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Nuclear physics and the quark model: Six quarks with chromodynamics
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We have studied the six-quark system in a nonrelativistic quark model which incorporates some
of the features expected from chromodynam. ics. Using a large basis space which includes color,
spin, and orbital excitations, and a Hamiltonian completely determined by previous studies of
baryon structure, we derive a number of the features of low-energy nuclear physics. Among our
findings are (1) a strong dynamical clustering of the 3u-3d system into a neutron-proton configura-
tion and (2) an effective nucleon-nucleon potential with a strong repulsive core and an intermediate-
range attraction similar to those of semiphenomenological potentials. When supplemented with a
reasonable model for one-pion exchange, this effective potential gives a good account of the proper-
ties of the deuteron.

Within the last few years it has become clear that QCD
is probably the correct theory of the strong interaction
and also that it possesses a very complex structure. Coven
this complexity, it seems unlikely that it will be possible to
rigorously deduce its consequences for any but the sim-
plest systems in the near future, so that we must, in the
meantime, continue to rely on relatively crude QCD-like
models for some insight into many of the phenomena of
the hadronic world.

Among the more central issues —both physically and
historically —which such models might address is the at-
tempt to derive the properties of simple nuclear systems
from QCD. We present here the results of a study' of the
six-quark system in a QCD-like nonrelativistic quark
model ' which has had some success in describing had-
ronic structure, especially in the baryonic sector most
relevant to the present calculation. We find that the ma-
jor features of the nuclear physics of this system emerge
automatically from the model: in the channel with NN
quantum numbers we see a dynamical segregration of the
six quarks into two three-quark nucleonic clusters and an
effective potential between these clusters with a strong
repulsive core and an intermediate-range attraction similar
to empirical internucleon potentials. When this deduced
effective internucleon potential, arising from residual
color forces, is used in a hybrid model which incorporates
the effects of pion exchange in a consistent way, we find
that we can actually account quantitatively for the proper-
ties of the simplest nontrivial nucleus, the deuteron.

I. INTRODUCTION, ORIENTATION,
AND FOUNDATIONS

The principal aim of the work described here' was to
extract predictions for the properties of the six-quark sys-
tem from a nonrelativistic quark model ' which incorpo-
rates some of the features expected from chromodynam-
ics. We stress from the outset that this part of our pro-
gram was purely deductive: the parameters of the model
are all known from studies of baryons so that our results
are completely predetermined. Of course we were forced

by the complexity of the system in question, with its
myriad of spin, color, isospin, and spatial configurations,
to make approximations as we proceeded, and one of the
main objectives of this paper is to delineate and comment
on our procedure so that the reader may decide not only
whether the model we have used is appropriate but also
whether our results are really consequences of the model.

A subsidiary aim of our work was to reexamine the na-
ture of contributions other than the residual color forces
just mentioned to the nucleon-nucleon potential V&&. In
particular, we believe that models for the meson-exchange
contribution to V~& should conform to various qualitative
ideas about the nature of QCD. The very success of
QCD-like quark models (both potential models like the
one we will use here and bag models) supports the picture
which has emerged from more fundamental studies,
namely, that at short distances QCD is a weakly coupled
theory with asymptotically free quark and gluon degrees
of freedom, but that at distances of order l fm and larger
a strong-coupling regime emerges in which color is con-
fined, chiral symmetry is broken, and in which, for exam-
ple, quark and stringlike degrees of freedom (i.e., collec-
tive states) become more appropriate. We will argue on
the basis of this picture that the internucleon potential at
less than about 2 fm should begin to be free of meson-
exchange effects so that the residual color potential we
deduce in that region should be a good representation of
V~~. For internucleon separations much larger than this,
quark-pair creation is expected to become important, with
the consequences that the deduced residual color potential
will be inaccurate and that it must in principle be supple-
mented by meson-exchange effects. In this complex
large-distance regime our program can no longer proceed
deductively, but we show that it is very likely, on the basis
of the qualitative picture we have just described, that only
pion exchange makes a significant contribution to V&~.
The deuteron, which is rather special in being sensitive to
both the short- and long-distance components of V~~, for-
tunately provides a good testing ground for the hybrid
model we propose to marry these two regimes, and we
show that models which conform qualitatively to our pic-
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ture will give a reasonable quantitative description of its
properties. We return to the role of mesons in Sec. IV, but
in the interim we will be concerned solely with the prob-
lem of deducing the component of Vz& arising from re-
sidual quark-quark forces.

The starting point for these calculations is the model
Hamiltonian '

Pgm;+
2m;

where with r;J ——ri —rJ and

g (J

SgJ = 3Sg 'riJSj rgJ
Sg SJ,
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is the hyperfine interaction responsible, among other
things, for the b,-N splitting. Here eo is a constant which
plays no role in the energy differences which concern us
and U is an anharmonicity, to be discussed below, which
represents the expected strong Coulomb-type interaction
of @CD and also other departures from the harmonic lim-
it. For application to a system as complicated as the one
being studied here, the extreme simplicity of this model is
a great virtue. The model is chosen, however, primarily
for its success in describing hadronic spectra and dynam-
ics, especially in the baryonic sector where we most re-
quire it to be accurate. Being a model, it is, of course, not
without its weaknesses and before proceeding we comment
on these weaknesses and their effect on the reliability of
our calculations:

(i} The neglect of spin-orbit terms in Eq. (1) is allowed
since the data on baryon resonances require that spin-orbit
effects be small, although the reason for their suppression
is not well understood. ' ' However, given that the model
fits baryon spectroscopy and decays, the influence of this
uncertainty on our conclusions should be negligible.

(ii) Since we are mainly concerned with the properties
of the six-quark system relatiue to those of two separated
three-quark clusters, many sources of error in the
calculation —nonrelativistic approximations among
them —are reduced.

(iii) The two-body confinement potential [Eq. (2}] can
be criticized on several grounds. First, it is known to lead
to a long-range van der Waals —type force between nu-
cleons whose strength is incompatible with experiment.
Note, however, that such long-range forces arise only in
the approximation that the confinement potential between
two colored objects in an overall color singlet is allowed to
grow indefinitely, undamped by qq pair creation. Thus,
although one must be cautious (as indeed we are: see
below) about the possible presence of spurious long-range
effects in the calculation, we do not believe this to be a

H',~,„t= —[eo+ ,' krtq —+U.(r~) )]
2 2

is the spin-independent part of the quark-quark interac-
tion and

fundamental obstacle to employing potentials of this
form. A second criticism of (2) is that it leads to various
pathologies (e.g., spectra unbounded from below) in multi-

quark systems. We believe that this also is not a funda-
mental problem since no pathologies appear in the physi-
cal (i.e., overall color-singlet) sector of the theory where,
for example, one can easily show that (2) is bounded from
below for harmonic forces. Finally one can criticize (2)
for being too limited to comply with the requirements of
local gauge invariance for large quark separations where
stringlike degrees of freedom are required. While there
are some indications from string models that (2) may be a
reasonable approximation for low-lying states, ' such a
correspondence remains to be proved. In the interim,
however, we believe these results support our opinion that
(2) is a phenomenologically acceptable representation of
confinement.

(iv) The radial dependences of the potentials in (2) and
(3} are oversimplifications. More suitable, for example,
would be the sum of a linear and a Coulomb-type term in
(2), but of course such a potential would be considerably
more difficult to use. Since the baryon spectrum is well
reproduced by this Hamiltonian up to masses correspond-
ing to interquark distances as large as those for which we
plan to take (1) seriously, this seems a sensible simplifica-
tion. In perturbation theory, the baryon spectrum up to
N =2 is actually independent of the form of U, so we
have taken U(r,z )= —w5 (r,J ) to further simplify the cal-
culations. (Incidentally, although strictly speaking the 5
function is an illegal operator for the Schrodinger equa-
tion, its appearance here and in the contact piece of the
hyperfine interaction poses no problem, for reasons to be
elaborated below. Moreover, since in our calculations
those interactions will be smeared over clusters, our results
are quite insensitive to the specific radial forms chosen. )

As already stressed, the parameters of the model are all
known from previous studies of baryon spectroscopy.
They are given in Table I in the combinations in which
they naturally occur in this calculation.

II. A HISTORICAL INTERLUDE

Before describing our method and results, we will brief-
ly review some previous work in the area. Attempts to
understand the nucleon-nucleon force in the context of the
quark model have, in fact, a long history. ' ' The
modern attempts date from the investigations of Liber-
man' (in a potential model) and DeTar' (in a bag model),
though it is now believed that their methods were inade-
quate. '

Among the important problems noted in Ref. 15
was the neglect of states with non-nucleonic spin and
color configurations as well as those of low spatial sym-
metry. The latter, in particular, were known to be of po-
tential importance since the antisymmetry of the six-
quark state requires that such states be coupled to the
higher color-spin symmetries favored by the color-
magnetic interaction. Harvey, ' performing a calculation
of the Liberman type [but with a more realistic Hamil-
tonian similar to (1)], showed that, indeed, both the mix-
ing of hb. and of a hidden color state into the two-nucleon
wave function and the inclusion of states of lower spatial



TABLE I. Input parameters to the calculation of the XX ef-
fective potential.

