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Charge radii of proton and M 1 radiative transitions of hadrons in a bag model
with variable bag pressure
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Employing the idea of a state-dependent bag pressure, we compute the charge radii of the proton
and M 1 radiative decay widths for baryons and mesons.

I. INTRODUCTION

The MIT bag model' provides a satisfactory dynamical
framework for treating hadrons as systems of confined
quarks. In this model, the quarks are confined to some re-
gion of space (the bag) by a pressure term B. The origin
of j3 is not explained in the theory and in the phenomeno-
logical applications of the model; it is treated as a univer-
sal parameter. The usual bag parametrization has met
with limited success, however. Its biggest failure is
that it gives a very small value of the proton magnetic
moment. In this model, 2p~M~ = 1.9 not 2.79 (as has been
found experimentally). This happens because the MIT
model yields a smaller value for the proton radius. Also,
in this model, M1 radiative transitions for baryons and
mesons come out in poor agreement with the experimental
results. In order to improve upon the MIT results, Hack-
man, Deshpande, Dicus, and Teplitz, have added to the
energy of the bag a new term c

~
Xz —Ã~ ~, where c is a

constant and Nz(N~) is the number of quarks (antiquarks),
and have adjusted the value of c so as to regain the mag-
netic moment of the proton correctly. Such an attempt,
though a good working principle to lessen the gap between
theory and experiment, is however ad hoc in character and
lacks a firm theoretical basis. The original MIT bag
model, therefore, needs to be supplemented with new
1deas.

Recently, Callan, Dashen and Gross have proposed a
theory of hadronic structure, which, using QCD princi-
ples, leads to a baglike picture of hadrons. According to
this theory, the QCD vacuum can exist in two distinct
phases: a dense or normal phase, which is highly
paramagnetic due to densely packed instanton and meron
pairs with a large permeability, and a dilute phase where
instanton effects are relatively small, and which is in
equilibrium with the dense phase. The bag pressure 8 is
then determined as the zero-field difference in the free-
energy density between the dense and the dilute phases. It
is implicit in their approach that 8 is essentially energy-
density dependent.

The agreement observed in the implementation of the
bag model can be reasonably improved by considering B
as state dependent. Recently, Joseph and Nair have cal-

culated the masses of light hadrons and the magnetic mo-
ments of SU(3)-octet baryons using such an approach, and
the fit obtained is quite satisfactory. So, in the present
work, we argue in favor of a bag model in which the bag
pressure B varies with the density of hadronic matter con-
stituting each particle, keeping the radius of the bag con-
stant. Our aim here is to investigate further how the idea
of a state-dependent bag pressure modifies the MIT re-
sults concerning the various hadronic properties. For this,
we recalculate axial-vector and electromagnetic charge ra-
dii of the proton and the M 1 transition rates of

+y and 1 ~0 +y decays in the new ap-3+ &+

proach.
Interestingly, our analysis yields results comparable

with those obtained by Hackman et al. for the M 1 tran-
sitions. Furthermore, our ratio for the axial and elec-
tromagnetic charge radii of proton comes out to be the
same as that obtained by Donoghue and Golowich.
These studies, together with those of Ref. 7, indicate that
the new bag phenomenology, with a state-dependent bag
pressure as its essential ingredient, is successful in repro-
ducing several features of hadrons, such as their masses,
magnetic moments, radiative decays, etc. It has the added
advantage that now these properties arise in a more natur-
al fashion from the theory, without invoking any addi-
tional ad hoc assumption.

The paper is organized as follows. In Sec. II, we write
down the essentials of the original MIT bag and then give
the new bag Hamiltonian. In Sec. III, we calculate the
axial-vector and electromagnetic charge radii of the pro-3+ &+
ton. The M 1 transition rates for —, ~—, +y and
1 —+0 +y are calculated in Sec. IV. In Sec. V, we con-
clude briefly.

