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0 (az) corrections to muon lifetime, m~, and rnz in the SU(2)L XU(1) theory
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We derive formulas for ~„, m~, and mz in the SU(2)1. )&U(1) theory which are valid through
O(a lnm), where m is a generic fermion mass; terms of O(am„ /m~ ) are neglected. The em-

phasis of the analysis is on the role played by fermion mass singularities. The final results are very
simple: the radiative correction of the local V —A theory [through O(a2ln(m„/m, ))] factors out
and the heavy particles induce a renormalization that can be expressed as an elementary function of
the corresponding 0 (a) contribution slightly modified by fourth-order vacuum-polarization effects.
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We recall that in the renormalization framework of
Ref. 3 one has the exact relations

g =e/sin8~,
m w =mzcosOW ~

(2a)

(2b)

where e is the conventionally defined electric charge of the
proton, and mw and mz are the physical masses of the in-

The existence of the W and Z bosons is one of the basic
cornerstones of the present paradigm of electroweak in-
teractions. Precise measurements of their parameters,
such as masses and widths, can lead to further tests of
these models as fundamental quantuin field theories.
There exist, of course, other challenging tests, of older
vintage, such as the analysis of universality. However, in
view of the recent experimental discoveries, the detailed
predictions of the basic properties of the intermediate bo-
sons are of particular interest at present.

Using as a starting point the complete 0(a) calculation
of Ref. 3 (see also Ref. 4), the aim of this paper is to
derive formulas for r&, mii, and mz, within the frame-
work of SU(2)1 XU(1), which incorporate corrections of
0(a lnm) as well as 0(a"ln"m) (m stands for a generic
fermion mass). The analysis emphasizes the role of mass
singularities. From a theoretical standpoint, the results
represent one step further than current analyses, which
include terms of 0(a"ln"m) by means of renormalization-
group methods. ' As we will see, the formulas provide a
very simple procedure to take into account the higher-
order contributions in terms of the 0 (a) corrections
slightly modified by fourth-order vacuum-polarization ef-
ects.

In order to discuss these higher-order effects, we con-
sider the perturbative expansion of the muon's total decay
rate in the framework of the SU(2)1 &(U(1) theory:

(3a)

m.(0)=n.i(0)+ep m.q(0)+ (3b)

where ~(0) is the regularized but unrenormalized
vacuum-polarization function evaluated at q =0. Substi-
tution of Eqs. (2a), (3a), and (3b) in Eq. (1a) leads to

termediate bosons in the SU(2)1. X U( 1) theory. Following
that paper, we will neglect terms of 0 (am& /m ii ).

Inspection of Eqs. (38) and (39) of Ref. 3 reveals the ex-
istence of fermion mass singularities in fi. Indeed one en-
counters large logarithmic corrections of the form

Q, Q; In(mz/m;), where m; and Q; are the mass and

charge of the ith fermion. At first hand, and from a rath-
er naive point of view, this may seem somewhat surprising
because it is easy to see that mass singularities are neces-
sarily absent at the one-loop level in the unrenormalized
(but regularized) perturbative expansion. Indeed, if terms
of 0(am& /mz ) are neglected, such calculation of the
0(a) effects splits neatly into two contributions: (i) the
0(a) corrections to 1/rz in the local V-A theory, which
will be referred to as QED corrections, and (ii) additional
contributions from virtual diagrams involving two
massive-boson propagators. In (ii) we can set all fermion
masses and external momenta equal to zero, as the pres-
ence of the two massive propagators prevents the oc-
currence of mass singularities. At the level of the dif-
ferential electron spectrum, the QED corrections contain
logarithms of fermion masses but, as is well known, these
cancel in the total decay rate. ' The apparent paradox is
quickly resolved by inserting g =e/si 8niacin Eq. (la); the
mass singularities emerge in fi because the conventional
definition of electric charge involves a subtraction at the
exceptional invariant momentum q =0." In other
words, their presence in fi may be viewed as a conse-
quence of renormalization. Of course, this observation by
itself does not explain the logarithms of mz accompany-
ing the fermion masses; they occur because mz (or ms ) is
the natural scale of the electroweak corrections.