Parameter Value' Comment

330 MeV

320 MeV

198 MeV

176 MeV

The nonstrange constituent
quark mass

The nonstrange cluster
parameter

Follow from the SU(6) multi-

plet pattern up to X=2

8~&s
3(2m) m

260 MeV Related to the 6-X splitting

'These values are all given in or obtainable from Ref. 2 except
for the last entry which is given there as having the value 300
MeV. More recent studies taking into account various small ef-
fects (see Ref. 11) have revised the best value of this parameter
to that quoted here.

symmetry had dramatic effects: the putative repulsive
core was transformed into a weak attraction. While we
will see (as have others: see, e.g., Harvey in Ref. 20) that
an adiabatic approximation is not viable for this system,
the basic point of Harvey's work, that configuration mix-
ing can be very important, still remains very much in
force. It should be pointed out in passing that not all the
possible states which have unexcited clusters and can be
coupled to the two-nucleon channel have been considered
in Harvey's calculation. This is because only states with
the same SU(4) spin-isospin quantum numbers as the in-
put channel were used. This is, of course, not justified if
the forces are, as indeed they are here, strongly spin
dependent. We will return to this point later.

Most of the very recent work done on the two-nucleon
force has followed the line of direct descent from early
nuclear-physics-inspired speculations and employed either
the resonating-group or generator-coordinate methods
developed by Wheeler and his collaborators. Beginning
with the work of Warke and Shanker, ' such calculations
have been steadily improved through the use of more real-
istic potentials and the inclusion of a larger number of in-
put channels. ' ' The results, in all cases, show persistent
negative S-wave phase shifts, thus implying the existence
of a repulsive core (a core whose nature is, in fact, con-
sistent with what we will find below), and demonstrating
the inadequacy of the adiabatic approximation (a result on
which we are also in agreement).

While a consensus on these last two points may have
been reached by previous workers (see, however, Ref. 21),
a number of problems still remain. While other calcula-
tions have considered at most Harvey's three channels,
Rosina et al. ' find indications that the inclusion of all six
possible S-wave cluster states (which we use) may be im-
portant. The calculations done to date have also, so far as
we are aware, assumed that any spatial excitations of im-
portance must occur in the intercluster coordinate. This
prejudice, which may hark back to previous experiences
with such calculations in nuclear physics, is no longer jus-
tified a priori in the present case where the color degree of
freedom may intercede. We have included such effects in

our calculation and find that they are indeed significant:
they appear to be responsible for the attractive part of the
internucleon potential.

III. METHGDS AND RESULTS FOR
THE RESIDUAL COLOR INTERACTIGN

While the resonating-group method has the advantage
of working directly with the measurable phase shifts, the
fact that it involves solving a set of coupled integrodif-
ferential equations soon leads to intractable numerical dif-
ficulties as the number of coupled states is increased.
Since it is our aim to include in the calculation all six S-
wave cluster states, as well as more than a hundred states
with excited clusters, plus the XX relative D-wave state,
plus, eventually, the effects of meson exchange, such a
method of calculation is not suitable. For this reason we
have chosen the much more modest approach of perform-
ing a bound-state variational calculation for the ground
state of the six-quark system. Despite being more modest,
this approach in fact allows us to examine several interest-
ing aspects of the problem rather directly:

(1) We are able, simply by decomposing our states, to
examine the proposition (obviously central to nuclear
physics as we know it) that, in channels with NN quantum
numbers, the six-quark system is well approximated by
two nucleonic clusters.

(2) Once given that a nucleon-nucleon interpretation
indeed arises from (1), we are able to extract a bound-
state-equivalent effective potential from our variational
intercluster wave function and examine it for the presence
or absence of the dominant features of empirically deter-
mined potentials, namely, the intermediate attractive re-
gion and the repulsive core.

(3) Although uncertainties which we discuss below
make our results less quantitative than we might like, we
are able to calculate various static properties of the NN
ground states, such as binding energies, charge radii, etc.

On the other hand, if we wish to compare our results to
experimental phase shifts we will have to assume an
equivalence of our bound-state effective potential with the
phase-shift effective potential.

As we have already stated, the main reason for choosing
the ground-state variational calculation over the
resonating-group method is that by making this choice we
have been able to work with a far larger space of states
than has heretofore been possible. We have found it possi-
ble to decrease our effort even further by the following
simple tactic: by specializing to the case of three u and
three d quarks and allowing isospin to emerge dynamical-
ly, we have been able to construct properly antisym-
metrized six-quark states using the irreducible representa-
tions and Clebsch-Gordan coefficients of S3)c,S3 (as given
in Appendix A) rather than those of S6. This greatly sim-
plifies the evaluation of matrix elements, although, since
isospin is not manifest, it forces us to diagonalize larger
Hamiltonian matrices than we would have had in the iso-
spin basis. This does not prove to be a problem. The
equivalence of the two approaches is demonstrated in Ref.
1.

Given the complicated structure of the six-quark system



NUCLEAR PHYSICS AND THE QUARK MODEL: SIX QUARKS. . .

it is important to choose spatial coordinates which make a
physical interpretation of the states obtained as simple as
possible. In this regard we have been guided by the suc-
cess of standard nuclear physics (especially in light of the
results of Ref. 23} and chosen as natural relative coordi-
nates the internal coordinates of two three-quark clusters
and the corresponding intercluster coordinate. Of course,
if the dynamics of the calculation are such that three-
quark clustering does not dominate the resulting state, this
will be reflected in large exchange overlaps and an inabili-
ty to interpret the intercluster wave functions in a proba-
bilistic manner. (The situation is analogous to cluster cal-
culations in nuclear physics where, for example, after an-
tisymmetrization, the d +a and t + He description of the
low-lying state of Li are equivalent ".)

The calculation then proceeds in three phases. In the
first we restrict ourselves to states which are the appropri-
ately antisymmetrized versions of two three-quark S-wave
clusters in a relative S wave, but with all possible spin and
color excitations. In the isospin basis these states are
N —N— 6—6— N —N — N —N — N —N — and1 1 3 3 3 3 1 1 3 1

2 2& 2 2& C2 C2~ C2 C2& C2 C2&

6,—2' 6,—2' in the I =0, J= 1 channel and N —,N —,, 4 —,4—,,
3 3 1 1 1 1 1 1 ~

N, —,N, —,, N, —,N, —,, Ac —2hc —2, and hc —2Nc —
2 in the I =1,

J =0 channel. (The notation here gives the isospin and
spin of the clusters as IiSiIiS2', the subscript c denotes a
cluster in a color-octet state. The phase-I basis states in
the S3&S3 basis are derived in Appendix B. There are 15
I3——0 states with J= 1 and 9 with J=0; for the equivalent
isospin decomposition, which leads to the identification of
the above-mentioned states, see Ref. 1.) The spatial wave
function of each three-quark cluster is taken to be that of
the nucleon ground state, e.g., for the cluster 123

3

4'(p123 ~123} 3g2 exp[ —2a'(p123 +~123 )l

with

1
P123 ~ (r 1 r2)

V2

i23 — (r]+ rz 2r3)
&6

while the intercluster wave function (common to all
phase-I basis states) is expressed as

max

%(r) —g g;exp( —,'p; r ), —
i=1

where g;,p; are variational parameters and r is the inter-
cluster separation. The form (7) was chosen to facilitate
calculations, but even so we found the process of minimiz-
ing energies in P;,g; unwieldy if we went beyond three
terms. The cluster size a in (4) was not allowed to vary
from the value used in baryon spectroscopy, as given in
Table I. This was done not only to keep the number of
variational parameters to a minimum but also to allow an
important technical simplification: if o; is treated varia-
tionally then the simple form used for the spatial depen-
dence of the hyperfine and U potentials must be modified.
This would require not only the evaluation of more diffi-
cult matrix elements but, far more importantly, the re-

working of baryon spectroscopy and decay analyses. We
will comment in the concluding section on the possibility
of including a as a variational parameter; we will also ar-
gue there that, in view of some simple checks we have
made, the procedure of holding a constant should not af-
fect the nature of our conclusions.

Phase I of our calculation was carried out by taking
matrix elements of color, spin, and spatial operators in the
appropriately antisymmetrized basis of Appendix B. The
matrices required in these sectors are given in Appendices
C, D, and E, respectively. The Hamiltonian matrix in
both spin channels was then constructed (Appendix F
gives the kinetic matrix elements required to complete the
matrix) and diagonalized for various choices of p;, g; in (7)
until a variational minimum was found. [In the event that
no bound state was found the Hamiltonian (1}was supple-
mented by an artificial weak harmonic attraction which
allowed one to extract information on the short-range
behavior of the system. ] In both the J=0 and J =1 sec-
tors the resulting intercluster wave function was strongly
suppressed at r =0 and the system showed an almost com-
plete dynamical clustering into the neutron-plus-proton
configuration (as measured by small admixtures of other
color, spin, and isospin components and by extremely
small exchange integrals even within the np component).
The phase-I bound-state effective np potential

V' V(r)
M 4() (8)

was characterized by a large repulsive core and weak ( —5
MeV) intermediate range attraction, with the So potential
more repulsive for r ( 1 fm and less attractive for r ) 1 fm
than the Si potential. [Note that there are possible ambi-
guities associated with the definition (8};see Sec. V.]

