
given by four-fermion couplings.

The model is, therefore, nonconventional, since most
physicists believe today that quantum chromodynamics,
which is clearly based on different ideas, correctly de-
scribes the basic features of strong interactions and will
achieve a complete and satisfactory picture of hadrons in
a near future. Nonetheless, there are at least two good
reasons to consider alternative approaches, based on
nongauge interactions. First of all, four-ferinion cou-
plings could be useful to build phenomenological models
in some cases, much as with the Fermi theory of weak in-
teractions. Second, and as the history of science shows, it
is wise not to put all the eggs in the same basket. In our
case, we could argue, as a third reason, that our approach
tries to develop, as an intermediate stage, a classical rela-
tivistic mechanics of extended particles by means of parti-
clelike solutions of nonlinear Dirac equations, the nonex-
istence of which might be one of the reasons for the many
difficulties encountered in the quantum theory of extend-
ed objects.

The model, whose details are given in I, makes use of
six Dirac fields which form two triplets @» and P»,
k=1,2,3, the p» being charge conjugate to the p», which
interact through fourth-order two-body forces. A particle
is defined as any finite-order nonsingular solitary-wave or
particlelike solution of the field equations. If the P» are
interpreted as quarks and the P» as antiquarks, a striking

parallelism with the experimental situation arises. For in-
stance, there are particles which are bound states of the
three f» (or of the three P») and of one f» and one P»,
corresponding to the conventional 3q (3q) and qq states.
But there are no nonzero-triality solutions, as one-field
solitary waves or bound states of two f», two p», three 1(»
and one P», and so on, which have no analogy in the
quark model, as they would correspond to the states q, 2q,
2q, 3qq, etc.

Curiously enough, the mechanism for which the con-
fineinent is a particular case of the triality, is not related
to any quantum effect, since the fields are treated as c-
numbers. This suggests the possibility that the confine-
ment might be a property of the field equations at the
classical level, which perhaps should be investigated be-
fore their quantization.

In a more precise way, the main properties of the model
are the following.

(1) It makes use of only one kind of quark (only one fla-
vor in the usual parlance).

(2) It gives an explanation of the confinement because
the set of solutions of the equations of motion does not
contain one-field solitary waves, that is, with only nonvan-
ishing field. In other words, the fields of the quarks can-
not manifest themselves as particles, although they appear
as constituents of composite systems. The reason for this
curious property is that each field acts as a source for the
rest of them, much the same as the electric and the mag-
netic fields in an electromagnetic wave. In fact, as there
are neither electric nor magnetic waves we could say that
they are confined constituents of an electromagnetic one.
It is clear that the existence of static electric and magnetic
fields does not spoil this analogy.

(3) It gives an explanation of triality, at least for the
low-lying S waves, because in the finite-energy solitary
waves the difference between the number of nonvanishing
Dirac fields and of their charge-conjugate ones (that is of
quarks and antiquarks) is always a multiple of 3.

(4) It depends on only two quantities: a mass parameter
m and a coupling constant A,. If m=390 MeV and
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II. SPIN-DEPENDENT FORCES

The Lagrangian density considered in I has three terms:
the linear L, ~, the binding I.2, and the trializing parts,

I. =I.)+I.2+I 3, (la)

(lc)

kmz=22. 98 the model predicts the following ground-state
particles: (i) A three-quark baryon of spin —, and a mass
of 1200 MeV, together with its antiparticle, (ii) a family of
quark-antiquark mesons with a spin between 0 and 1 and
a mass of 800 MeV, and (iii) two families of two-
quark —two-antiquark and three-quark —three-antiquark
mesons with the same mass and spin as the previous one.

(5) The model is classical in the sense that, as it has not
been quantized, it uses c-number fields and gives a precise
space-time description of the particles, although it has not
been obtained as any kind of limit A' —+0.