In order to study in a systematic way the mass singular-
ities generated in higher orders by renormalization, let us
express Eq. (la) as an expansion in powers of the bare
charge ep by means of the relations

2
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1+ep n.(0)
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In Eq. (4a) we have not expressed sin Oii or mii in terms
of unrenormalized constants. The reason is the following:
As seen in Eq. (2b), in the renormalization framework of
Ref. 3 these parameters are defined in terms of ampli-
tudes involving nonexceptional external momenta such as
q =m~, mz . Because of this fact, their expansion in
powers of eo does not generate additional mass singulari-
ties.

It is convenient to write

fi
——2m. i(0)+ci,

f2 —3 iri(0) [fi —m. i(0)]+2m z(0) +c2

(4b)

(4c)

where c; (i =1,2) are the coefficients of the 0(eo ) and
0(eo ) terms in the unrenormalized perturbative expan-
sion of Eq. (4a). The earlier discussion in this paper in-
forms us that c, is free from fermion mass singularities.
Furthermore, the cancellation of such singularities in the
unrenormalized perturbative expansion of total decay
rates ' tells us that c2 does not contain contributions that
diverge as m, ~0. This statement requires some explana-
tion. In the arguments leading to the cancellation of mass
singularities in the unrenormalized perturbative expansion
of 1/rz, the muon mass is held fixed while the limit
m, —+0 is considered. Because of .this reason, from these
arguments alone we do not derive information about loga-
rithms of other masses such as lnm„, lnm „and
inmz (q =u, d, s,c, . . .). Note in particular that if m& is
held fixed, it is not obviously clear what physical meaning
should be given to the limit m —+0. ' Later on in this pa-
per we will discuss the logarithms of fermion masses that
appear in c2 by arguments based on a heuristic examina-
tion of the 0(a ) unrenormalized Feynman amplitudes.
Equations (4b) and (4c) have a simple meaning. The terms
2m. i(0) in Eq. (4b) and 3iri(0)[f i —iri(0)]+2ir2(0) in Eq.
(4c) contain all the mass singularities induced by renor-
malization in fi and f2, respectively. Any additional
term of the form lnm in t."2, for example, must arise from
the unrenormalized amplitudes.

Expressing m. i(0) in terms of f, [Eq. (4b)] and substitut-
ing in Eq. (4c),

(5a)

where cz ——c2 —
4 c~ . We note that terms proportional to

cifi have canceled in Eq. (Sa). There is an important
reason for this cancellation explained after Eq. (6). It is
convenient to write

m2(0) = Rerrz(mz —+)Rem' 2(mz ) (Sb)

where n.z"'(mz )—:~2(mz ) —m.2(0) is the fourth-order con-
tribution to the renormalized vacuum-polarization func-
tion (with powers of e extracted). As mz is a nonexcep-
tional momentum, the second term on the right-hand
member (RHM) of Eq. (5b) does not contain fermion mass
singularities. The contribution to Reer&"'(mz ) involving
lepton loops can be obtained from the Jost-Luttinger cal-

culation a convenient strategy to analyze the contribu-
tions involving both hadrons and leptons is briefly dis-
cussed after Eq. (12b). Combining Eqs. (5a) and (Sb),

f2 ——,' fi 2—Rerr—'i"'(mz )+c . (6)

It is interesting to note that if terms proportional to c if i
had survived in Eq. (5a), and therefore in Eq. (6), the ar-
gument of this paper would not be logically consistent.
Indeed, as seen in Eq. {4b), ci is an ultraviolet-divergent
quantity. As f2, fi, and m.2"' are finite, such a term could
only be cancelled by c. This, however, would imply that c
contains terms proportional to lnm„ in contradiction with
the argument. Thus, the apparently mysterious cancella-
tion of cif i in Eq. (5a) is actually a welcome consistency
check for the derivation.