In phase-II of our calculation we expanded the basis
space to include the most important states with up to two
units of orbital excitation. While it would in principle be
possible to construct new antisymmetrized states analo-
gous to those of Appendix 8 based on such states and to
include them in a generalization of the phase-I calcula-
tion, such a program would be difficult to actually exe-
cute. Fortunately, the results of phase I provide a natural
and reasonable approximation scheme for including the
effects of such states: given the dynamically enforced
dominance of the np component and the smallness of the
intercluster overlap integrals, we added to our calculation
those matrix elements connecting the new spatially excited
states directly to the np system, and evaluated these ma-
trix elements only to leading order in the small exchange
overlap integrals. We also added the np D-wave state
which, due to its potential near degeneracy in energy, can
be significantly mixed despite the exchange suppression.
With these approximations, the new states entering the
calculation were four states composed of internally excited
color-octet P-wave clusters coupled to the np system by
the spin-singlet color-dependent potentials, and 109 states
(one of which is the Di np state) coupled by the tensor in-
teraction. Discussion of the enumeration of these states
and the evaluation of the required matrix elements is
relegated to Appendices G, H, and I. We note that the
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FICx. 1. The effective nucleon-nucleon potential from residual
quark forces in the S~ and 'So channels (solid curves); for com-
parison the "phase-I" SI potential is also shown (dotted curve).

four P-wave color-octet cluster states are the ones that
eventually give rise to the spurious long-range tail of the
van der Waals force. Nevertheless, their effects in the re-
gion corresponding to that in which the interquark poten-
tial is well grounded (i.e., r &2.5 fm) must be taken into
account. (As we have remarked above, in a more realistic
treatment the long-range van der Waals potential would
be damped by qq pair creation. ) To complete phase II of
our calculation, the ground-state energy in each sector was
reminimized in the old P;,g; as well as with respect to in-
dependent variations of the intercluster wave functions of
the new states. While the tensor interaction proved to
have an almost negligible effect, admitting spatially excit-
ed clusters significantly increased both the depth of the in-
termediate range attraction in the S-wave potentials and
their splitting, while producing only small changes in the
repulsive cores. The resulting phase-II effective nucleon-
nucleon potentials associated purely with residual quark
forces are shown in Fig. 1. They are quite similar to po-
tentials commonly used in low-energy nuclear physics.
The phase-I S& potential is also shown for comparison.

We have argued earlier, in qualitative terms, that resi-
dual quark forces should both dominate V&& and be reli-
ably calculable for separations r &2 fm. For distances
much greater than this, however, we know that the naive
interquark potential will be screened by qq pair creation
and that, as a result, meson exchange will provide the
dominant contribution to Vz~. We will return to a dis-
cussion of the spurious long-range van der Waals potential
below, but first let us concentrate on the role of meson ex-
change in the nucleon-nucleon potential.

IV. MESONS IN THE INTERNUCI. EON POTENTIAI.

Given that mesons and nucleons have radii (rM and r~,
respectively) which characterize the spatial extent of their
quark substructure, it is difficult to imagine —in the most
naive geometrical terms —that meson exchange can be
very relevant in the two-nucleon system for distances
r & 2r~+2rM (see Fig. 2). For pions, this distance is -2
fm, and for excited mesons even larger so that it seems to
us probable that only residual quark forces contribute to
the internucleon potential for r (1.5—2.0 fm. While Fig.

FICx. 2. A cartoon illustrating in naive geometrical terms that
for r &2r~+2rM meson exchange is unlikely to be appropriate
to the description of the internucleon potential.

2 is based on a picture of the transition from the perturba-
tive to confinement regimes of QCD that is consistent
with both our model and with fundamental studies, it is
obviously a picture that we can at best implement semi-
quantitatively. Fortunately, the repulsive core tends tc
overwhelm any other effects for r & I fm and for r & 2 fm
mesons effects tend to be small so that in the end our re.
suits are not too sensitive to the imprecision of this pic-
ture.

We first point out that, of all mesons, only the pion is
likely to play a significant role. This is illustrated in
Table II where the Yukawa suppression factors e ~' of
some low-lying mesons, together with their expected con-
tributions to V&~ at r =2r~+2r~, are displayed. These
results lead us to advocate a picture in which the long-
range part of the X% potential is dominated by pion ex-
change and the short-range part by residual quark
forces.

In the third and final phase of the calculation we have
implemented this semiquantitative hybrid picture by add-
ing to our phase-II effective potential a modified one-
pion-exchange (OPE) potential obtained by suppressing
the pion field (and thereby the resulting potential) within
the nucleons. Our procedure is described in Appendix J.
The resulting potential produces only small changes in the
diagonal SI and Sp potentials of Fig. 1, but leads to a
significant S~ D& mixing through its ten-sor part (see
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TABLE II. The role of mesons in V~&. Here r~ is the
quark-model nucleon radius of 0.6 fm and rM the quark-model
meson radii which we estimate to be r =r„=r„=0.35 fm,
rp r 0.5 fm, rp —0.7 fm, and rg) -0.9 fm. V~~( 2rM +2r~ ) is
the pointlike contribution of meson M to the np potential in the
S& channel at r =2rM+2rz assuming quark-model relations for

the coupling constants and using (g~~ ) /4m. =15 and
(g~~p) /4m 0.6.

VT (r)

(rlev)

-100-

Meson

P
CO

I'-wave qq
'

D-wave qq

Mass
(MeV)

140
548
958
770
783

—1200
—1700

exp[ m—(2r~+2r~ )]

2.6X 10
5.1~ 10-'
9.7X10-'
1.8X10-'
1.6& 10
2.4~ 10-'
5.7 &&

10-"

V»(2r&+2rM )

(MeV}

—2.2
+0.04
-0
—0.02
+0.06
-0
-0

'These states include the lowest-lying scalar mesons.
FIG. 4. The FFSFS one-pion exchange tensor potential (see

Appendix J for details).

Figs. 3 and 4). The procedure of adding quark and modi-
fied meson contributions to obtain the full potential is not
rigorously justifiable. Nonetheless, the two regimes seem
well enough segregated that one can reasonably hope to
obtain a good qualitative understanding of the system at
all scales within such a framework. Bearing these limita-
tions in mind, however, we have made no attempt to "fine
tune" the pion potential: we have only insisted that the
suppression be operative below roughly 2 fm. With hy-
brid potentials having this character we always obtain a
good qualitative description of the deuteron. Qur results
are given in Table III. Figure 5 shows our deuteron wave
functions. The theoretical errors we quote in Table III are
rough estimates and arise mainly from two sources: our
difficulties with the spurious van der Waals tail of Fig. I
and uncertainties associated with the semiquantitative im-
plementation of the suppression of the short-distance
parts of meson exchange. While we do know that the van
der Waals tail should be cut off somewhere in the region
r )2. 5 fm, where pair creation will begin to set in and our
empirical knowledge of the interquark potential is weak, it

Y, (r)
IMeY)

15-

is difficult to prescribe exactly where and how this cutoff
should be implemented. However, if we arbitrarily trun-
cate the residual nucleon-nucleon potential in the neigh-
borhood of 2.5 fm, then the 'So state indeed unbinds. In
fact (after taking into account that the J= I and J=0
ground states sample the spurious van der Waals tail dif-
ferently) the difference in energy between the two channels
can be estimated more accurately than the energy of either
channel separately. Our result is Ed E('So)=2—.3+0.3
MeV.

V. DISCUSSION

While there are reasons to be cautious (some which we
have already mentioned and others which we will discuss
below) one might optimistically interpret our results as
evidence that even the present rather crude models for
QCD are capable of explaining many of the basic features
of low-energy nuclear physics. Among those features are
the very existence of nucleons in the nucleus, the repulsive
core, and the intermediate range attractive nuclear force.
We have also, though on less firm grounds, proposed a hy-
brid model for combining the interactions arising from in-
terquark forces and meson exchange, a model which pro-
vides a reasonable quantitative understanding of the sim-
plest nontrivial nucleus, the deuteron.

We believe that, in spite of obvious reservations and
bearing in mind the imprecision of certain features of the

10-

TABLE III. Some properties of the six-quark ground states.

r(fm)

-10

FICx. 3. Central components of the FFSFS one-pion exchange
(OPE) potential (see Appendix J for details) and pointlike OPE
(the negative of which is shown in the inset).

Property

Ed (MeV)
(r, ')'" (fm)
Q~ (mb)

Pd
E('So) (MeV)

Theoretical value

—0.3
+0.8

2.2 +0.5
+2.1 +0.5
+0.859+0.003 p,~—04 0)+0.4

Experimental value

—2.23
1.95

+2.86
+0.857 p~
Unbound

'p~ is calculated assuming that the departure from IM~+p„ is
due only to our 3.6% D-wave mixing.
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(MeV)

~2OO~

1100-

10 r(fm) 200—

FIG. 5. The deuteron wave functions u~ and u~ of Appendix

J, shown with their correct relative normalization. 100-
g.= 420 MeV

results, it is reasonable to adopt this optimistic interpreta-
tion. We have already discussed some of the errors associ-
ated with the spurious van der Waals tail and with our
semiquantitative suppression of short-distance mesonic ef-
fects. We should also mention that, while the existence of
the repulsive cores in Fig. 1 is unambiguously demonstrat-
ed by the strong suppression of the wave function itj(r) as
r~O, the magnitude of the repulsion at r =0 is less sensi-
tively determined than is the attractive region and could,
we estimate, be in error by as much as 20%. Such an er-
ror typifies the sort of accuracy we expect from wave-
function-sensitive quantities in a variational calculation
within such a limited variational space.

Many of our reservations could be dispelled by im-
provements in the calculation, but unfortunately all those
of which we are aware require a considerable increase in
effort. It would be especially interesting to perform a full-
er variational calculation in which cluster sizes were no
longer fixed beforehand but variationally determined and
in which intercluster wave functions were allowed to vary
independently for distinct cluster configurations. This
would, among other things, allow us to complete the proof
of our conclusion that three-quark clustering completely
dominates the deuteron, since the results of this more
complete calculation would be completely independent of
the initial cluster decomposition chosen. [The present cal-
culation can, as we have indicated, only draw firm con-
clusions on other clusterings (like q ) when the system as
a whole has a size comparable to the fixed cluster size.
The absence of large-scale non-q q clusterings must be
inferred at present from the absence of any substantial
configuration mixing to any states whatsoever in the adia-
batic approximation, for r much greater than the cluster
size.] However, such a calculation, apart from requiring
the evaluation of more complicated matrix elements and a
restudy of baryon spectroscopy using more realistic spatial
dependences for the spin-spin and U potentials, would re-
quire a considerable increase in computer time. For the
moment we can only offer Fig. 6 as an indication that our
results might be stable under such variations. It would
also be useful to redo the calculation using a more realistic
potential in place of the U-perturbed harmonic potential;
although our main conclusions should be model indepen-
dent, the precise form of V,~g will not be. In addition one

0-

-100—

FIG-. 6. The dependence of the effective potential on the in-
verse cluster size o, in the J= 1 channel.

should consider, in more detail than we have done so far,
several other issues, among them the effects of such inter-
quark spin-orbit potentials as are allowed by baryons, and
corrections to (8) from the weak-binding approximation
and from possible forbidden states.