The two important properties (2) and (3) can be ex-
pressed as follows: To the statement of the usual quark
model that "a hadron is any composite state of quarks,
but it happens that there are only zero-triality bound sys-
tems of more than one constituent, " there corresponds in
our model the following one: "A hadron is given by any
finite-energy solitary wave of the field equations, but it
happens that there are only zero-triality bound solitary
waves of more than one Dirac field. "

As we see, the main properties which are usually at-
tributed to the quarks are naturally explained. The main
drawback of the model is the mass degeneracy and the in-
determinacy of the spin in the families of mesons. This is
clearly due to the lack of dependence on the spin of the
coupling terms in the Lagrangian density. This is impor-
tant because one of the most conspicuous features of the
elementary particles is the strong mass difference between
the vector and the pseudoscalar mesons. This suggests the
convenience of introducing in the model spin-dependent
forces between the quarks. This will be done in the
present paper.

In Sec. II we consider the general form of the spin-
dependent coupling between the quarks, two special cases
being investigated in Secs. III and IV. In Sec. V we make
some remarks on the similarity between the strong in-
teractions and the nonlinear effects. Finally in Sec. VI we
summarize our results and state our conclusions.

to introduce spin dependent forces we must modify the
nonlinear terms of the Lagrangian extending its depen-
dence to other bilinear covariant forms:

&(4)= g Pky'itk ~ (4)= g iTky"4k

~"«)= 2 Ay"y'4 T""(0)= g sky"y wk

(2)

the model proposed in I being called from now on the S
model. The reason for choosing these cases is the follow-
ing. Any Lagrangian density based on the couplings S,
P, and V"V gives a theory in which the ratio of theP 3masses of the baryon and the spin-one meson is —,, as it
can be shown very easily by using the energy-momentum
tensor as is frequently done in this paper. This is no
longer true if the terms 2 "3& and T"'Tz are also includ-
ed. This ratio is close to that of the masses of the 5( —,

'
)

and the co or the p . Moreover the two cases considered in
this work seem to be very adequate since they give a
reasonably good value for the mass of the spin-zero
meson.

But before proceeding any further, it is convenient to
consider the effect of the spin-dependent forces in the case
of only one field. ' lt can be shown ' that the most gen-
eral form of the Lagrangian density of a Dirac field with
a fourth-order self-coupling is

L, =L,D(g)+&[(PP)'+z(fy'P)'], (3)

where we emphasize the necessity of the presence of the
term (gP) because a theory depending only on the pseu-
doscalar self-coupling (Py P) would not lead to the ex-
istence of particlelike solutions. For z=0 we obtain the
Soler model and for z= 1 the Dirac-Weyl equation. Ex-
cept in the first case the field equations cannot be factor-
ized in spherical coordinates and to find the localized soli-
tary waves we have to resort to a multipole expansion or
to a variational method. It can be shown that the two
procedures are equivalent in the calculation of the lowest-
wave approximation. If the field g is in the S wave it is a
combination of the spinors

and the analogous functions of Pk. Although the class of
such Lagrangian densities is very large and depends on as
much as 10 constants, in this paper we will only consider
two cases, to be called the V and the S-P models, based on
the couplings

V model: V"Vz,
S-P model: S —P

where we recall that gk are three identical classical Dirac
fields, P~ are charge conjugate to them, LD(g) and 1.~(P)
are the usual linear Lagrangian densities with a change of
sign in the derivative terms in B&&P, and

X;J =X;—X, , X; =p; + y'p;,

1

0

cos8
if

smge ~

, fi=e

'0

since —'&

1f —cosO

(4)

None of these three terms depends on the spin. In order
where f and g are functions of the radial coordinate r.
Using the dimensionless variables
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' 1/2

Q =co/m, p=mr, (F,G) = 2A
(f,g),

m

we obtain after substitution in the Lagrangian density and
integration over the angular variables

f L d r= f [FG' GF—' (2/—p)FG+Q(F +G )

EQpAt

2A.

