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Center-of-mass correction and magnetic moment of a fermion consisting of confined quarks

D. Tadic
Zavod za teorjisku fiziku, Prirodosiovno ma-tematicki fakultet, University of Zagreb, Zagreb, Croatia, Yugoslavia

G. Tadic
Sveucilisni racunski centar Zagreb, Zagreb, Fugoslaoia

(Received 18 July 1983)

The value of the center-of-mass correction I, '(Ro) depends on the radius of confinement Ro in
such a way that RoI, ' shows only a slow variance with Ro. If one assumes that a composite fer-
mion has the mass of an electron, the value of ROI, ' is constant in the range 0.001 &Ro &0.5 fm.
For such a "mock electron" the value of the magnetic moment is about 1 Bohr magneton. For the
proton (Ro-0.65 fm) the theoretical values for the magnetic moment and the axial-vector coupling
constant are improved.

I. IN'TRODUCTION

Both the center-of-mass correction' (CMC) and the
recoil correction (RC) influence the calculation of the
nuclear form factors based on a static model for the con-
finement of quarks. ' " It would therefore be useful to
devise a formalism which could include both corrections
at least in the limit of zero momentum transfer (q~O).
Emphasis will be on the CMC. In the approximation
developed here, the RC and CMC factorize; hence it is
possible to use the existing results for the RC.

Additional interest in the calculation of the CMC stems
from the dynamical problems arising from the composite
models for the lepton structure. Halprin and Kerman'
have argued that the center-of-mass correction can recon-
cile a baglike confinement of the constituents with the
known electromagnetic properties of the leptons. That is
obviously possible only if the magnetic moment of the
composite object is not exactly proportional to the con-
finement radius Ro. The following calculation indeed
shows that CMC depends strongly on the characteristic
radius Ao. The magnetic moment is proportional to
RoI, '(Ro), where I, is the CMC integral. One finds

'(Ro) &Ra for Ro & 1 fm. CMC also improves the
calculated values of the proton magnetic moment and the
axial-vector coupling constant g~.

All CMC results are obtained for the model in which
I

three fermions (for example, quarks) are confined in a
harmonic-oscillator (HO) " potential. It seems' that
CMC calculated in such a model, with suitably selected
parameters, closely approximates CMC for the MIT bag
model.

Implications for a composite model of elementary parti-
cles are of a qualitative nature. The exact values must de-
pend on the character of the model which need not con-
tain three fermions but might contain, for example, a fer-
mion and a boson instead. It is interesting that in the
mock model for a fermion whose physical mass equals m,
(electron mass) one obtains "mock-electron" magnetic mo-
ment of about 1 Bohr magneton.

II. FORMALISM

The formalism is developed by combining the results of
Refs. 2 and 3. One begins with a moving bag, considered
as a wave packet with a nonzero net momentum p, i.e.,

ip)tt ——f d'k W ' '(k)W ' '(k p)ttp(k —p)
~

k—) .

(2.1)

Here P is the wave packet and W is the normalization fac-
tor.

The matrix element of a current between moving bag
states is

g(p'~ Jt(x) ~p)g ——f d'kd'k'[W(k)W(k')W(k p)W(k' p')] '—~ p(k —p—)p(k' —p')(k'~ J(x)
~
k), i =1,2, 3 .

(2.2)

By using

one can deduce for q=p ' —p

f d x e'q'" (p'
i
J (x) ip)~
=(2m)3 f d3k[W(k)W(k+q)W(k —p)W(k+q p')] '~zy(k p)y(k—+q p')f;(—k, k q) . — —

(2.3)

(2.4)
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The left-hand side (LHS) of Eq. (2.4) is the one commonly used in the calculation of recoil corrections to the magnetic
moment. It is convenient to use the Breit frame of reference

p'= —p=q/2, q=(0, q) .