There are two possible extensions of this work which we
would find especially interesting. Given the dynamical
nature of the repulsive core, it seems very likely (if not ap-
parent) that the effective potential in the region out to
about 2 fm will depend on the quantum numbers of the
%2V channel being studied. We see no reason why a calcu-
lation in, for example, the PJ and 'P& channels might not
reveal the origins of the spin-orbit and non-OPE com-
ponent of the tensor internucleon interactions, just as the
present calculation revealed the non-OPE component of
the spin-spin- interaction. It would also be interesting to
extend our calculation in the 3u-3d sector to channels with
non-XX quantum numbers and also to consider states
containing strange quarks in search of possible relatively
deeply bound strange analogs of the deuteron.

Finally, we believe it would be very useful to perform
calculations using the resonating-group method (or one of
its relatives) based on our approach. In particular, our re-
sults strongly suggest that the inclusion of P-wave color-
octet states in such a calculation will produce output
phase shifts more like those observed experimentally than
has previously been the case. If so, it would certainly fur-
ther increase our confidence that at least the rudiments of
nuclear physics can be understood on the basis of the
quark model and that it will eventually be possible to
rigorously understand the origins of this subject in QCD.
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structed from ground-state three-quark clusters in a rela-
tive S wave. In order to obtain such states using the
Clebsch-Gordan decompositions of Appendix A it is
necessary to form bases in each sector having well-defined
S3 & S3 transformation properties.

In the color sector, recalling that for SU(3),

3e 3e 3 = 1(Pe 8~@8~+ l~ (81)

and that none of 10 10, 10 8, 10 1, 8 1 contain 1, we
see that the possible color-singlet combinations of three u

and three d quarks are

APPENDIX A: CONVENTIONS FOR THE
PERMUTATION GROUP S3

A "oA, M"oM' (M,M'=p, A, ),
where

(82)

2'
v3

7723P 2 P+ 2

~»P= 2P—
v3

P —
22

v3
m'q3A, =+ p ——A, .

2

(Al)

There are three irreducible representations S, A, and
M:—(p, A, ) labeled by their permutational symmetry (sym-
metric, antisymmetric, and mixed symmetry, respectively),
of dimensions 1, 1, and 2. We adhere to the following
convention for the transformation of the basis states of
the mixed representation under the transpositions m,j.,
those for S, A being obvious:

~12p = —p~

A"oA"=—~A") ~A")

g ~Mk) ~Mk"),
8 k

(83)

(84)

~
p„&=,'~,",e.~ ~q.q&q &, (85)

and we have simplified the notation by writing M for 8
and A for 1 . The two octets p and A, transform as
members of a mixed S3 permutational representation and
in accord with the conventions of Appendix A. In nor-
malized form the three-quark color states pk,
(k = 1, . . . , 8), and A are given by

These transformation properties are useful for deriving re-
lations among matrix elements of two-body operators be-
tween states of fixed S3)&S3 symmetry. The Clebsch-
Gordan decompositions of the products of irreducible rep-
resentations are as follows (here R is any irreducible repre-
sentation, M =M, S=A, and A =S):

I4&= (~~sr~ ~le e'e'& ~skr~ ~—
~e ~r'e &),3'"

q q&qr)a (87)

S(3R =R,
AgR=R,
M@M=S+MA .

(A2)

where A,~& are the elements of the usual Gell-Mann ma-k

trices. Similarly, for SU(2),~;„

—(3) — —= —
EB

—6—1 1 1 3S IP 1

2 2 2 2 2 2 (88)

1
PMsM (P~+ ~P)~2

1
~MeM= - (PP —~~) .

&2

(A3)

The irreducible representations S and 2 are one dimen-
sional so that Clebsch-Gordan coefficients for products
involving either one of them are trivially unity.

APPENDIX B: PHASE-I BASIS STATES

The phase-I basis consists of all states separately an-
tisymmetrized in three u and three d quarks having net
color zero, net spin 0 or 1, and spatial wave functions con-

With the above convention for states belonging to M the
irreducible components of MM are as follows:

1
SMg, M = - (pp+~~)'V2

1
AMsM (p~ ~p)~2

The following choices are in conformity with the conven-
tions of Appendix A, where we display explicitly only that
component of the spin multiplet with maximum projec-
tion

~pT) = (T~T —HATT),
1

2

~
&T) = (TJ, T+LTT —2TTL),

—1

6

[S-,' ) = TTT .

(89)

(810)

(811)

States of three u and three d quarks with either spin 0 or 1

are then easily constructed using the standard SU(2)
Clebsch-Gordan coefficients. The available S3&S3 sym-
metries are (SS) or (MM') for the S =0 channel and (SS),
(MM'), (SM), and (MS) in the S=1 channel, where
M, M'=p, A, .

Finally, in the spatial sector, let us introduce the
compressed notation (126;453)=P(126)P(453)4(R&z6.4&3),
etc., where P is the ground-state baryon cluster wave func-
tion,
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TABLE IV. Normalized spatial wave functions with specific S3 && S3 symmetry. All states are denot-
ed by their type and S3)&S3 symmetry, the u symmetry being listed first.

(SS)i=(123'456
(SS)»——[(125;463)+(135;462)+(235;461)+(126;453)+(136;452)+(236;451)

+ ( 124;S63)+ (134;562)+ (234;561)]/3[(1+ 8B)] '~

(Sp)» ——[(125;463)+(135;462)+{235;461)—(124;563)—(134;562) —(234;561)]/[6(1 B)—)'~2

(SA, )»= —[(125;463)+(135;462)+(235;461)+(124;563)+(134;562)+(234;561)
—2(126;453)—2(136;452)—2(236;451)]/3[2(1—B)]'i

(pS)» ——[(135;462)+(134;562)+(136;452)—(235;461)—(234;561)—(236;451)]/[6(1 B)]-'

{AS)» ———[(235;461)+(135;462)+(234;561)+(134;562)+(236;451)+(136;452)
—2( 125;463 ) —2( 124;563 ) —2( 126;453 )]/3[2( 1 B)—] 'i

(pp)„= [(13S;462)—(23S;461)—(134;562)+(234;561)]/2[(1 B)]'—
{pi, )» = —[(135;462 ) —(235;461)+ ( 134;562) —(234; 561 ) —2( 136;452 ) +2(236;451 )]/2[3( I —B )]'

{Ap)»———[(235;461)+(135;462)—2(125;463)—{234;561)—(134;S62)+2(124;563)]/2[3(1—B)]'~'
{A A )» ——[(235;461)+(135;462)—2(125;463)+(234;561)+(134;562) —2(124;563)

—2(236;451)—2(136;452)+4(126;453)]/6(1 —B ) 'i2

3

3/2 exp[ —
2 & (pi26 +~i26 )j ~

4 is the intercluster wave function depending only on the
separation of the centers of mass of the two clusters,

R&26;4S3= & ( &+ 2+ 6) —& ( 4+ 3+ 3) (813)

and p126, A, 126 are the usual Jacobi coordinates for the
cluster 126,

1
p 126 ( r 1 r2)

V2
1

(r&+ r2 —Zr6),~6

(814)

(815)

which transform as suggested by the notation under S3
The wave function (126;453) is assumed normalized in
the center-of-mass system with respect to the mea-
sure d7126;453=d E126;453d P126d P453d 126d F453

3 3 3 3 3

represent @by a sum of Gaussians

then the normalization constant X is given by
—1/2 ~—1/2

3/4
77

(817)
I

B = J «, 26 453(126' ;453)'(125;463) . (818)

There is only one such integral owing to the spatial sym-
metry of the clusters and the invariance of 4 under cluster
interchange.