1/2
06

—since-'&
iE,

,
'cosO

the charge-conjugate spinor P which is
r

—(G' —F')+ —,
' (G' —F')'

1/2

1
G

F2G 2]p2dp

The variation of F and G leads to the differential radial
equations

G'+(1+Q+F2 MG2)—F=0,
F'+ F+(1—Q+M—F G)G =—0,

P

(6)

where M =1—2z/3. To solve (6) we have followed the
same method which was used in many of our quoted
references where it is explained in detail. The regular
solutions must verify F(0)=0 to avoid the singularity at
p =0, depending thus only on G(0). It turns out that, in an
interval of G(0), the corresponding solutions behave at in-
finity as F~O, 6~+Pl —Q. The separatrices between
the positive and the negative behavior are the only
square-integrable solutions and decrease exponentially at
infinity. Two different numerical schemes were used, a
fourth-order Runge-Kutta and the Hamming predictor-
corrector method, with a complete agreement between
them. The integrals were calculated by the method of the
interpolants of Hermite.

The energy, norm, and spin can be calculated by using
the corresponding currents and have the values

iAmt

cos8
since'&

As we will show, the radial equations appearing in the
models discussed in Secs. III and IV are all of the form (6)
with different values of z.

III. VECTOR COUPLING ( V MODEL)

Lp ———[ V~(Q) V"(Q)+ Vq(P)V"(P)+4V~(g) V"(P)] .

(10)

If we choose to use the field of the hadron
P —( Q j Qz i(3 Ijk] $2,$3 ) we may express the Lagrangian
as

L, =L)+I2+I 3, (1 la)

L )
———(O'I "Bq@—Bq@l "4)—m %%,

2
(1 lb)

Let us consider, in the first place, the modification of
L2 based on the change of the bilinear form S by the vec-
tor form V":

E (z) = g'(z), 8'(z) = QI& + , I2+ zI3, ——
A,m

L2 ———[(Vb,„+)(4'bF%')+2(VP)p+)('PP~2%)], (1 lc)
3

(1 ld)

N(z) = I, ,
2&

A, m

S = —,'N(z),

where

I, = f (F +G )pdp,

(8)

I3 ——f (F G )p dp.
We will make use in the following of the S-wave form of

I

where

I ~=@~@A, 2 =I,g o-„h~=y~gI, ,

P~=y&gr, , Z~=y&gS, ,

P] and P2 being the projections

I30 0 0
0 0 ' 0 I3

and B,z defined as in I. The field equation is

(i I "B~ m)4+ —,A [—(Vbp%')b~%'+ (4P)p%)P~q4+ (VP2p%')P~)4]+2k, ' g (O'BJ%')B(~%'=0, (12a)

which corresponds to the following system of six equations for the fields of the components:

(i y"r)& m)P, +—', A, [ V—z(P)+ 2 V&(P)]y"P, +2k, ' g (X,kX,k )X,k =0,

( i y"8„m—)p, + —,—A [V„(Q)+2 V„(g)]y"$,+2k, ' g (X,kX,k )y'X, k
——0 .

(12b)
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tions with nodes was found in spite of a careful search.
This contrasts sharply with the Soler model (z=O) where
there are different branches, one for each value of the
number of nodes n, and where there is no more than one
solution with the same 0 and n. This follows from nu-
merical calculations and it would be convenient to prove it
with analytical methods. To characterize these two situa-
tions we will speak of "spiral" and "Sturm-Liouville"
behaviors, since the Soler model has a numerable set of
solutions, one for each value of the number of nodes, and
this recalls the well-known linear Sturm-Liouville systems.

ken. The radial equations for the two cases are then ob-
tained by varying I' and G.

1. Parallel spins, P=O

In this case g=g&, P=g„and the radial equations are
of the form (6) with M = —,

' corresponding to z= 1, just the
same as for the baryonic solution. Moreover we have

B. Antibaryonlike solutions

There is a charge-conjugate solution to the previous one
with gt, =0, P& ——P, k=1,2,3. It has the same energy and
spin but opposite baryonic norm as it was explained in I.
The fields P have the form (9).