In Eq. (6) we have been able to express the mass-
singularity part of f2 induced by renormalization in terms
of mq"' and fi. The latter is readily obtained from Ref. 3:

e fi ——2b.r+F&Ez» (7a)

where br is the electroweak correction of 0 (a) discussed
in Secs. III and IV of that work and

is the 0(a) correction to 1/r„ in the local V-A theory.
Let us now discuss the terms involving logarithms of

fermion masses not induced by renormalization. From
our previous discussion we know that such terms must
emerge from the unrenormalized 0 (a ) corrections and be
contained in c [cf. Eq. (6)]. Furthermore, we know that c
cannot contain 1nm, singularities. It is convenient to
separate the 0(a ) corrections into three classes: those in-
volving (1) no photons, (2) one or two photons (virtual or
real) and at least two heavy-particle propagators ["heavy"
means a particle of mass -0(mii )], and (3) two photons
(virtual or real) and one heavy propagator. ' Diagrams of
class (1) involve necessarily three heavy propagators and
are of 0(1/m~ ) unless the two-loop momenta are large
[ki, k2 ——0(mii )]. In these configurations the large
loop momenta prevent the vanishing of the denominators
associated with the light particles and therefore effectively
eliminate the emergence of logarithms of fermion masses.
The same is true of many diagrams of class (2) such as
Fig. 1(a). There are, however, subsets of diagrams of class
(2) in which this is not true. They correspond to vertex re-
normalizations inserted on the 0(a) QED graphs and in-
volving at least one heavy particle. As many of the 0(a)
photonic contributions contain logarithms of fermion
masses, the same is true of these higher-order diagrams.
Two sets of such graphs are illustrated in Figs. 1(b)—1(f)
and Figs. 2(a)—2(d). In Figs. 1(b)—1(f) the unrenormal-
ized vertex involving the Z does not give rise to lnm„
terms (unless these are suppressed by m„ /mz factors)
but in the photon-loop integration the photon, the muon,
and the electron can be near their mass shells. This gives
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FIG. 2. The sum of the diagrams (a)—(d) is free of mass
singularities (see text). Diagram (e) illustrates a typical triangle
graph.

FICx. 1. Examples of two-loop contributions to p decay. In
diagram (a) terms involving lnm„and lnm, are suppressed by a
factor of m„i/mg . The mass singularities of diagrams (b)—(f)
cancel to O(a ) when their combined contribution to 1/~„ is
considered (see text).

rise to terms involving 1nm„and 1nm, . However, it is not
difficult to see that such logarithms cancel if one consid-
ers the contribution to 1/r& of all the diagrams of Figs.
1(b)—1(f). Indeed, in analyzing the Inm terms we may
evaluate the Z vertex renormalization with all its external
momenta set equal to zero. The Z vertex then becomes a
multiplicative constant renormalizing the 0 (a) QED
graphs obtained from Figs. 1(b)—1(f) by shrinking the ver-
tex to a point. But we have seen that the mass singulari-
ties associated with such diagrams cancel when their com-
bined contribution to 1/r& is considered. An analogous
argument can be carried out, for example, for the set of
diagrams obtained from Fig. 1 by replacing the Z vertex
by an insertion involving a second photon attached to one
of the charged leptons (p or e) and the intermediate W.
Cutting the photon line we note that the diagrams of Figs.
2(a)—2(d) are part of the electromagnetic-charge form fac-
tor of the muon. Their sum vanishes as k ~0 where k is
the photon four-momentum. This cancels the k
behavior of the photon propagator and eliminates the
mass singularities. Figure 2(e) illustrates a typical triangle
diagram. After the anomalous part is canceled among the
various fermion loops, the dependence of the triangle sub-
graph on the photon four-momentum k is at most loga-

rithmic. Therefore, the photon-loop integral is conver-
gent; as it involves a 8'propagator, it is suppressed by an
additional factor of O(m& /mii ). In summary, the loga-
rithrns of fermion masses in the diagrams of class (2) ei-
ther cancel ainong themselves at the amplitude level [as in
Figs. 2(a)—2(d)], or vanish when their contributions to
1/r& are combined [as in Figs. 1(b)—1(f)], or are
suppressed by an additional factor m„ /m ii

By elementary algebraic splittings of the boson propa-
gators (see the Appendix) it is possible in the
't Hooft —Feynman gauge to identify the diagrams of class
(3) with the regularized two-photon graphs appearing in
the local V—A theory, plus additional contributions in-
volving two or three massive propagators. The latter can
be discussed with arguments analogous to those carried
out for classes (1) and (2). In this identification each pho-
ton propagator is regularized with a factor
[m~ /(mii —k )]. This corresponds to a "Feynman re-
gulator" with the cutoff A set equal to m~. ' As p decay
in the local V —A theory is known to be finite (after
charge renormalization) to lowest order in 6& and all or-
ders in a, ' the difference between setting A=m~ and
A=co is of O(a m /mii ).p JY