II. PRELIMINARIES

A. The MIT bag Hamiltonian

The expression for the original MIT bag Hamiltonian
has been discussed in detail at several places. ' ' We sim-

ply summarize here various terms contributing to it as fol-
lows. First,
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E~ g——N; w; (2.1)

is the kinetic-energy term. N; is the number of quarks
and antiquarks of the ith flavor. A quark of mass m
moving in a spherical bag of radius R has a kinetic energy
m given by

and

B=—e1

where e=E/V is the energy density of the bag.

(2.12)

w(mR)= —[x +(mR) ]'/2 .
R

(2.2) B. The new bag Hamiltonian

The bag volume energy

Ep ———,mR B

is the energy due to bag pressure B. Next,

ZpEo=-
R

(2.3)

(2.4)

is a term accounting for zero-point fluctuations. The term
E~ contains the residual gluonic interactions between the
quarks and will be proportional to a„the strong coupling
constant. This interaction is found to be magnetic in
character:

We now discuss the possibility of taking bag pressure
term B as state-dependent, i.e., we consider that it is not a
universal constant as in the original MIT model, but in-
stead its value varies from hadron to hadron. While in-
vestigating the ground-state properties of quark gas,
Chaplin and Nauenberg, using a renormalized coupling
constant u, that depends upon the Gibbs energy per
quark, have demonstrated that the effective bag pressure
B may depend upon quark momentum. It lends support
to the idea of a state-dependent bag pressure. Making use
of relation (2.12), and putting

e=B+p,
EM gxo, oJM——.. .

l)J
(2.5) where p represents the contribution to the hadronic mass

from all sources except the volume tension, we get
where

p'(m;R )1u, '(m&R )
M~ =8a, 3 I(m;R, m&R), (2.6)

B= 3p.
We may then write the total bag Hamiltonian as

(2.13)

R 4wR+2mR —3p'mR =—
6 2wR (wR —1)+mR

(2.7)

A, is 1 for a baryon and 2 for a meson, o; and o J are spins
of the ith and jth quarks, and I(m;R, mJR) is a slowly
varying function of m;R and miR which is = 1.

The total energy or mass of a hadron is obtained by
combining all of the above ingredients. Accordingly, we
have

E(R)=—+—@BR
C 4
R 3

(2.8)

and

in. yet/ (x)=g (x),

gn B[y~(x)y. .(x)]=2m,

(2.9)

(2.10)

where C contains kinetic, zero-point, and gluonic interac-
tion energies.

In the MIT bag model, permanent confinement of each
quark within the hadron bag is accomplished by means of
two surface boundary conditions:

Zo
R

R11-RM( —, ) (2.15)

Equation (2.14) can, then, be written as

M= —, QN~w;+QAo;. oJMJ E, —(2.16)

where the zero-point energy E, is now a constant with one
value for baryons and another for mesons.

In order to evaluate the model parameters, viz. the
quark masses, the bag radii Rz and RM, the gluon cou-
pling constant a„and the zero-point energy E„the
known values of the axial-vector coupling constant

M = —, gN;w;+ QA, (o; cr~)M~ — . (2.14)
l (J

In Eq. (2.14), the factor —", is due to the addition of the bag
volume energy, necessary to confine the quarks within the
bag, to the remaining terms of the Hamiltonian.

As the bag-model results are not very sensitive to small
variations in the bag size, we can talk of an average
baryon radius R~ and an average meson radius R~.
These are related to each other through'

where n" is the interior unit four-normal to the bag's sur-
face. The linear boundary condition (2.9) implies an
eigenvalue equation

2w R +4mRwR —3mR
2wR(wR —1)+mR

(2.17)

tanx =
[x2+ (mR )2]1/2

(2.11)

The nonlinear boundary condition (2.10) is equivalent to
minimizing the total energy with respect to radius of the
bag': BE/BR =0, which when applied to Eq. (2.8) gives

(2.18)

numerically, which yields

and the proton magnetic moment (in nuclear magnetons)
are employed to solve the transcendental equation

2 2 2 2 1/2
(w2R2 2R2)1/2 (W R —m R )

(wR +mR —1)
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TABLE I. The magnetic transition coefficients C $ for
mesons as defined in Ref. 5.