Leading terms in the expansion of Eq. (2.4) in powers of momentum transfer determine either p or qz. In order to find
CMC one has to study

f d xe'" "z(q /2~ J(x)
~

—q/2)z ——(2') f d k[W(k)W(k+q)W (k+q/2)] '~
P (k+q/2)f (k, k —q)

(2.5)

right-hand side
~iGM(0)X (o X q )/2MX f d k

E(k)
(2.6)

The CMC for the magnetic moment Ltt =G (0)] is found
by dividing the LHS of (2.4) by

I,(RO) = f d'k I(k) .E k
(2.7a)

It is relatively easy to calculate this integral in a model
where fermions are confined in a harmonic-oscillator
(HO) potential in such a way that the ls quark wave func-
tion in the bag is approximated very well by a simple
gaussian expression. ' '

The function I(k) from (2.7) is then determined by the
Fourier transform of the Hill-Wheeler overlap function
for three 1s quarks, i.e.,

I,(RO)= f d k f d re'"''I3(r) .E k
(2.7b)

In the numerical calculation one uses the expression'

p2/4g 2 r
I3(r) = e ' 1 —c

Ro

c=P /(4+6P ), P=0.36 .

3

(2.7c)

The choice of parameter P is such that the HO-model
quark wave function approximates a 1s massless-quark
wave function in a bag of radius R = 1.51 Ro.

A useful check for numerical accuracy follows by the
deletion of the factor M/E(k) from (2.7b). One finds

1=—f dk k f dr rj 0(kr)I3(r) . (2.8)

In our model the changes in the order of integration,
necessary to deduce (2.4), can be justified a posteriori by
the very nice uniform convergence of all the integrals. '

The static magnetic moment p' can be found by
neglecting the momentum dependence of the bag states on
the LHS of (2.5):

for small q. Since the leading q powers for p and qz (i.e.,
q and 1) originate from f; the q dependence of W's and P
can be dropped. The function P (k) is spherically sym-

metric in k so all vectors of k originating from f; are in-
tegrated out. This function has been given by Wong as

P (k) =(2~) W(k)I(k), W(k) =E(k)/M .

Here E and M represent baryon energy and mass.
As shown in the Appendix, one finds for the elec-

tromagnetic current

p~ =2.863Rpp~

pg =2.886Rop~
(2.9)

Here the subscripts H and B refer to the HO model' and
the MIT bag model, respectively. (The R and Ro should
be given in fermis and p& ——e/2M&, where Mz is the pro-
ton mass. ) The recoil-corrected magnetic moment p can
be found from (2.5) by keeping the momentum depen-
dence of the bag states. A general form of the result is

s
M 2M 5

(2.10a)

Here G" is the theoretical expression for the axial-vector
form factor. By taking into account that quarks are con-
fined one can estimate e/M-0. 25 for the MIT bag with
massless quarks. This ratio is independent of the bag ra-
dius R since e=coR ' and M =4@.

The theoretical values for G are'

G~ ——1.305,

Gg ——1.088 .
(2.10b)

At first glance it might seem that the G term in (2.10) is
independent of Ro, so if I, (RO) were to decrease with Ro,
p would be sharply increasing with Ro. However, this is
a false conclusion. One has to stay really within the
model framework by which

e 3 g e 3 g eR 3
2M 5 8e 5 8' 5

so that

p~-const&&RD

as required for the argument of Halprin and Kerman. '

As shown in the Appendix the CMC for gz follows from
the expression

right-hand side

3E(k)~g~X oX f d k I(k) . (2.11a)

The LHS of (2.5) has to be calculated for the axial-
vector current and then divided by

J,(Ro)= f2Ic(RO)+1]/3 . (2.11b)

I
q/»a 10&a .

In order to substantiate the following discussion one
can use values found for simple models with massless
quarks:
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As the gz form factor is not sensitive to the RC one has

g =—6"J, (2.11c)

J, '= f d kI(k)(1+ —,k /M + . )

(2.12)

The expressions for I, and J, can easily be compared with
the corresponding corrections (13) and (14) of Ref. 2. By
expanding square roots in the powers of k /M one finds

—1

I, '= f d kI(k)(1 —,'k /—M + . )

It is obvious that the CMC is important as it has already
been pointed out. The approximation used by Ref. 2
works only for the case MRO) 1, which is certainly valid
for the proton. The advantage of a more complex ap-
proach adopted here is a possibility to deal with the RC in
a simple way.