The only O(a ) diagrams of the local V —A theory in-
vo ving "extraneous fermions" such as ~, u, d, s, c, . . . are
the vacuum-polarization diagrams illustrated in Fig. 3.
(By extraneous we mean here any fermions not participat-
ing in p, decay at the tree level. ) The unrenormalized-
vacuum-polarization insertion gives rise, in each photon
propagator, to a correction 1 —e m&(k ). In the dimen-
sional regularization scheme
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2' 2 1 m; —k x(l —x)
e mi(k )= — QQ; +C+3J dxx(1 —x)ln

3m, '
n —4 0 mz

(8)

where Q; and m; are the charge and mass of the ith fer-
mion, C =[y—1n(4~)]/2 (y is Euler's constant), and we
have set the 't Hooft mass equal to mz, which is the
natural mass scale accompanying the fermion masses in

fi. Thus, the choice is consistent with our previous
strategy of expressing the mass singularities induced by
renormalization in terms of fi [cf. Eq. (6)]. The
(n —4) ' poles in Eq. (8) appear because we are dealing
here with the unrenormalized amplitude. ' Clearly the
last term in Eq. (8) can give rise to logarithms of fermion
masses. Before the correction factor 1 —m&(k ) is includ-
ed, the sum of the virtual diagrams associated with Figs.
3(a)—3(c) is ultraviolet finite. The same is of course true
when the last term of Eq. (8) is inserted. We can then ar-
gue that the important range in the integration over the
virtual photon momentum is 0& —k &m„because m„
sets the kineinatical mass scale in p decay. Therefore, for
the ~ lepton and the heavy quarks we can approximately
neglect k x(1—x) in comparison with m; in Eq. (8), so
that the contributions of those fermions are essentially the
same as in iri(0). The same is of course true in the case of
the real-photon diagrams of Figs. 3(d) and 3(e). In these
calculations the masses of the light quarks are effective
quantities derived from cr(e++e ~hadrons). In a re-
cent analysis, m„=md -75 MeV, m, =250 MeV. ' These
are of the same order as m& and clearly we make a small
error if for p, u, d, and s we also neglect k x (1—x) in Eq.
(8). Indeed the error in this approximation does not in-
volve large logarithms and can be regarded as O(a ). At
first hand the analysis of the contributions of the electron
loops and electron-positron pairs in Fig. 3 seems compli-

I

cated. The diagrams of Figs. 3(d) and 3(e) obviously con-
tain lnm, terms and in Eq. (8), we can neglect m, when
the photon is off the mass shell but not when k =0. Also
one must include the diagrams describing the conversion
into e -e+ pairs [Figs. 3(f) and 3(g)]. Fortunately we
know that when all the contributions to I/r& are included
there can be no electron mass singularity in the unrenor-
malized O(a ) terms. A moment's thought reveals there-
fore that when all the effects are combined, the mass ac-
companying mz in the electron term in Eq. (8) can only be
the other parameter of kinematical relevance left in the
problem, namely m&. The regulator mass m~ will not do
because the corrections are finite as mii ~Do. We reach
the conclusion that the contributions of Fig. 3 involving
logarithms of fermion masses are of the form

e c= —e &i(0)FQpD+e a (9a)

where &i(0) is a modified xi(0) in which m, has been re-
placed by m&, a contains no logarithms of fermion masses
(unless suppressed by factors m„ /ms ), and FQpD is
given in Eq. (7b). Writing

e m iO=e vari(0) — ln2~ 2 2'
3'

mp

me

e'f i

2
mp

ln3' me

8 Ci

2
(9b)

where we employed Eq. (4b), Eq. (9a) becomes

2
4 efi 2a

8 C =FQED — + ln
2 3' +e a,

me
(9c)

where a is free from fermion masses. To complete the ar-
gument we must consider the two-photon diagrams of the
local V —A theory not included in Fig. 3. These only in-
volve three masses: m&, m„and the "regulator mass"
mip. The contributions of such diagrams to I/r& cannot
contain ln(m&/m, ) because of the cancellation of m,
singularities and cannot contain ln(ms /m&) because the
corrections are finite as mii ~oo. ' Thus, Eq. (9c) is our
final answer for c. Combining Eqs. (6) and (9c),

e f2 e[ ~ fi —2Ren——2"'(mz )]
e'f i 2a+FQED + ln

2 3'
mp +e a . (10)

Expressing e f, in terms of FQpD and b, r [see Eq. (7a)]
and inserting these quantities in Eq. (la), we find through
O(a lnm)

me

P g A 25 2 2(x4
1+ ( —, vr ) 1+ ln—

2 IT 3'

FIG. 3. Vacuum-polarization and e -e+ pair production
contributions in the local V —2 theory.