C. Mesonlike solutions

E =2 8'(1),
A,m

where 8'(1) is given by (15) and

N =N(P)+N(P)=0, N(P)= I),
A,m

S=(O,O, N(g)) .

(21)

Let us now consider the two-field solutions with zero
baryonic norm. They are of the form

where (i,j,k) is any permutation of (1,2,3). As it was
shown in I, the condition of vanishing the sources of the
four null fields implies that the other two can be written
in their most general form as

As we see the energy of this solution is —, times that of the
baryon. The baryonic norm is zero, the contributions of g
and P canceling each other. If m and A, are chosen in such
a way that N(f) =A, the baryon has spin —', and the meson
has spin one.

2. Antiparallel spins, P=m'

P =cos(P/2)P, +e' sin(P/2)P, ,

(18)

where P„P„P,are of the forms (4) and (9). As the prob-
lem is not separable in spherical coordinates we may sub-
stitute (18) in the Lagrangian density and integrate over
the angles. The result is

In this case g=g„P=P, and we obtain radial equa-
tions of the form (6) with M = ——", , corresponding to
z = —, . The energy, norm, and spin are, respectively,

E =2 8'( —, ),2' ]]
A,m

+Gl 6+1 +6 +Q +2+62 62 Q2
A,m o p

N =N(P)+N(P) =0, N(P) = I),
S=(0,0,0) .

(23)

+ (F +G )sin (P/2)+ ,'(F +G )—
m

——,'(F G )(1+2cosP) p dp. (19)

We now must perform variations of the angles a and P
and of the radial functions F and G. The former give

This represents clearly a spin-zero meson. The search of
the solutions of the radial equations was performed and it
was found that the behavior is spiral as in the case of the
baryon or the spin-one meson. In Fig. l we can see the
curve W'(Q) which has the lowest minimum at 0=0.972,
the center of the spiral being at 0=0.984, 8'=1.5555.
The numerical values of the energy, baryonic norm, and
mean square radius are, respectively,

dt
sin (P/2) =0,

r

I~+ —,I3 sinP=O,
m

J

(20) E = 1.0496,
A,m

N(P) = N(P) = 0.899—8,
A,m

(24)

where I~ and I3 are the radial integrals (8). In order to
have a stationary state cz must vanish, from which
sinP=O and consequently either P=O or P=n. , corre-
sponding to parallel and antiparallel spins, respectively,
the degeneracy of the model proposed in I being thus bro-

(r )' =3.31/m .

If we take m=286 MeV, A, =6.488/m the rest energy,
baryonic norm, and mean square radius of three solutions
are as follows.
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Baryon or antibaryon:

E =1200 MeV, S= —,A',

N =+3%, (r )'~ =1.18 fm .

Spin-one meson:

E =800 MeV, S =A,

N =0, N(f) = —N(P) =A',

( r ) ' = 1.18 fm .

Spin-zero meson:

E =582 MeV, S =0,
N =0, N(Q) = —N(P) =0.87k',

(r ) =2.31 fm .

(25a)

(25b)

close to —,, due again to the ~2 in (26). It has a mass in

the interval 600—650 MeV.

[P'(q—)+P'(y)+ 4P (q)P (y) ]), (27)

remaining L~ and L3 the same as in Sec. III. In terms of
the field of the hadron L2 can be written as

IV. SCALAR-PSEUDOSCALAR COUPLING
(S-P MODEL)

Let us consider another spin-dependent coupling ob-
tained from the primitive Lagrangian (1) by inclusion of
terms depending on the pseudoscalar bilineal form P:

L, =—[[S'(g)+S'(P)+4S(g)S(P)]
3

As we see, the characteristics of the baryon and of the3+spin-one meson are very similar to those of the 5( —, )

and the co (or the p ). On the other hand, the mass of the
spin-zero meson is close to that of the g or the average of
those of the m, the g, and the g' mesons.

