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Koba-Nielsen-Olesen scaling and rapidity distribution in nondiffractive hadronic reactions
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The relationship between Koba-Nielsen-Olesen (KNO) scaling and rapidity distributions in non-
diffractive hadron-hadron reactions at high bombarding energies is discussed. The following is
shown: The striking properties of rapidity distributions, in particular the existence of a central pla-
teau as well as its energy and multiplicity dependence, are natural consequences of the statistical
model which has been proposed to describe the KNO scaling behaviors in such reactions. Pseudora-
pidity density distributions at the CERN ISR and pp collider energies for total charge multiplicity
and for different multiplicity intervals are calculated. The results are in good agreement with the
data.

I. INTRODUCTION P(E; )=CE; exp( BE,*).— . (2)

An attempt has been made' to understand the most
striking features of multiplicity distributions observed in
the recent pp collider experiments. It is shown in par-
ticular that the observed scaling behaviors with respect to
the variables z„d n„dl——(n„d) and z, =n, /(n, ) (here n„d
is the multiplicity of charged hadrons in nondiffractive re-
actions, n, is that seen in the central rapidity region, and
(n„d) and (n, ) are the mean values of n„d and n„
respectively) are consequences of a three-fireball model
(TFM)' which is based on the following assumptions:

(i) In most of the high-energy nondiffractive hadron-
hadron collision events, the colliding objects (which have
inany degrees of freedom) hit each other gently such that
they "go through" each other. During this process, a con-
siderable amount of kinetic energy of the colliding objects
is converted into excitation energy which is randomly dis-
tributed into three systems P*, T*, and C*. We call them
fireballs. The three fireballs are located, in general, in
three distinct regions in rapidity space.

(ii) The excitation energies E,* (i =C,P*,T ) of the
three systems hadronize independently. The multiplicity
n; of charged hadrons produced in the system i is propor-
tional to the excitation energy E; of that system. That is,

n; =E; /e; i =C,P,T',
where e depends only on the total center-of-mass-system
(c.m.s.) energy (v s ). (The average energy per particle,
whether neutral or charged, is taken to be the same. )

Evidently, while the three systems P*, T*, and C* are
associated with the observed projectile-fragmentation,
target-fragmentation, and pionization products, respec-
tively, Eq. (1) simply reflects the empirical fact that the
overwhelming part of the produced particles are pions
with approximately the same transverse momentum.

It is shown that the randomness for the system i
(i =C,P', T*) to obtain a given amount of energy E;
from two energy sources P and T (the moving projectile P
and the moving target T, viewed froin the rest frame of
the fireball i) leads to the probability density

f dE P(E )=1,

f de E,*P(Eg')=(E. ; ) . (4)

Equations (1)—(4) immediately give the probability density
for ri;:

4n; 2nI.
P(n )= exp —

( )
i =C*,P*,T* .

We approximate the observed multiplicity n, of charged
hadron in the central rapidity region ' by nc~ (the charge
multiplicity of the excited central fireball). Hence,
(nc~)P(nc~) is the Koba-Nielsen-Olesen (KNO) scaling

function for multiplicity of charged hadrons observed in
the central rapidity region.

The corresponding probability density P(n„d ) in the en-
tire rapidity space (n„d stands for the observed multiplici-
ty n„d nc +n +n, of a——ll charged hadrons in nondif-

fractive hadron-hadron collisions) is'

P(n„q)= f 25(nc, +nz~+nr~ —n„d)

P(n;)dn;,
i =c',a', r'

where

Here, a is a parameter the value of which is between 0 and
1. It characterizes the relative "average size" of the three

That is, Eq. (2) is valid provided that the system i, formed
by P and T, does not "remember" how much of its energy
E,* was orig. inally taken from P and how much of it from
T.

The constants B and C in Eq. (2) are determined by the
normalization conditions
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fireballs, and is in general s dependent. Numerical calcu-
lations show that the integral is rather insensitive to n. In
fact, up to v s =28 CreV good fits can be obtained' for
0.15&a&0.5; and at Vs =540 GeV, the best value for a
is 0.75. [See Figs 1.(a) and 1(b). Note that the factor 2 in
Eq. (6) is introduced because the experimental plots for
P(n;„,I) and P(n„d) are normalized to 2 instead of I. See,
e.g. , Refs. 7 and 9.] Furthermore, it has been shown' that
also other striking properties, such as the existence of
forward-backward long-range correlations' '" can be un-
derstood in terms of the proposed model.

It is therefore natural to ask: %'hat does the model say
about rapidity distribution in inclusive and in semi-
inclusive experiments? Can we understand the following
features observed in the recent experiments?

(a) There is always a central plateau in nondiffractive
hadron-hadron collisions at sufficiently high incident en-
cl gles.