The phase-I basis states are now straightforward to con-
struct. We list below these states for the spin-0 and -1
channels. The notation is such that, reading left to right,
one encounters symmetry labels in the order space(u),
space(d), spin(u), spin(d}, color(u), color(d). The spins
are coupled to the appropriate total spin. The subscripts I
(II) refer to the type of clustering in the event the spatial
symmetry is (SS). In the S=0 channel we have

The use of such nonlinear parametrizations is well estab-
lished in cluster calculations in nuclear physics. We will
henceforth label the u quarks 1,2,3 and the d quarks 4,5,6.
From the ten distinct spatial states (ijk;lmn) (ijk;lmn
any partition of I 1, . . . , 6I ) one may easily construct nor-
malized spatial states having definite S3XS3 transforma-
tion properties. These states are listed in Table IV. Note
that there are two states with spatial symmetry (SS), of
types I and II, consisting of uuu, ddd and uud, ddu clus-
ters, respectively. These states are not, in general, orthog-
onal, but orthogonal combinations are easily constructed.
The quantity 8 in Table IV is the exchange overlap in-
tegral

~
1)=(SSSSAA)»,

i 2) =—[(ppppAA)+(pkpAAA)+(ApkpAA)+(AkAAAA) j,
~
3 ) = —,[(SSAA pp)»+ (SSppk A, )»—(SSpk ip }»—(SSAppA, )»j,

~
4) = —,

'
[(AMSpp)+(ppSSAA, ) —(pASSAp) —(ApSSpA, )],

i
5) = [(Spkppp) —(SAAApp)+(SppAAA. )+(Sipping. ) —(SpppAp)+(SApAAp) —(SpAApA, ) —(Skippy, )],

—1

2+2

~
6) = [(pSpkpp) —(ASAApp)+(ASppAA, )+(pSApAA, ) —{ASpikp) —(pSAAAp) —(pSpppA. )+(ASAppi, )j,—1

2v2

(819)

(820)

{821)

(822)

(823)

(824)
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~
7 & =—[ (pppppp) —(pppApp) —(ApA ppp) + (AAAA pp) + (ppAAAA, ) + (pAAp&&)

+ (kppA A A, ) + (A A ppA A, ) —(ppA pk p) —(A pppA p) + (p&&&&p)

+(Akpkip) —(pppkpA, )—(pkpppA, )+ (Apikpk, )+(AAAppA, )],
(
8&=(II~I)

( 1&,

(82S)

(826)

i
9&=(II—+I)

i
3& . (827)

All states from the S =0 sector can be recoupled to S =1. States
~

1& through
~

7& in the S =1 sector are therefore la-
beled as in

~

1& through
~

7& of the S =0 sector. The states
~

8& and
~

9& of that sector, under recoupling, become states
~

14& and
~

15&, respectively, of S =1. The remaining states are

~

8 &
= —,

'
[(SAASpp)+(SppSAA, ) —(SApSAp) —(SpASpA, )], (828)

i
9& = —,[(ASSApp)+(pSSpAA, ) —(ASSppA, ) —(pSSAAp)],

i
10& = [(pkpSpp) —(AAASpp)+(ppASAA)+(AppSAA, ) —(pXASAp) —(AkpSAp) (pppS—pA. )+(ApASpA)],

—1

2v2

~

11&= [(ApSppp) —(AASApp)+(ppSAAA)+(pASpAA) —(ppSplp)+(pASXAp) —(ApSApi, ) —(AASppk)],
—1

2v2
1

2
[(SpSpAA ) + (SASAAA )],

~

13 & = [(pSpSAA)+(A, SXSAA)] .
1

(830)

(831)

(832)

The matrix elements of the various components of the
Hamiltonian I can be constructed in this basis from the
color, spin, and spatial matrix elements listed in Appen-
dices C, D, and E, respectively. In fact, owing to the an-
tisymmetry of the states we have for any symmetric
operator VJ.

&A
I 2 vij l&&=&A 13''12+3V4s+9I'i4 I»

l (J
for all states ~A & and ~8&. In the tables of these appen-
dices we list enough matrix elements to enable the reader
to check their consistency.

APPENDIX D: MATRIX ELEMENTS OF THE
SPIN OPERATORS S~'Si

The spin states of the S =0 and 1 channels have been
discussed in Appendix B. Using the spherical decomposi-
tion

S; SJ —,(Sg+SJ. +Sg Si+)+SOS@, (D 1)

where S+ are the usual spin-raisin and lowering opera-
tors (S+——S~+iS» so that +S+/ 2 are the usual spheri-

APPENDIX C: COLOR MATRIX ELEMENTS

We note that the color dependence of the quark Hamil-
tonian is contained entirely in the factor A',J=gk( —,A,");(—,

'
A.")J,i and j being particle labels. The ma-

trix elements of A';1 relative to the color-singlet basis con-
structed in Appendix B are given in Table V. As a con-
venience to the reader we have presented the full table
which can, of course, be derived by permutational argu-
ments from a much smaller set of matrix elements.

cal components of S), one may readily generate the results
of Tables VI and VII. Note that the relative sign of our
spin states (MS)s i and (SM)s i differs from the stan-
dard Condon-Shortley convention since we relate these
two states by simply interchanging u's with d's. Care
must therefore be exercised in deriving spin-1 matrix ele-
ments using permutational techniques. As in Appendix C
we list all matrix elements for the reader's convenience.

APPENDIX E: PHASE-I SPATIAL MATRIX ELEMENTS

Given the basis of normalized spatial states with defi-
nite S3&S3 symmetries constructed in Appendix B one
can readily generate all matrix elements for a particular
symmetric two-body operator A,J. A,J. is given by
(r; —rJ) =—r,j for the confinement potential and 5 (r;J)
for both the U and hyperfine potentials. Permutational
symmetries allow all matrix elements to be generated from
a smaller set involving only a limited number of S3+S3
symmetries and these in turn can be expressed in terms of
the following quantities.

(1) Direct matrix elements. Since a given pair ij either
both lie in the same cluster or lie in different clusters there
are two matrix elements of this type:

A)2I d'ri26;435( 126;435) ( 126;435)
14

(2) Exchange matrix elements. From the permutational
symmetry of the three-quark subclusters one sees that
there are four distinct matrix elements of this type:
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TABLE VIII. Basic direct and exchange spatial matrix elements.

Hyperfine and U potentials: A;j=5 (rij)

s=cx /(2m)

n(.~1=+ 'gS g, /[3(P +P, ')+ ,'a'—]'"

bss(red) —+
b,„(,46=121 6 a F 'ggg' /(99a +42a p +78a p +2Qp p )

EJ

(
3 )3/2a3y —1[ y g /(a2+ 1 p 2)3/2]2

bni(red) + (red)

S =3/a
Confinement potential: AiJ PiJ

2

n(,~1 ——2/3+ g g; g//( 2 P; + 2 PJ')' '
2F,,

b~(.ed) =&
2713/6

b,„(~&=M /8+ a5 g g;g&(12a2+9p&2+ p;2)/g, 5/2

16F
2713/6

b („~1=8/2+ a'gg;g~ (6a +p;. +p/ )/g, /4F
2713/6a5F —1 g g g (

3 a2+p 2+p 2)/g 5/2

+16
Q]26.435 125;436 *

~ 126;435 . E2
14

A56

We list, in Table VIII, the expressions for these quantities
appropriate to both choices of A,J. In the table the sub-
script "(red)" (for reduced) indicates that the quantity in
question has been divided by the corresponding value of s

In order to evaluate the exchange overlap integral B, as
well as the exchange matrix elements of A;1, the following
relations between the Jacobi coordinates of the two dis-
tinct clusterings (126;435) and (125;436) are needed:

elements. " A complete table of spatial matrix elements is
not provided, the expressions being simple but too unwiel-
dy. Those not listed can be generated from those in the
table by permutational methods, using the conventional
transformation properties recorded in Appendix A.

APPENDIX F: KINETIC-ENERCx Y
MATRIX ELEMENTS

In the center-of-mass system one can easily show that

p125= p126 ~

p436= p435 ~

(E3)

(E4)

2( 3
)

126;453
2

(Fl)
2

A 125 = + ~ R126;435+ T ~435+ 3 ~ 126 '

1 2
~436 ~ 126;435+ 3 ~435+ 3 ~126 ~

4
R125 436 TR126 435 ~ (/(435 ~126) .3~6

These relations lead to

273/2a3~ —1 g g g
—3/2

(E7)

(E8)

where

g,,=9a'+ ", a'(p +p, ')+4p —p,'. (E9)

and to the results of Table IX for the "generating matrix

Note that for well-separated clusters one would expect the
mass appropriate to the intercluster coordinate motion to
be the reduced mass of the two-nucleon system, i.e.,
M&/2. We see that the mass which appears naturally in a
nonrelativistic treatment is 3m/2, where m is the quark
mass. In the presence of strong binding one may therefore
run into a conflict, in general, as indeed happens with
mesons. However, in our case, since we use a constituent
quark mass of 330 MeV, the discrepancy is small and, as
long as there is not much kinetic energy in the intercluster
coordinate, (Fl) is compatible with both the quark picture
and the two-nucleon-with-internal-kinetic-energy picture.

In evaluating kinetic-energy matrix elements it is useful
to note that the kinetic operator is symmetric in all quark
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TABLE IX. Generating spatial matrix elements. The notation is
where I; are symmetry labels, I& and l3 referring to u 's, l2 and l4 to d 's.

Is
(SSr,SSr',ij)=

(l)lp
~ AJ ~

1314)=(I,l„l,14,ij),

12, 13,23
'j =

45, 46, 56
Otherwise

(b +2b„)/[(1+8B)]' '
(SSr,SSrr ij

(4b,„~4b ~b„; )/3[(1+8B)]'~

12, 13,23
ij= 45, 46, 56
Otherwise

(SSrr, SSrr'l j)= (s +2n +2b„+12b,„+8b„,+2b„; )/3(1+8B)

[ (4s +Sn + 12b„+40b,„+16b„,+4b„;)/9(1+ 8B)

12, 13,23
ij= 45, 46, 56
Otherwise

(SSr,Sprr,'ij)=
+3(b„b,„)—/[6( 1 —B)]'i

+(2b„,—b,„—b„;)/[6(1—B)]'"
0

46'j= 56

14,24, 34
15,25, 35

Otherwise

(SSrr Sprr'ij) =

(s —n +2b„+3b,„—4b„,—b„; )+
[6(1~ 8B)(1—B)]'~

(s —n +3b„+b,„—2b„,—2b„; )

3[6{1 ~8B)(1—B)]'~'
0

46'j= 56

14,24, 34
15,25, 35

Otherwise

+(b ~b„; 2b,„)/2[(1——B)]'i'
(SSr,pprr, ij)=

. 0

14,25'j= 24, &5

Otherwise

(2s —2n +6b +2b,„—7b„,—b„; )

(SSn.pp~r~ij ) = 6[(1+8B)(1 B)]'n
0

J
14,25'j= 24, 15

Otherwise

(Sprr Sprr, ij)= '