There are also four-field (2f,2P) mesons. The condi-
tion that gk ——/k =0 implies that their two sources must
vanish. Just as in I this allows to write without loss of
generality the other four fields as

L2 —— [(%%)—(4A 4—') +2(4P, +)(+P2+)
3

—2(VP) %)(VP2 4)], (28)

where

'gI P '= 'gP P '= 'gP
The resolution of the corresponding equations can be

made along the same lines as in the V model and we will
only give the results.

V 2P; =cos(5~/2)P„—e 'sin(5&/2)P, ,

V 2f~ =cos(p/2)g. , +e' sin(p/2)p, ,

U 2P~ =cos(52/2)P, e—'sin(52/2)P, ,

(26)

where (i,j,k) is any permutation of (1,2,3). To obtain the
variational approximation we must substitute (26) in the
Lagrangian density and proceed in the case of the (g, P)
solutions. After a straightforward calculation the follow-
ing solutions are found:

(a) P=5~ ——52 ——0. The four spins are parallel. The ra-
dial equations are of the form (6) with z= l. The energy
and spin are the same as in the (f„P„)solution. It corre-
sponds therefore to a spin-one meson with a mass of 800
MeV. The fact that the spin is only one is a consequence
of the factor V 2 in (26).

(b) P= 0, 5~ 52 vr. The two——g f——ields have spin up and
the two P's have spin down. The radial equations corre-
spond to z =—', . It has the same physical magnitudes as
the (g„P,) solution. It represents a spin-zero meson with
a mass of 582 MeV.

(c) P=m, 5~ ——0, 52 ——m and P=m, 5~ m, 52 ——0. One /-—
has spin up, the other spin down and the same happens to
the P's. The radial equations have z=3. It represents a
spin-zero meson whose mass has been estimated to be be-
tween 500 and 550 MeV.

(d) P=O, rr, 5) ——0, 52 vr and P=O, m, 5(————m., 52 ——0. In
this annoying solution three spins are parallel while the
fourth one is antiparallel. Although this situation is quite
natural in quantum mechanics it is disturbing here since
its spin, as calculated from the corresponding current, is

A. Baryonlike solutions

We have again Pk=g, /k=0, k=1,2,3. The radial
equations are of the form (6) with M = —', corresponding
to z = —1. There are several branches of solutions charac-
terized everywhere, as in the Soler model, by their number
n of nodes, a situation which was referred to above as
"Sturm-Liouville behavior. " The ground-state nodeless
family has the minimum of the energy 8'(A) at 0=0.958,
the physical quantities having the values

E =3 4.6096,

N =3 4.5314, (29)

(r )' =4.06/m,

and the spin is —,
' .

B. Antibaryonlike solutions

C. Mesonlike solutions (f,P)

1. Parallel spins

The radial equations are the same as in the baryon case
(z = —1). The energy, norm, and mean square radius are

There is a charge-conjugate solution to the previous one
with gk =0, Pk =P, k= 1,2,3 with opposite baryonic norm
and the same mass and spin.
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E =2 4.6096,
A,m

N =N(P)+N(P) =0, N(g)= 4.5314,
A,m

Figs. 4 and 5. If we take m=393 MeV and A, =28.47/m
the rest mass E, baryonic norm N, spin S, and mean
square radius of the three solutions are the following:

Baryon or antibaryon:

(r )'~ =4.06/m .

2. Antiparallel spins

The radial equations, which have a coefficient M = 9

corresponding to z = —,', show some curious features.
There exists a family of nodeless solutions for Q&0.55
which have associate a curve of the energy showing a
behavior with characteristics both of the Dirac-Weyl
model (z = 1) and of the Soler model (z =0). In fact there
exists as for the Dirac-Weyl equation, several nodeless
solutions for the same value of Q in the interval
0.55 & Q &0.85 and there seems to be an infinity of mini-
ma of the energy, being the first one at Q =0.840 with

E = 1200 MeV, S = ( —, )A,

N =+X, (r')'"=2.06 fm.