(b) The height of the plateau raises with increasing in-
cident energy. There is approximately an 80% increase in
going from the top CERN ISR energy to the pp collider
energy.

(c) The width of the plateau is much narrower than ex-
pected from a simple extrapolation of ISR data. It has
grown by only approximately 2 units in the above-
mentioned energy range, whereas the separation in rapidi-
ty of the two beam particles has increased by 4.6 units
over this energy.

(d) The shape of rapidity distributions depends on mul-
tiplicity. There is a prominent central dip at low multipli-
city which disappears in going to high multiplicities and a
shrinking of the distribution with increasing multiplicity.

(e) The dependence on multiplicity mentioned in (d) is
qualitatively the same at ISR and at collider energies.

II. EXISTENCE OF CENTRAL PLATEAU

We show in this section that the observed central rapi-
dity plateau can be readily obtained by taking into account
the energy and momentum conservation in the three-
fireball model (TFM). To be more specific, here we only
discuss collision processes at a fixed bombarding energy.
The energy dependence will be discussed in Sec. III.

We recall that the TFM is based on two assumptions
which can be expressed as follows:

(i) Nondiffractive hadron-hadron collisions at suffi-
ciently high bombarding energies takes place in two
stages. In the first stage, three fireballs (O', P*, and T )
are formed. In the second stage, final-state hadrons
(mostly pions) are produced by the fireballs.

(ii) The multiplicity n; of charged hadrons produced in
the system i (i =O*,P*,T*) is proportional to the excita-
tion energy E~~ of that fireball. [See Eq. (1).] E is noth-
ing else but the mass M; of the fireball i The distribu. tion
of M; is [see Eqs. (2)—(4)]
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(9)

Although not explicitly used in the calculation of multi-
plicity distributions, it is clear that also the basic conser-
vation laws should be satsified. In particular, the energy
and momentum conservations in the first stage of the pro-
cess demands

(p 2+M 2) I /2+ (p 2+M 2) I /2

Z n/&n)
FICr. 1. Multiplicity (n„d) distributions of nondiffractive col-

lisions plotted in terms of n„d/(n„d ) where (n„d ) is the average
value of n„d and P(n„d) denote the probability for n„d. Data in
(a) is taken from Ref. 14 and those in (b) are taken from Ref. 3.

~IIC* &lie &II T

+(p((re +MTI, )' =E, (10)

where p
~
~; (i =O', P', and T*) are the corresponding mo-
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dn;

dg

where

n;

2cosh (y —y;)

( 2+M 2)1/2+
II&

(12)

(13)

is the rapidity of the fireball i Both. y and y; are mea-
sured in the total c.m. s. frame.

We now show that the characteristic features of rapidi-
ty distributions in nondiffractive hadron-hadron collisions
are determined by the assumptions (i) and (ii) [see Eqs. (1)

0
4 «yc

menta along the beam axis in the total c.m.s. frame. The
momenta of the fireballs in transverse directions have
been neglected for the sake of simplicity. E is the total
c.m.s. energy of the three fireballs. It is in general a frac-
tion (f) of the total c.m.s. energy Vs. The rest is carried
away by the leading particles. Hereafter we shall use the
standard empirical value f= —,

' .
Furthermore, the following working hypothesis con-

cerning fireball decay is assumed to be valid in first-order
approximation.

The transverse momenta of the observed particles are
those due to fireball decay. If the decay is isotropic with
respect to the fireball rest frame, the rapidity (y) distribu-
tion of a produced particle froin the fireball i
(i =C*,P*,T ) is approximately'

and (9)], energy-momentum conservation [see Eqs. (10)
and (ll)], and phase-space considerations (see appendix).
To be more precise, for a given value of total c.m.s. energy
vs, we obtain for each fireball a rapidity distribution
F(y; ) where y;, p

~
1;, and M; are related to one another ac-

cording to Eq. (13).
As an illustrative example, we consider the rapidity dis-

tribution of the three fireballs at vs =540 GeV before
they decay. [That is, the fireball i (i =C',P', T') is con-
sidered as a system of n; charged hadrons at rest in this
fireball rest frame. ] The result, as given in Fig. 2, shows
that the distribution in the central rapidity region is
indeed rather broad and flat. It shows explicitly that a
central rapidity plateau can be readily obtained by taking
energy-momentum conservation into account in the pro-
posed model.

It is clear that the distribution will become broader and
flatter when the distributions due to fireball decay are tak-
en into account. In fact, this is a rather general feature,
and does not depend on the details of the fireball decay.
Hereafter, we shall assume, for the sake of simplicity and
concreteness, isotropic decay in the rest frame of each
fireball, as we have given in Eq. (12). The resulting distri-
bution' for vs =540 GeV is shown in Fig. 3, together
with the data of the UA1 collaboration ' and that of the
UA5 collaboration. ' It should be mentioned in this con-
nection that the only free parameter a in this calculation
has been determined by the multiplicity distribution [see
Fig. 1(b)].