However, things change if one wishes to study Ro
dependence of CMC. For MRo « 1 the expansion (2.12)
is no longer valid. One has to use the complete expression
for I, . An interesting check of the internal consistency of
the values of I, from Table I comes from the fact that
I, '(MR0)MRo does not depend on M if MRO «1. Thus
for Ra=0.001 and 0.01 (and all Ro & 1.0 for M=m, ) one
has

I, '(M&)M Ro I, '(——m, )m, RD ——1.62 . (3.2)

Moreover, for M=m, the Halprin-Kerman argument,
which requires

I, 'Ro ——const, (3.3)

III. NUMERICAL RESULTS AND DISCUSSION

The inspection of Table I reveals that the behavior of
CMC is determined by the product RDM. For MRD «1
one has I, =const&Ra so that p does not change at a11

with Ro. If MRO « 1 the integration over k in (2.7) yields
maximum contribution for k »M so that one has
I, -MRo. For M=M& (proton mass) such a situation is
found for Ro &0.01 fm. At the physically acceptable ra-
dius Ro ——0.65 fm, which corresponds to the bag radius
R=0.98 fm (=4.97 GeV ') the CMC is quite important.
It increases the magnetic moment by I, '=1.205, i.e., by
about 20%. Of the similar order of magnitude is the
CMC for Gz where J, '=1.128. One finds, for example,

p ,'M(corr) = 1.588 X 10 I, 'Ropz ——0.97pz,

P; ~(corr)=1.570X10 I Ropy =0 98pg .
(3.4)

is completely justified.
One can construct, as a kind of toy, a mock-electron

model. One has to assume' that the correct value of the
electron mass can be obtained somehow by adjusting the
model parameters such as the zero-point energy and
QCD-type coupling strength. Once that is taken for
granted, one can introduce M=m, in all formulas and
thus find the mock-electron magnetic moment p, By ex-
pressing the formulas (2.9) in Bohr magnetons
(p~ ——e/2m, ) and by using I, 'Ro from Table I one ob-
tains highly suggestive values

pz ——1.88 p&, p&(co«) =2.27 p~,
pz ——2.06 p~, p~(corr) =2.48 p~,
Gg ——1.09, gg ——1.23 .

(3.1)

It might be premature to make any far-reaching con-
clusions on the basis of this almost correct theoretical
reproduction of the physical p, in the framework of the
mock electron model.

However, with all the examples given in this paper, one

TABLE I. Center-of-mass correction as a function of Rp and M.

Rp
(fm)

0.001
0.01
0.1

0.2
0.3
0.4
0.5
0.6
0.65
0.7
0.8
0.9
1.0

10.0

r, (R, )

0.002 935
0.029 32
0.2670
0.462 3
0.598 6
0.693 9
0.761 5
0.8106
0.8300
0.846 8
0.874 1

0.895 0
0.9114
0.998 0

M =M~
RpI, ' (fm)

0.3407
0.3411
0.3745
0.4326
0.5012
0.5765
0.6566
0.7402
0.7831
0.8266
0.9152
1.0056
1.0972

10.020

10'I.(Rp)

0.0016

0.1600
0.3201
0.4801
0.6402
0.8002

1.120

1.600

M=m,
10 RpI~ (fm)

6.25

6.25
6.25
6.25
6.25
6.25

6.25

6.25
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is compelled to realize that the CMC, based here on an
adaptation of the Peierls-Yoccoz formalism, ' plays an
important role in the baglike model of quark confinement. S,= X (2k+io Xq)X.N (k)

+

(A2)
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APPENDIX: CURRENT MATRIX ELEMENTS

For a vector-current matrix element one has to study
the relation

Si ——u(p2 ) yu (p i )

o(o"pi) (o'p2)o
=N)NpX +

The first form in (AZ) does not contribute to the integral
in (2.5). One finds analogously

(o p2)o(o. p~)
u(pq) yysu(p~ ) =N~N2X cr+ E, +M E,+M

The second term in (A4) is

(A4)

S2= u(pq)oj„q"u(p~)= X (o Xq)~X . (A3)
2M

The combination of (A2) and (A3) leads immediately
(GM F&+F——2) to the'expression (2.6).

In order to find (2.11a) one has to use

NP=( E;+M)/2M, (o p2)o(o" p&)=o'(k+q )o o'k~ ——,k2o . (A5)

p2 =k+g, p) =k, $~0,
Ei E2 =E——(k) =(k +M )'i; N i N2 N(——k), ——

The contribution proportional to q drops out after the in
tegration over k. The spherical symmetry in k leads to the
final result.
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