Spin-one meson:

E =800 MeV, S =A,
N=O, (r )' =206 fm,

N (P) = —N (P) =A' .

Spin-zero meson:

E =552 MeV, S=0,
N =0, N(g) = —N(P) =0.73%,

( r 2 ) 1/2 0 70 fm

(33a)

(33b)

(33c)

E =2 3.1830,
km

N =N(Q)+N(P) =0, N(Q)= 2.2117,
A,m

(r )' =1 39/rn. ,

(31)

E =2 3.4124 .
A,m

(32)

and zero spin. There is also another local minimum local-
ized on the right region of the curve and separated from
all the other minima at 0=0.920 with

As we see the results are very similar to those obtained
with the vector coupling.

There are also four-field solutions (2g, 2P) with the
form (26). The same values of P, 5&,52 are also obtained.

(a) P=5& ——52 ——0. This has the same mass and spin as
the (f„g„)state, as it corresponds to z = —1.

(b) P=O, 5&
——52 ——rr. This has the same mass and spin

as the (g„P,) as it corresponds to z = —,
' .

(c) P=vr, 5~ ——0, 52 ——m. and P=m, 5& ——m, 52 ——0. This
has zero spin and a mass of 650 MeV (z=O).

(d) P=O, vr, 5& ——52 ——0 and P=O, m., 5, =m. , 52 ——~. This

There exists also, as for the Soler equation, a second fami-
ly of one-node solution for 0 & 0.92.

In Fig. 3 we plot G(0) against Q for the nodeless solu-
tions. The function 8'(Q) and F(p), G(p) are plotted in

1P—
c (o)

I

I

l

I

)h

l

r

I

1

I

r

FICr. 3. G(0) as a function of Q for the nodeless solutions for
z =—1 (solid curve) and z =

3 (dashed curve).

)

0.6
I

ae

FIG. 4. Same as Fig. 1 but in the S-P model.
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FIG. 5. Same as Fig. 2 but in the S-P model.

annoying solution has a mass slightly greater than 650
MeV but a spin of about —,

' cannot have analog in the usu-
al schemes, just as in the case of the V model.

With this coupling we have always found several
branches of solutions with different number of nodes or,
in other words, what we have called a "Sturm-Liouville
behavior. " The behavior is spiral, on the other hand, in
the case of the vector coupling. The limit between these
two types of dependence on 0 of the solutions is located
at some value of z in the interval ( —,', 1).

V. NONLINEAR EFFECTS
AND THE STRONG INTERACTIONS

As was stressed in I, this model does not make use of
gluons or of any other intermediate particle. The forces
between the constituents of a hadron are provided by the
nonlinear coupling between the different individual Dirac
fields, including nonlinear self-actions. Consequently
these quarks can be considered to be self-adherent. This
suggests that the strong interactions could be considered,
at least from a phenomenological point of view, as the ef-
fect of the nonlinear superposition of the fields, in a way
similar to the interactions between the solitons in the
sine-Gordon, EdV, or other analogous equations. This
point of view is completely different to the usual one
which is mainly based on the study of the forces by means
of scattering processes. The present model is very diffi-
cult to apply to such problems but, as is shown in this pa-
per, it can be used to obtain the solutions in the rest frame
of the particles and to study therefore their spectroscopic
properties. We will consider now some arguments which
indicate that it is worthwhile to study the nonlinear super-

or

—,I2+ —,zI3
1 2

QI(+ 2 I2+ —,zI3

(0—1)I~ + — I2 + ,zI3-—8=
I)

(35)

where E~L is the part of the energy which comes from the
fourth-order terms in the energy-momentum tensor and N
is the absolute value of the norm of each of the n constitu-
ents. A gives the quotient between the binding and the to-
tal energies. 8 gives the energy per unit of mass parame-
ter, norm, and number of constituents minus one and can
be interpreted as a measure of the mass renormalization
by the nonlinearity.