1

1 b,r+e Renq"'(mz ).— (1 la)
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Equation (1la) has a very simple structure. The first fac-
tor is the correction to (1/~&) in the local V —A theory

rough terms of 0(a lnm~/m, ). ' The s~co~d factor
represents a renormalization induced by the heavy parti-
cles and is given by an elementary function of the com-
plete 0(a) electroweak correction Ar slightly modified by
the inclusion of the term eR—err'z"'(mz ). The factoriza-
tion of these two effects is clearly related to the neglect of
terms of 0(am& /ms ).

Recalling Eq. (2a) and defining Gz by means of

=6 'P 1+ (
—", —m') 1+ ln " &, (lib)

2m- 37T me

Eq. (1 la) leads to
1/2

1

sinew

1

1 hr—+e Re~2"'(mz )

1/2

(12a)

Inserting the experimental value of r„, we obtain from
(1 lb) G„=(1.166 34+0.00002) && 10 GeV and

Eq. (12a) becomes

37.281 GeVmw=
sing w

1/2

(12b)
1 b,r+e Rem'z"—'(mz )

In Eqs. (12a) and (12b) we have kept the terms of
0(a ln m, a lnm) but have neglected terms of 0(a ) and
higher. Qn the other hand, Eqs. (12a) and (12b) treat
correctly the leading logarithms such as cx ln m. The
term e Rnrz"'(mz ) in Eqs. (11a), (12a), and (12b) plays a
minor role in current analyses. For instance, it induces a
relative correction of a few parts in 10 in the m ~ predic-
tion. In order to take into account this small effect, it is
useful to recall that an important contribution to the 0 (a)
correction hr is given by —e Rem'~"'(mz ). Thus, it is
natural to combine the two expressions and consider the
complete renormalized vacuum-polarization function

eRe[—vrI (mz )+e m2 (mz )] ~

The effect of the contributions to Rem&'(mz ) involving
leptons and containing mass singularities is simply ob-
tained by multiplying the corresponding contributions to
RnrI"'(mz ) by a factor 1+3a/4m. ' For the contribu-
tions involving hadrons a convenient strategy is to split
the dispersion relation for the complete vacuum-
polarization function into two parts: (i) a low-energy part
which is calculated from experimental data on
o r (e++e —+hadrons) and which therefore needs no
corrections, and (ii) a high-energy part that is calculated
theoretically including both QCD and electromagnetic
corrections.

To illustrate the order of magnitude of the higher-order
corrections consider, for example, the explicit calculation
of hr given in Ref. 3. Using sin 0~——0.23, m~ ——m~,
and m «~ —18 GeV the answer of that paper was
br/2=0. 0344 giving rise to an 0 (a) renormalization fac-
tor 1.0344. Inserting hr into Eq. (12b) we obtain instead
1.0364. ' Thus, the higher-order terms included in Eq.

(12b) represent an additional correction of 2.0X 10
beyond the complete 0 (a) calculation and translate into a
further shift of about + 0.16 GeV in m~. It is interest-
ing to compare Eqs. (12a) and (12b) with the
renormalization-group analysis. There the leading loga-
rithms of the 0(a) calculation are multiplied by the run-
ning constant a(m ~) while the remaining terms are
evaluated using the standard fine-structure constant. It is
easy to see that such a procedure treats the leading loga-
rithms a"ln"m in the same way as Eqs. (12a) and (12b).
For this reason the two approaches are numerically close
to each other. We emphasize, however, that Eqs. (1 la),
(12a), and (12b) go one step beyond the present
renormalization-group analyses, as they incorporate the
0(a lnm) terms and are simpler because they involve ele-
mentary functions of the complete 0 (a) calculation.