III. AXIAL-VECTOR AND ELECTROMAGNETIC
CHARGE RADII

Transition

K+'~E+y
E* Ey

qlq1

12
27

12
27

3
27

12
27

3
27

q1q2

12
27

12
27

6
27

12
27

6
27

3
37
3

27

3
27

3
27

(r2) 1/2 (r2) 1/2 (3.1)

We make a check of this equation using the new bag
phenomenology. We use the standard definitions

(r ),„;,i ——(p(s, )
i f d x x ttt(x)

It has been pointed out earlier that for any reasonable
fixed-sphere bag model, the radius associated with the dis-
tribution of axial charge within a nucleon and its elec-
tromagnetic (em) charge radius should be equal, i.e.,

X r3tr, y( x )
~
p(s, ) ), (3.2)

R~ ——8.88 GeV

m„=0.114 GeV,

m„=0.294 GeV .

The values of w, and m, are then determined by using the
mass separation" (A 1V) and —Eq. (2.18) to get

(r ), =(p(s, )~ f d x~x~ gt(x)

XQQ(x) ~p(s, )), (3.3)

where p stands for a proton and f(x) is a quark field
operator. Equations (3.2) and (3.3) imply, on evaluation,

w, =0.427 GeV, m, =0.302 GeV .

Finally, using the ground-state baryon masses, one gets
a, =0.94 and E, =0.068 GeV. For mesons, assuming
that the quark masses remain the same and that the
meson radius is given by

RM =R~( —, )'/ =7.75 GeV

the quark kinetic energies have been found to increase to

w„=0.321 G-eV,

m, =0.448 GeV .

27 (w2 —m R ) (2w —2w+mR)

with 2, a quartic polynomial in m, given by

2 =w" +2w (1+mR) —w (4+ —,mR+m R )

+w(3 —mR —2m R —2m R )

+ —,mR ( ——, +mR+m R ),

R C(r'). =
6 (w2R2 —m2R )(2w R 2wR+—mR)

(3.4)

(3.5)

Employing the same value of u, as for baryons, and fit-
ting the experimental mass of the X meson, one gets
E, =0.178 GeV.

Note that since, in the present approach, the bag energy
BV is not a constant, but varies from hadron to hadron,
the model described here is not relativistically invariant.
It is worth mentioning here that though the MIT bag
model is relativistically invariant, this invariance has not
been utilized in an essential manner in any of its applica-
tions.

(3.6)

where C is

C=4(wR) 4(wR) +w R—(8+6mR 4M R )—
+wR ( 6 8MR +4m ~R 2—)—
+(9mR —6m R —6m R ) . (3.7)

We evaluate these expressions using the values
mR =1.012, wR =2.61, and R =8.88 GeV ' and find

TABLE II. The magnetic transition coefficients C $ for baryons as defined in Ref. 5.

Transition

A~Xy
y+g yg

pe yQ

X* Ay

X ~Ay
~Q)fg ~Q

4
27

4
27
4
27

4
27

1

27

1

27

8
27

8
27
8

27

8
27

2
27

2
27

8
27

8
27

4
27

27

8
27

4
27

4
27
4

27
4
27

1

27
12
27

27

1

27
1

27

8
27

8
27

4
27

2
27
12
27

4
27
8

27

4
27

4
27

4
27

1

27

1

27
3

27

1

27
16
27

4
27
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TABLE III. Quark transition moments p for mesons.

Transition

TABLE IV. Quark transition moments p for baryons.

Transition

p~7Ty
co ~7Ty

K*~Ky

0.4165
0.4094
0.3096
0.3567

0.4165
0.4094
0.3096
0.5087

0.6081
0.4792
0.4687
0.5563
0.5160

0.6081
0.6488
0.6253
0.7535
0.5160

0.6081
0.6488
0.6253
0.7535
0.6951

(r'&.„;.,'"=1.21 fm,

(r'&, 'i'=1.2O fm .

each quark in each hadron. The explicit wave function
for each quark in each hadron is

These values, though a little higher than the correspond-
ing experimental numbers" available, agree very well with
Eq. (3.1). This clearly indicates that the new bag
phenomenology is inherently consistent.