If A or B are large the systems are very bound or the in-
teractions very strong. Conversely, low values of A and B
indicate a slight interaction. In Table I we give the values
of A and B in the three models (S, V,S P). -

As we see in two of the cases A and B take surprisingly
small values for such an intense interaction. Only in the
S-P model their values are remarkable. This paradoxical

TABLE I. Values of A and B in the three models (S, V,S-P).

S model
A B

V model
A B

S-P model
A B

Baryon or
spin-one meson 0.088 0.026 0.357 0.399 0.058 0.016

Spin-zero meson 0.088 0.026 0.166 0.166 0.416 0.439

position of solitary waves as a model for the strong in-
teractions. These are the following.

(i) This nonlinear superposition is very strong, as A,m,
the dimensionless parameter which characterizes it, is big.
Its value is about 23, 6.5, 28.5, respectively, in the models
S of I, V, and S-P. It also produces a short-range interac-
tion since the fields decrease exponentially outside of a
sphere with a radius of the order of 1 fm.

(ii) The nonlinear superposition can be approximated by
the effect of a sum of Yukawa potentials at distances
greater than the dimensions of the radius of the solitary
waves as was shown a long time ago by Rosen and Rosen-
stock. This is a very interesting property since this kind
of potential is usually associated with the exchange of par-
ticles.

(iii) The present ideas on the structure of hadrons as-
surne that they are composite systems of pointlike constit-
uents which are very loosely bound. Our model does not
make use of pointlike entities but of extended quarks.
However, and we believe that this is a very important
property, their interactions are very slight as long as they
are in the gronnd state, where they are loosely bound. On
the other hand, it is very strong if they are pushed apart
since they cannot be separated in any way.

In order to evaluate the looseness we may use the two
quantities 3 and S defined as

8= —1,ENL E
E '

mXn



NONLINEAR MODEL OF c-NUMBER CONFINED DIRAC QUARKS 993

compatibility of low binding energy and very intense in-
teraction is a characteristic of our model which is as-
sumed to hold also in the case of the strong interactions.
Nevertheless this point of view meets with a very difficult
problem. Granted that the solitary waves represent con-
centrations of energy which move and can manifest as
particles: How do we know that after a collision we have
again concentrations of energy? In principle there is no
guarantee that a dissipative process does not take place in
such a way that the particles disappear, the fields going to
zero at every point. This very difficult problein is beyond
the scope of this paper. However, we can say that it has
been shown that the spinorial solitary waves are very
stable under deformations " in sharp contrast with the
scalar case. ' This makes plausible that after a collision of
Dirac solitary waves, the same ones or others emerge as
stable final states. In our opinion this is a most important
problem which must be studied with the help of analytical
techniques and of numerical methods.

To sum up, we believe that it is worthwhile to consider
the possibility that the strong interactions could be
represented as the effect of the nonlinear superposition of
solitary waves, much in the same way as it happens in the
case of the solitons.

VI. SUMMARY AND CONCLUSIONS

We have shown two versions of our model of nonlinear
extended Dirac quarks corresponding to the basic interac-
tions

TABLE II. Results in S, V, and S-P models.

S model V model S-P model

m (MeV)
A,m
Mass of the baryon (MeV)
Mass of the
spin-one meson (MeV)
Mass of the
spin-zero meson (MeV)

390
22.98

1200

286
6.488

1200

582

393
28.47

1200

552

which we call V and S-P models. The most relevant re-
sults, together with those obtained with the previous S
model, are summarized in Table II. As we see the spin-
dependent forces of the V and S Pmodels -break the de-
generacy of the mesonic states. The values of the mass
parameter are reasonable and the masses of the particles
are close to those of the 6( —, ), the ra, and the g. In or-3 +

der to evaluate this result it must be recalled that these
masses have been calculated in the lowest wave approxi-
mation. In other words some contribution from higher
waves is to be expected.
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