Equations (2b) and (12b) can be used to predict m~ and
mz in terms of the current values of sinOw derived from
deep-inelastic scattering. ' ' Obviously, it is also possible
to eliminate sinOw between the two equations and relate
directly m w and mz

where"

[1—(2/m~) ]' (12c)

A =37.281 GeV
1

1 —hr+e Ron 2"'(mz )

1/2

(12d)

In more general terms, we note that Eqs. (2b) and (12b) re-
late three parameters which are not accurately known at
present: m~, mz, and sin8~. To verify the
SU(2)t &U(1) theory at the level of the radiative correc-
tions, without involving additional theoretical ideas such
as grand unification, at least two of these three parameters
must be accurately measured.

The author is indebted to %'. J. Marciano for valuable
discussions on this and related subjects. This work was
supported in part by the U. S. Department of Energy
under Contract Grant No. DE-AC02-83ER40033. 8000
and by the U. S. National Science Foundation under
Grant No. PHY 8116102.

APPENDIX

We discuss briefly how to split the photon propagator
in the 't Hooft —Feynman gauge, in order to establish
correspondence with diagrams of the local V —A theory in
the arguments explained in this paper. A few examples
will suffice. We recall that in studying the contributions
of Figs. 1(b)—1(f) involving mass singularities, the Z ver-
tex can be regarded as a constant renormalizing the 0(a)
QED graphs obtained by shrinking the insertion to a
point. Let us then assume that the Z vertex has been re-
moved. In Fig. 1(b) the virtual photon and W momenta
are the same (we neglect the very small external momen-
ta). The W propagator is proportional to
m~ [m~ /(m~ —k )]. Thus, Fig. 1(b) is the same as
we would obtain in the local V —A theory if the W line
were also shrunk to a point and the photon propagator en-
dowed with a Feynman regulator with A =mw. On the



other hand, in diagrams 1(c) and 1(d) the photon carries
momentum k while the 8' has essentially zero momen-
tum. The procedure here is identical to that employed in
the case of the O(a) corrections the diagram of Fig.
1(b) is left untouched while in Figs. 1(c) and 1(d) one uses
the identity

k 2=k [mw /(mw —k )]+(k —mw )

The contributions of the first term of the propagator to
Figs. 1(c) and 1(d) plus the unaltered Fig. 1(b) correspond
to a regulated form of the O(a) QED corrections in the
local V —3 theory. In this form each photon propagator
is endowed with a Feynman regulator with A=m~. The
contributions to Figs. 1(d) and 1(c) of the (k —mw )

part of the photon propagator have no correspondence in
the local V —2 theory but they involve only massive prop-
agators and do not give rise to terms of the lnm type [in
the classification of the text they correspond to class (1)
diagrams]. Figure 4 shows four diagrams of class (3). In
Fig. 4(a) the k integration is automatically "regulated" by
the 8' propagator and the integrand involves a factor
[n.)(k')/k ][mw /(mw —k')]. In Fig. 4(b) the regulator
is absent and we have only a factor sr~(k )/k . We then
leave Fig. 4(a) unaltered and in Fig. 4(b) were split k as
before. The contribution of k [mw /(mw —k )] to
Figs. 4(b) and 4(a) are the regulated versions of Figs. 3(b)
and 3(a), respectively. In Fig. 4(c) the k~ integration is re-
gulated by the 8' propagator while k2 is not. We then

l

(b)

FIG. 4. Some typical two-photon diagrams in p decay.

leave k& unaltered and split k2 . The additional con-
tributions arising from the (k —mw )

' part of the split-
tings correspond to diagrams with two massive propaga-
tors and can be analyzed as class (2) diagrams. Diagram
4(d) is a two-photon box diagram. Here the 8'propagator
carries a momentum k]+k2. We write

1 Pl p 1 k) k2 +m~ 2k).k2

mw —(ki+k2) (mw —ki ) (mw —k2 ) [mw —(ki+k2) l(mw —ki )(mw —k2 )
(A1)

The first term regulates the two photons. The term proportional to k& k2 gives a contribution to Fig. 4(d) of class (1).
The contribution of the last term to Fig. 4(d) is not strictly of class (1) but it can be analyzed with the same arguments.
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