(s +2n —b„—4b„, +2b„; )/3(1 —B)
(n —b„; )/(1 —B)
(s +n +2b„—6b,„+2b„,)/2(1 —B)

(3s +3n —2b„—2b,„—2b„, )/6(1 —B)

(s +2n —b„—b„; )/3(1 —B)

ij= 12,13,23
ij =45
ij=46,56

14,24, 34'j- 152535
ij= 16,26,36

(SprrspSrrsij) = +(2s —2n —3b„+2b,„+2b„,—b„; ) /6(1 —B)

, 0

14,25'j- 24, 15
Otherwise

(Sprripprr~ij) =

+(s n —b +2b b„;)/{1 —B)V 6— —

+{b„2b,„~b„,)—/(1 B)W6—
k(n —s +b„—b„; )/(1 B)W6—
0

13
23

14, 15
'j —

24, 25

16
26

Otherwise

(pprr pprr, 'Ij)=
(n —b„;) /(1 —B)
(s +n +b —4b,„~b )/2(1 —B)
(n —2b ~b„; )/(1 —B)

' (s+n —b —b )/2(1 —B)

ij=12,45
ij= 14,15,24,25
ij=36
Otherwise
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coordinates and in fact in the color, spin, and spatial sec-
tors independently. Therefore it connects only substates
with the same joint spin-color-space S3&S3 symmetries.
This means that the kinetic-energy matrix is diagonal,
apart from mixing between states 1 (3) and 14 (15) in the
spin-1 sector and states 1 (3) and 8 (9) in the spin-0 sector.
All matrix elements can be expressed in terms of the

l

direct and exchange matrix elements

kD (126;435)= J d~126 435(126;435)*K (125 436)0
(F2)

For the intercluster wave function given in Appendix B
one finds

3a2 F-'
y g g p 2p 2( 1 p 2+ 1

p 2) —5/2

IJ

bconfmemen& +273/2~3 y g g p 2 —3/2) 1
—1( 15 ~2p 2+4p 2p 2))

m

(F3)

(F4)

where B, F, b,'„'~"„'d~' '"', and g,j are as defined in Appen-
dices 8 and E.

In the spin-1 sector the nonzero matrix elements, in the
nonorthogonal basis given in Appendix B, are

(kD+ 8kp ) /(1+ 8B), i = 1,3

I

the possible "appropriately antisymmetrized" states of a
uiu2d4 cluster (with maximum spin projection) in its
(symmetric) spatial ground state are

P 3
p~1248124 ~~1248124 ~~124~ 124 a d p }24~124

K)I. ——~ kD, i =14,15

(kD —kp )( /1 B), othe—rwise

Ki 14 —K3 15 —K14 '1 K15 3 —3kp/( 1 +8B)'
(F5)

APPENDIX H: THE VAN DER WAALS INTERACTION

The long-range piece of the confinement potential

(king
—kp)/( 1 —B), otherwise

Ki s=Ks 1 =K3 9=K9 3=3kp/(1+8B)
(F6)

APPENDIX G: THE "PHYSICAL" BASIS

In the text we listed the content of the I =0, J=1 and
I = 1, J=0 channels in terms of physical three-quark con-
figurations, in the standard isospin notation. It is clear
that such a description is most suited to systems in which
the two three-quark clusters are sufficiently separated that
their overlap is negligible, for it is in that limit that two
permutational components of a fully antisymmetrized
wave function having distinct partitionings of particles be-
tween the two clusters are independent, and in which the
physical situation can be described by choosing one partic-
ular partition and antisymrnetrizing only within clusters.
Six-quark states are then unambiguously described in
terms of pairs of totally antisymmetrized three-quark
clusters. A similar description exists for the basis in
which isospin is realized dynamically. Here one merely
replaces "totally antisymmetrized" by "appropriately an-
tisymmetrized, "where appropriately is taken to mean "to-
tally" if the cluster consists of identical particles and "in
identical particles only" if it does not. In evaluating van
der Waals and tensor matrix elements we will, in fact, be
in the limit of small exchange overlap and so shall find it
convenient to work in this basis, which we describe, for
future reference, as the "physical" basis. As an example,

Similarly, in the spin-0 sector, the nonzero matrix ele-
ments, in the nonorthogonal basis, are

(ki)+8kp)/(I+8B), ij =1,3
K;;= ~ kD, i j=8,9

(Hl)

when expanded in terms of the cluster Jacobi coordinates
of Appendix B, turns out to contain terms of the
form A

1 26 A 453 etc., which couple the np ground state, la-
beled (126;453), directly to four colored I' wave excita--
tions:

(AAAApp)—:(1262,4532, )(+12+453)S(8126o8453),

etc. A few comments regarding the notation in (H2) are
in order:

2a 3

(1262,4532)= ~126'~4534(126)4(453)'P(R126;453)

(H3)

is the normalized I. =0 combination of two P-wave clus-
ters with S3 &&S3 symmetry (A.A, ) and, in general, dif-
ferent variational parameters from the ground state,
(X126 X453 )s the spin-S combination of spin- —,

' clusters 126
and 453, and (8~126o 8~453) the color-singlet combination of
the 8P 126 and 453 color wave functions. Note that we are
working now in the "physical basis, " i.e., the basis of
three-quark clusters antisymmetrized separately in their
identical particles. Since the S3 & S3 symmetries of the
np states in the spin and color sectors, in this representa-
tion, are (AA, ) and (AA), respectively, and since the con-
finement potential is spin independent, the ground state is
coupled only to states with spin configuration (AA, ). The
available states are therefore those with symmetries
(AAAApp), (Apkkpl, ), (pAAAAp), and (ppAAAA, ), of which
the state above is an example.

The energy shift of the ground state caused by the rnix-
ing of the color-octet P-wave state (H2) is given in
second-order perturbation theory by
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—
( ((AAAApp)

~
V,

~
np) )

«(i,) u pp)
—E.~ )

(H4)

2

(3k/2~2)2 g g g ( P& ~+ ( P 2)—3/2

l,J
(H5)

where g, P,' are the variational parameters for the inter-
t

with similar contributions for the other three states. The
squared transition matrix element appearing in (H4) for
each of the four states is

cluster wave function of the excited state, and E,E' (as
given in Appendix 8) are the normalization factors for the
ground-state and excited-state intercluster wave functions,
respectively. In evaluating the energy denominator in
(H4) we note that the radial suppression at the origin al-
lows us to neglect the cross-cluster contribution of the
short-range U perturbation. Those of the hyperfine in-
teraction, although small, are retained because they contri-
bute to the splitting of the S=0 and S =1 channels. The
resulting expression for the energy denominator is, in all
cases,

3
87TCXsCX

ggg,'
12~'+ 6~'(P,"'+P,")+7(P,"'+P,")'

2+ & p~ 2+ 2 pi 2)7/2 48E'

——,
'

( —', ka )+3
~2 3 8&& A MCX+kD(P;, g ) kD(p;, g—; )+ + (H6)

3(2~) / m (2n) /

where the factors —1 and + —, multiplying the second summation are for the S =0 and 1 channels, respectively, the last
three terms arise from in-cluster expectations of the hyperfine and confinement potentials, and kD(P,', g,' ), ki)(P;, g;) are
the direct kinetic-energy matrix elements given by (F3).

For r & 3 fm these expressions simplify so that the total contribution to the potential from these four states may be ex-
pressed analytically as —5 MeV (r/3 fm)

APPENDIX I. THE TENSOR INTERACTIONS

The tensor piece of the hyperfine interaction is a J=0, L =2, S =2 operator. It is convenient to display it in the fol-
lowing recoupled form in which this fact is evident. Writing

HT ——g H/r
jk

with

H/k=H ~k j . =H'v'A'T 2 2
— T Jk

we have

(I2)

s rJk rJkH T = —
2 g ( —1)"(SjSk )(2 „)

m n rjk
(2, —n)

(I3)

5where (SJSk)(2„) is the S=2, S,=n combination of SJ,Sk and (rjkrjk/rjk )(2 „) is the L=2, L,= ncombin—ation
of rjklrjk, rjklrjk . The matrix elements of an operator of this form between states of definite L,S are readily ob-
tained by standard invariance methods. For a state

~

I ) with L =2 and spin S' coupled to the initial np ground state
(L=0, S=1) one finds

(I
~

H T ~
np) = —

2 ( —1) '[5(2S'+1)]' W(1,0,S',2;1,2)(S
~
~(SJSk)p~ ~1) L'=2 rjk rjk

5
1~k

. 2

L, =O (I4)

where 8'{I,O,S',2;1,2) is the Racah coefficient {whose
value is I/~15) and ( ~~ ~~ ) denotes a reduced matrix ele-
ment.