III. ENERGY AND MULTIPLICITY DEPENDENCE
OF RAPIDITY DISTRIBUTIONS

2--

o4" adypT
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I
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"How does the rapidity distribution depend on the total
c.m.s. energy Ws?" This is one of the questions which
have received particular attention for many years. Ac-
cording to most of the current theories, the height of the
central rapidity plateau should remain constant, and the
width should increase like lns for increasing Vs. For
quite a long time, these properties have been considered as
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FICx. 2. Rapidity distribution for Ms=540 CxeV calculated
from the three-fireball model, where the distributions due to
fireball decay have not been taken into account.

FIG. 3. Comparison between data and the calculated rapidity
distribution at V s =540 GeV. Distributions due to fireball de-

cay are taken into account. Data are taken from Refs. 2—5.
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established —at least approximately (see the review articles
given in Ref. 14 and the papers cited therein for details
about the experimental and theoretical developments in
the past). The experimental observations at Vs =540
GeV (see Sec. I), which clearly contradict the conventional
belief, are therefore of fundamental importance for the
on-going problem of understanding the reaction mecha-
nism of high-energy hadron-hadron collision processes.

The observed s dependence of the rapidity distributions
can be understood in terms of the proposed model. ' First,
since in this model the multiplicity, n„d, in nondiffractive
collision processes is n„d n——~, +nz, +nT, [see Eq. (6)],
the empirical fact that the average multiplicity (n„d ) in-
creases with increasing s implies that the sum of the aver-
age multiplicity (n; ) increases with increasing s. Now,
since large (nz, ) as well as large (n~~) and/or (nT~)
contribute predominantly to the central rapidity region
(recall that the momentum transfer in gentle collisions
remains to be small, hence "larger fireballs move slower" ),
the growth of the average multiplicities of the fireballs
implies the increase in height of the central rapidity pla-
teau. Second, note that the rapidity distribution dn/dy in
nondiffractive collision at a given Vs can be calculated
from the multiplicity distributions P(n;) of the fireballs
(i =C',P, T ) by taking the energy-momentum conser-
vation into account. Also note that P (n; ) (i =C', P*,T*)
are determined by (n„d) and the corresponding a [see
Eqs. (5), (7), and (8)]. Hence, the s dependence of dn/dy is
determined by that of (n„d ) and that of a. Here, the ra-
pidity distributions at different values of v s are calculat-
ed by using the experimental values of (n„d ) (note that
the three-fireball model does not dictate the functional
dependence between ( n„d ) and s) and the corresponding a
values which are determined' from the corresponding

ISR—TFM

n6o
n dg a UA5

~ 2&A h~17
TFM

multiplicity distribution data. ' ' The results' are
shown in Figs. 3 and 4.

We next consider the rapidity distribution in nondif-
fractive events of different charge multiplicity n„z. We
recall that according to energy and momentum conserva-
tion, as given in Eqs. (10) and (11), the masses M~ ( =E;*)
and the rapidities y; of the fireballs (i =C',P, T*) are
closely connected to one another. Hence the relationship
between E;* and n; [see Eq. (1)], and that between n„d and
n; (n„d n——„+n~~+nT, ) imply that the rapidity distribu-
tion depends on n„d. To be more specific, since large n„d
means large M&~ and/or large M +(MT, ), the correspond-
ing values for

~ y; ~

are relatively small. Therefore, high-
n „d events are associated with more centrally (y =0)
peaked rapidity distributions, while low n„d events corre-
spond to those in which

~ yz ~

and
~ yT~ ~

are relatively

large. In the latter case, all n; and hence all the masses of
the fireballs M;(i =C",P', T') are comparatively small.
Furthermore, since such general kinematical properties are
valid not only at special values of incident energies, the
dependence of the shape of rapidity distributions on mul-
tiplicity is expected not to change much at different values
of vs.

We divided the rapidity distributions calculated in this
and the preceding section into multiplicity intervals in
which the experimental data ' are available. The re-
sults are shown in Figs. 5 and 6.
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FICx. 4. Comparison between data and calculated rapidity
distributions at the standard CERN ISR energies. Data are tak-
en from Ref. 7.

FKx. 5. Comparison between data and the calculated multi-
plicity dependence of the shape of rapidity distributions at
~s =540 CxeV. Data are taken from Refs. 3 and 5.
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FIG. 6. Comparison between the data and the calculated multiplicity dependence of the shape of rapidity distributions at the stan-

dard CERN ISR energies. Data are taken from Ref. 7.