IV. M 1 RADIATIVE TRANSITIONS

P~(r, t) =
477

' 1/2
a+ma

Wa

1/2
Na —Nl a

Wa

ar
j1 o'r U

L

(4.4)
As already known, the expression for M 1 transition

width is given by
2r= ' k'( —", ) +I ~~cg,

a)P

(4.1)

where a,P denote the quark flavors, k is the photon
momentum, and the quark transition moment p is given
by

p = N dxx ji(kx)
2k

X2 jo
XaX XaX

j1

Wa+ma
X

1/2
Wa Ala

1/2

(4.2)

Here N, the quark normalization, is given by

2w~(w —1/R)+ m /R=R jo(x ) (4.3)

with the frequency of the lowest mode given by Eq. (2.2).
In Eq. (4.2), the j's are spherical Bessel functions, and x
satisfies the eigenvalue Eq. (2.11) which determines x~ for

where r =
i

r
i

and U are two-component Pauli spinors.
The magnetic transition coefficients C $ are given by

C.'%t= y g(P ib.(m)Q. b.(m')
i Q)

m, m' k, k'

X(Q ibp(k)Qpbp(k') iP)U o;U Uko.;Uk,

(4.5)

where b~(m) is the destruction operator for a quark of
type a with spin projection m, Q is the charge on the ath
quark, and Q denotes an intermediate state contributing to
the magnetic energy of a particle P. The various C~$
which are of interest for the present work are given in
Tables I and II. In Tables III and IV, we present our
values of the transition moments, using Eq. (4.2), for
mesons and baryons. We then calculate the M 1 radiative
decay widths employing Eq. (4.1) and list our results in
Table V for mesons, and Table VI for baryons. For sim-
plicity, in our calculations involving isoscalar pseudosca-
lar meson g, we have neglected the dynamical mixing in-
duced by transitions to pure gluon states.

It is interesting to note that our results are similar to,
and are somewhat nearer the experiment than the values

TABLE VI. M 1 radiative decay widths {in keV) for baryons.

TABLE V. M 1 radiative decay widths (in keV) for mesons.
Transition

MIT
(Hackman et al. )

Present
analysis

Experiment
(Ref. 11)

Transition

p~ 7?y
co~s'y

X+' X+y

X Ky

MIT
(Hackman et al. )

34.4
310.3
43.7

8.69

93.9

Present

analysis

39.6
360.0
78.6
5.35

95.6

Experiment
(Ref. 11)

63+8
789+92
65+15
&80

60+ 15
75+35

A~Ay
y++ y+y
yM yOy
X*—+X y
X Ay
X Ay

9& ~0y

heal +~

291.5
135.9
26.4

1.9
197.7

1.36
145.0

1.9

358.2
135.3
31.5

1.4
232.2

1.62
183.3

1.6

700+70

& 1800

& 2200

& 360
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which Hackman et al. obtained by assuming an addition-
al ad hoc term to the bag energy.

V. CONCLUSION

The MIT bag model with universal bag pressure,
though a powerful tool in reproducing some of the salient
features of hadrons, has not met with spectacular success
when applied to nonspectroscopic calculations. There
have been several attempts to resolve the discrepancies.
However, such attempts are ad hoc in character and do
not emerge logically from the theory. Callan et al. have
presented a theory of hadronic structure leading to a bag-
like picture of hadrons in which the bag pressure 8 is im-
plicitly an energy-density dependent factor. Keeping this
aspect in view, and following Ref. 7, we have discussed a
new bag phenomenology with a state-dependent variable
bag pressure as its essential ingredient. We have recalcu-

lated the axial and em charge radii of proton, and M l ra-
diative transition rates for bosons and fermions. Our re-
sults for the radiative decay widths almost tally with the
values obtained by Hackman et al. who, to lessen the
disagreement between theory and experiment, proposed an
additional term to the bag energy. Furthermore, in our
approach, the ratio of the axial and em charge radii of
proton comes out to be unity, which is quite consistent
with an ear1ier prediction of Donoghue and Golowich.
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