We begin by considering the admixture of an np D-wave
component into the np ground state. Starting with

l

(uud)(ddu) clustering in the "physical basis" one can
readily show that the correct jointly antisymmetrized state
is proportional to the product of sums of cyclic permuta-
tions of u's and d's acting on any representatively labeled
state, i.e.,
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O'L =N g g I 126;453 jL,
cyc cyc
123 456

(I5)

We therefore require the two-body color, reduced spin,
and reduced spatial matrix elements with both of these
permutational structures. The results are listed in Table
X. The form used for the intercluster D-wave wave func-
tion is

4'2~(R)- gg,'R Y2~(Qz)exp( —P,' R ) . (I7)

From these results one obtains for this tensor mixing ma-
trix element

87raea lr'10m.
(8b~„+8b~ b„,+22b„;)—,

3(27r) / m 12a v'3

(I8)

where I 126;453 jL is the spin, space, color configuration
of two three-quark clusters 126 and 453 in proton and
neutron states, respectively, with relative orbital angular
momentum L. Since we neglect second-order exchange ef-
fects in our tensor matrix eleinents we can drop the ex-
change contribution to the normalization and set N= —,.
The tensor interaction between @2 and Co then consists of
9 direct terms (which do not contribute to the D-wave
mixing) and 72 exchange terms, 36 each involving single
and double exchanges. Using the permutational symmetry
of the full tensor interaction one can show that all single-
exchange terms are identical, as are all double-exchange
terms, so that

(e, /H /e, )=4(I126;453j fH [ [125;643j )

+4( I 126 453 j 2 I
HT

I I 31»'642 jo)

(I6)

using the notation previously given in Table X. The ener-
gy difference between the np ground state and its D-wave
excitation, neglecting exchange terms, comes solely from
the kinetic energy of the intercluster coordinate and is
given by the expression

g g' g& g 2p& 2( 1 p( 2+ ( 13t 2)—9/2

7 EJ

6m yglgl( 1 pt2+ ) pp2}—7/2

g g g p 2p 2( 1 p 2+ 1 p 2) —5/2

1

2m g g g (
) p 2+ ) p 2)—3/2

(I9)

The remaining states, which consist of colored clusters,
mix directly into the ground state and are of three general
types:

M M'.
126P453iLrel )L =2 ~

M M
12(r 453 rel )L =2 o (S126 453 rel )L =2 ~

(S(26S453iLrel 2)L =2 ~

where we have used the notations S126, P126 to represent
ground-state and P-wave excited-state 126 clusters, respec-
tively (M=p or A, ), and the subscript L =2 means that
the available orbital angular momentum is coupled to
yield L„,=2. In order to implement (I4) we need the cor-
responding reduced spin and spatial matrix elements.
There are a large number of these but fortunately they are
of diagonal (direct) permutational character and readily
evaluated. The results are listed in Table XI. The color
matrix elements can be obtained from Table V by inter-
changing the labels 3,6. The normalized wave functions
for the various states are taken to be

a2

(P)26P453~Lre( 0)(22) 3/4P)26+p453+4(126)p(453) (/2 g greXp[ —Tp,' (R126 453) ](F~ )1/2 (I10)

where F1
——g, gI gj ( —,

'
p,' 2+ —,

' p'2)

(P126S453 Lrel 1 )(22) 3/4 p(26+R 126 453+)( ( 126)$(453),/2 Q $,' exp[ ——,p,' (R 126 453 ) ]m' ' (Fi )1/2

where F'2 ——g,"g gJ ( T'((7t,' +T'g. );and

=2 '" 1
(S'126S453 L„l——2)(22)—— 3/4 (R126.453+ ) (t)(126)p(453) 1/2 Q $,'exp[ ——,p,' (R126;453) ]

(F3 )' (I12)

where F3 ——g,"g gj( —,
'
p,' + —,

'
pz ),where u+ ——u„+iu~ so that u+/~2 i—s the usual (11) spherical component of

the vector v, P(126) and P(453) are the 126 and 453 cluster ground states, as in Appendix E, and g,', P'; are variational
parameters, allowed to vary independently in each of the three cases. The subscript (22) means that the state is the
1.=2, I.,=2 member of the D-wave multiplet. To complete the calculation we must enumerate the available states of
each type in the "physical basis, " use the results of Table XI in (I2) to obtain the transition matrix elements, and evalu-
ate the required energy denominators, i.e., the energy splittings of each of these states relative to the np ground state. In
the usual approximation, in which we neglect exchange terms and intercluster expectations of short-range operators, the
energy denominators all have a common form:
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TABLE X. The spin, space, and color matrix elements for the np tensor D-wave mixing. The states
are labeled by their cluster permutation symmetries, the subscripts being the particle content of the clus-
ters. Some symbols appearing here are defined in the text of Appendix I. The remainder are

b =0,
1 48 54'" as(a2 —2P/ /3)

(y ~ y )1/2 +~ ~J 5 1/2 (99a4+78a2p' 2+42a2p 2+2()p' 2p 2)5/2G.1, v 6 8(54') a (3a +2pJ )

(F'E)'/2 " '
V 15 (99a4+78a2p/ +42a p,' +20p; p/ ) Gz

b =, , gggj a l(a +p,' l3) (a +p/ l3)' G;/,

b„;=, , gggj a (a /3+4pj /9) /(a +2(p,' +p/ )/3)' G;/,

where

G a4+ a2(p'2+p 2)+ p'2p 2

Color:
1

9
4(~ 126~453 I AJk I ~125~643 ) ' 9

2
9

jk = 14,24, 13,23

jk=56
Otherwise

4
(~ 12&4453

I A,k I
~ 315~642 ) = ' 9

2

jk =25,23,56,36

jk= 14

Otherwise

—2V 5/9V 3
—v 5/9v 3

(~126 453(S=1)II(SJSk)211)125~643(S=1))=
—v 5/18v 3

v 5/9V3

jk= 12

jk=56
jk =34,35,36
jk=45 46 13 23
Otherwise

' 25v 5/72v 3
—v 5/18V 3

(~126~453(S = 1 )
I I(S,Sa )2I I~315~642(S

Sv S/72v 3

jk= 14

jk= 56,23

jk = 12,13,45,46
Otherwise

Space:

b„;
b

(S»6S453(L =2)ll(r/krjk«/k')2IIS125S643(L =0))= '

b~
b

jk= 56

jk= 12,34

jk= 16,26,35,45

jk = 15,25,36,46

jk = 14,24, 13,23

b„;
b

(S1 26S453 (I =2 )
I I

( r /k r Jk /r/k
'

)2 I I S31 5S642 (L =0 ) )=, b~„
b~
b

jk= 14

jk =26,35

jk= 12,16,34,45

jk=24,46, 13,15

jk=23,25,36,56
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TABLE XI. Reduced spin and spatial matrix elements of diagonal permutational structure for the
tensor interaction. As all matrix elements are direct, we will suppress the cluster indices 126;453. Thus
(pp;0)2=(Pfq+4~3+„i=0)i z, etc., and (oo'(S)):—(o,26o453(S„,=S)),o,o'' being cluster permutational
symmetry labels. We list matrix elements only for the required cross-cluster values of jk and only for
configurations independent under cluster interchange.

Spin:

—,
' ~(s)

([SS(S)]
I I(SjSk )Pl I

[»(1)])= . —
6 «(S)

—,2 K(s)

jk= 36

jk= 13,23,46,56

jk= 14,24, 15,25

where a(3)= 1

v(2) =0
«(1)= —V 2/3V 3

rc'(S) /6V 2

&[S~(S)] I l(SjSk )2I I
[»( 1 )])= —K (S)/12V 2

—«'(S)/3V 2

jk = 14,15,24,25,36

jk= 13,23

jk =46,56

where ~'(2) = 1

«'(l)=V 5/3V 3

«SP(S)]11(SjSk).l I [»(I)])= . +3K (S)/12V2

+3«'(S)/6V 2

jk = 13,23,36

14,24
jk

'46
jk = '56

+5/6V 3
([pp(1)]ll(S Sk) ll[»(1)])=

14,25j —
15 24

jk = 13,23,46,56,36

([p~(1)]II(SjSk)2Il[»(1)]&=
5
9

5
18

jk =36,46,56

I
14, 15j —
24, 25

46
jk= '56

2V 5/9V 3

& f»(1)l I l(Sjsk bl I
[»(1&]&

=
V 5/18V 3

jk = 14,24, 15,25

jk= 13,23,46,56

jk= 36

Space:

((SS; 4l2l(- rjk/rjjkr)zkll(SS' ) )0=o—,„,Xkkj(F F)k/2 H 5/2(P 2+P 2)

where H;j=a + 3 (g +P, )

«pS 1)2II(rjkrjk«jk')2II(SS o&0&=

14, 15, 13
jk =

24, 25, 23

jk =36,46,56
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TABLE XI. (Continued).

((AS;1)2i i(rjk rjk/rjk')2[ i(SS;0)0)= —2~/V 3
jk = 14,15,13,24,25,23

jk =36,46,56

8 V2 1, Q'(13,"+P,')
15 3/ (y" y')1/2 ' j~ 5/2[Q2+ 8(P' 2+P 2)/3j

((pp;0)2i i(r jk Ijk lrjk )2i i(SS'0)0)=
0

14,25
jk= 15,24

jk= 13,23,46,56,36

*~/V 3

((Ap 0)2i i( rjk rjk/rjk )2I l(SS'0)o) =
p2&y/3

14,24j —
15,25

46
jk = '56

jk = 13,23,63

- o./3
((AA 0)2i i( r,k r,k /r k')2

( i
(SS;0)0)= —2cr/3

. 4o./3

jk = 14,24, 15,25

jk = 13,23,46,56

jk=36

—2 1 1 Q (P +P, ')where 0 =
(P'P)l/2 1 H 5/2

( 2 klan ) g g fj( —p,' +—'p'. )
—(p+2)/2+ " g g'g'p 2p 2( l

p 2+ & p 2)—(p+2)/2
CJ 6m

—1 e 3
2 2I 1 2 & 2 —5/2 8~a,a

3 WQ+kkjPI Pj ( 2Pl + 213J' ) + 3/2 2 Ql+( 2 klan )Q2+ Q3+C
jJ 3(2Ir)'/'m' '

(22r)3/2
(I13)

where C,p depend only on the type of spatial excitation:

p =7, C =0 for (SI26S453 L „I——2)L (I14)

5 C A 2
Mp =, = for (S126P453iLrel = 1)L 2 Slid (P126S453iL rel 1)L =2 ~ (I15)

CZ
2

M Mp=3, C= for (PI26P45»'L. I=O)L =2
m

(I16)
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n =(p —1)/2 and the a; depend on the particular state.
Terms with coefficients ( —,

' ka ~) arise from the quadratic
part of the confinement potential, those with
[Sm.a,a /3(2m. )

~ m ] from the in-cluster hyperfine poten-
tial, those with [wa /(2m. )

~ ] from the in-cluster U per-
turbations, and the remainder from the kinetic energy.
The accessible states of each type and corresponding
values of a; are listed in Table XII together with the
squared transition matrix elements.

APPENDIX J: THE HYBRID OPE-POTENTIAL
PLUS QUARK-POTENTIAL MODEL

We consider the system of a neutron and proton, in the
deuteron channel, interacting via a potential with tensor
and central pieces, each of which has contributions from
both modified OPE and residual quark interactions. Note
that the quark-induced tensor interactions are small
(roughly O. l MeV in binding) and so have little effect,
though we have included them for completeness.

Recall that, because of the pseudoscalar nature of the
pion, a nonrelativistic reduction of the OPE diagram leads
to a potential

V(r)= ri. Fq( cri V)(cri V)V(r),
P7l

where m is the pion mass, r =
~

r i
—r z ~, V(r)

=exp( m—r)lr is the pion field, f = (g /4—m. )(m/2M)
with g the bare mNN co.upling (g /4m=15), M is the nu-

cleon mass, and o.; and z; are the spin and isospin opera-
tors, respectively, of the ith particle. Nucleons couple, not
directly to the pion field, but to gradients thereof. The
modification of OPE due to form-factor softening (FFS)
is implemented in momentum space by inserting a factor
exp( q /613—) at each NNmvertex. , where P is
phenomenologically determined and has the value 420
MeV. ' The resulting coordinate space potential is ob-
tained by convoluting the Fourier transform of the pion
propagator, exp( mr)lr, w—ith that of the form factor
squared. Qne obtains

VFFs(r)= ~
[exp(mr)Erfc(m/v 3p —v 3pr/2) —exp(mr)Erfc(m/~3p+~3pr/2)],f exp(m /3P )

2m r
(J2)

where

Erfc(x) = I dt exp( t )—
3 cubi. cr~V'+ —,

' [3(cri V)(cr~. V) —o, oiV'] (J3)

and then acting with the appropriate derivatives on V(r)
to obtain

(o'i V)(crq V)V(r)= —, [cubi iVcr, ( )+rSiiVz(r)],

where

(J4)

is the complement of the error function. The central and

tensor potentials corresponding to VFFs are obtained by
first rewriting (cr i V )(o i V } in a form which displays its
scalar and tensor pieces

I

grasp of the significance of the parameters o,n but the
overall effect is to suppress both tensor and central com-
ponents significantly at short distances. Variations of o, n

produce some change in the character of the tensor and
central potentials, especially below 0.7 fm, but such varia-
tions are overwhelmed by the strong repulsive core of the
residual quark interactions, so that our results are not par-
ticularly sensitive to such variations so long as they still
produce deviations from the OPE tail beginning at reason-
able separations.

We have chosen 0.=1000 MeV and n =12 which pro-
duces a V, and Vr which join the OPE tail around 1.5 fm,
as shown in Figs. 3 and 4 of the text. We present, for
completeness, the expression for V in the FFSFS case.
The FFS case may be recovered by setting n to zero:

V, (r) = +— V(r),d V(r) 2 d
dr r dr

d V(r) 1 d
V( }

dr2 r dr

(J5)

(J6}

p( )
f g ( 1)k

" exp[m /3p K(k)]
2m' „, k [K(k)]»&

where

Xk= g(+)—exp[+mrlK(k) ko. r /K(k)]-
+ r

S» ——3(cri.r)(cri. r")—cri. cri .

The short-range 1/r attraction of the OPE potential is
tamed by FFS and turned into a repulsion of width 1 fm.
This repulsion is, however, no more physical than the
OPE attraction as the pion field should be suppressed (FS)
inside the nucleons. This means that we must modify the
pion-field term exp( mr)lr in the convolution —integral
and we do so by multiplying it by the factor
[1—exp( cr r )]". We refer t—o the resulting potential as
"form-factor-softened field-suppressed" (FFSFS). Be-
cause of the convolution one cannot get an immediate

2 2
1/2'

m 3Pr
[3K(k)P ]' 4K(k)

where K(k)= I+4ko /3P . Writing the wave function
for the deuteron in the form

(JS)

1 1
us(r)'pi i,o+ ua(r)C'11, 2r r

where +&] p C ~] 2 are the normalized J,J,=1,1 combina-
tions of S=1, I.=0 and S=1, I.=2 states, respectively,
one obtains the following equations for us, uii (Ref. 32):



974 KIM MALTMAN AND NATHAN ISGUR 29

TABLE XII. Colored cluster states with nonzero transition tensor matrix elements and the state-
dependent coefficients of the energy denominators. States are labeled by their space, spin, and color
cluster permutational symmetries in the order space, space& spin, spin& color, colorb with a=126 and
b=453. The transition matrix elements are those between the state in question and the np ground state
with the configuration {SSA,AHA). Since the results are segregated according to spatial excitation type,
we suppress the labels that indicate this explicitly. S„,is the spin of the state in question. p =A, , X=—p.
We do not list the results for the cluster intt:rehanged L„1——1 states.

The (S126S453 L„1——2)L, 2 sector

States Stot a1 Q2 a3
Transition matrix
element squared

(SSMM'MQ ')

(SSSMpM)

(SSMSQp)

(SSSSpp)

11
8

11
8

11
8

11
8

5
4

9f/8

f/8
9f/8

f/8
63f/20

f/10

8~ 8n.a,a
where

15 3(2m. )
/ m

2

g g/a
(F' P)l/2(P' 2+P 2)H 5/2

2

The (PJQ6S453 L„,~=l)L 2 sector

State Stot a1 Q2 Q3

Transition matrix

element squared

(MSSSMp)

(MSSM'MQ ')

(pSASAp)

SpSpp)

(A,SpSA.p)

(pSA,MA,Q )

(pspMpM )

(A,SpMA, Q)

41
32
41
32

45
32

45
32
13
16
13
16

9
8

9
8

11
8

15
16

5
4

2
3

2
3

2
3

2
3

2
3

2
3

1

3

1

3

1

3

1

3

2
3

1

3

23
8

23
8

23
8

23
8

63g/80

g /40

9g /32

g/32

9g /8

g/8

9g/32

g/32

9g /32

g/32

g/4

g/4

3 2
81m 8ma, a

where g =
3(2~)3"m'

d Qg +M[E V, (r)]~s M8MVT (r)uD =0, —
dr

dua 6+M E , —V, (r)+2V&(r) uD—
dr Mr

—v 8MVT(r)us ——0,

where V~ and VT are now the central and tensor pieces of
the full quark plus FFSFS pion potential. We solve this
system variationally using as variationa1 wave functions
the forms already employed in the quark calculation. (See
Appendices B and I for us and uD, respectively. ) This is,
of course, not the ideal choice if one wishes to obtain D-
state probabilities and quadrupole moments for the deute-
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TABLE XII. (Continued).

The {Pu6P&s3;I re&=0)L 2 sectorM M'.

States

(MM'SSMM ')

(PPPPPP)

(pi,pppA, )

(Apppkp)

(A,ippi, i.)

Stot a1

21
16
21
16

5
4
5
4

Q2

1

3

1

3

1

3

1

3

1

3

1

3

Q3

11
4
11
4
17
4
17
4
17
4
17
4

Transition matrix

element squared

63h/320

h/160

h/16

h/16

h/16

h/16

PP

' A,S

PA,

A, A,

27
32

27
32

1

3

1

3
11
4 h/32

Ap

PP
pS

.PP .

PA,

.PP .

37
32

37
32

7
2

9h/128

h/128

Sp
45
32

7
2 9h/128

45
32

7
2 h/128

Apk, p

pk,pk
(PEA,PA, A, )

(gppA, A,A, )

(PPA. A, A, A, )

11
16

15
16
15
16

3
S

1

3

7
2

7
2

11
4

h/4

h/4

h/4

h

2

5~ 8&ex cx
3

where h = 0 CX

3 3(2~) ~2~

ron since these wave functions fall off as Cxaussians at
large distances rather than exponentially, and such quanti-
ties are sensitive to the long-range behavior of the wave
function. However, our aim here is not to produce a de-
tailed phenomenology of the system but to illustrate the
plausibility of the physical ideas discussed in the text.

The results are quite reasonable in this context. The cen-
tral portion of the FFSFS OPEP produces only sma11 en-

ergy shifts, but the strong tensor coupling results in a
roughly 2-MeV increase of the binding energy and a D-
wave admixture, quadrupole moment and rms radius as
given in Table III.
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~

1Ii
~

as simple as possible. The answer in the
approximation which gives rise to V,ff is

12

9 6 ~%'(R126,453 —r)
~

For a state dominated by the np component one can easily
show that the corresponding exact answer is

a12
[ ~

+(R 126;453 r )
~

'+ 9 +'(R 126;453 r )+P rm1

where

+perm= 6 [ +(Rijk, lmn )4(Pijk11 ijk, )a

4(plmn, Imn)] I R126.453 r,P126
——k126

——P453=k453=0)1 I

with ijk; Imn any partition of 1, . . . , 6 representing one (uud)
and one (ddu) cluster and distinct from 126;453. (This rela-
tively simple form follows from the choice of pointlike neu-
tron and proton configurations. ) Thus we see that
9 +pQ /0'(R (26.453 —r ) is a physical measure of the error in
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