IV. DISCUSSION
(I) ~e have seen in Secs. II and III that the most stHk-

ing features of the rapidity distributions observed in
CERN ISR and pp collider experiments can be readily

reproduced in terms of the three-fireball model, provided
that energy and momentum conservation are taken into
account. These distributions show, in particular, not only
the existence of the central rapidity plateau, but also the



874 CAI XU, LIU LIAN-SOU, AND MENG TA-CHUNG

energy and multiplicity dependences of rapidity distribu-
tions are natural consequences of the basic assumptions of
this model. We note, because of the dominating role
played by the multiplicity distribution in this calculation,
the agreement between model and data in rapidity distri-
butions provides further evidence for the conjecture made
in previous papers' that the KNO scaling function of a
given process reflects its reaction mechanism.

(2) Careful comparison between the calculated result
and the data shows that there is a discrepancy in rapidity
distributions at high multiplicities (see Fig. S). This is
probably due to the fact that the contributions of uiolent
collision events have been neglected. We recall' that in
such collision events, the colliding objects hit each other
so violently that they give their entire amount of kinetic
energy to a common system. The new system formed by
the two colliding objects decays after expansion. This
kind of collision event corresponds to those of very small
impact parameters. Because of the large momentum
transfer, such processes are associated with extremely high
multiplicity and/or average transverse momentum. De-
tails about the effect of such events will be given else-
where.

(3) The difference between a gentle and a uiolent col-
lision event in nondiffraction hadron-hadron processes'
can also be expressed in the quark-gluon language: If we
adapt the picture proposed by Van Hove and Pokorski, '

in which it is assumed that every colliding hadron is a sys-
tem of colored valence quarks (antiquarks) surrounded by
a large number of colored gluons, the two kinds of pro-
cesses can be described as follows: In gentle collisions, the
valence quarks (antiquarks) of the two colliding hadrons
pass one another during the process. They build the main
parts of the leading particles. Gluons (maybe also sea
quarks) of the colliding hadrons interact and form the
(color singlet) fir eballs which subsequently decay. In
Uiokent collisions, the valence quarks of the two colliding
hadrons first form a new (color singlet) system which de-
cays subsequently. Hence, the processes discussed by Van
Hove and Pokorski' are, in our terms, gentle collisions. '

It should be pointed out that although the details of the
Van Hove —Pokorski model and that of ours are very
much different, the spirits of the two models are quite
similar. In order to explore the connections between had-
ron structure and hadron-hadron collisions in general, and
the relationship between these two approaches in particu-
lar, further studies along this line would be helpful.

(4) Encouraged by the successful description of high-
energy hadron-hadron collision processes, the three-
fireball model will now be applied to hadron-nucleus and
nucleus-nucleus collisions. Preliminary studies seem to
show that this approach is rather promising.
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APPENDIX

According to the proposed model, three fireballs
(O',P",T') are formed in the first stage of every nondif-

fractive event in high-energy hadron-hadron collisions.
The masses M~ and the rapidities y; (i =C",P*,T') of the
fireballs (transverse momenta neglected) satisfy the fol-
lowing conditions (hereafter we shall omit the asterisks on
C', P*,T, when they are written as indices):

M~coshyc+Mpcoshyp+My coshyz. =E,
Mzsinhyz+Mpsinhyp+ Mzsinhyz ——0,
ye &ye &yp

(Al)

(A2)

(A3)

where E is the c.rn. s. energy of the three-fireball system.
Equations (Al) and (A2) show nothing else but conserva-
tion of energy and longitudinal momentum, respectively;
(A3) is a constraint required by the dynamics of the
model. We eliminate two (yp, yz, say) of the six variables
M~,y; (i =O', P', T') by using Eqs. (Al) and (A2), and
denote (Mc,Mp, Mz ) by M. Thus, there is now no func-
tional relationship between the four variables M,yc, but
because of the constraints (Al) —(A3), the allowed values

of M and y~ are correlated so that they are not stochasti-
cally independent.

Let f(M,yc) be the joint distribution, from which the
marginal distributions P(M) and Q (yc),

P(M)= f dycf(M yc) yc&Q(yc'M)

Q(yc) = f dM f(M yc) ME Q(M'yc)

(A4)

(AS)

can be obtained. Here Q(yc,'M) denotes the set of all yc
satisfying the conditions given in (Al), (A2), and (A3) for
given M. Q(M;yc) is defined correspondingly.

The inarginal distribution P(M) is a known function in
the three-fireball model,

P(M)= Q P(Mi) .
i =C,p, T

(A6)

In order to find Q(yc), we note that the corresponding
joint distribution f(M,yc) can be written in the following
way:

f(M,yc) =P(M)q (yc ~
M), (A7)

1/I (yc,'M), for yc H Q(yc, M)

0, otherwise .M =

I (yc, M) is the "size" of Q(yc, M):

I (yciM)= f dyci ycEQ(yc~M) . (A9)

This is because, for given M, y& is not restricted by any
conditions other than the energy-rDomentum conservation
laws given by Eqs. (Al) and (A2).

It is clear that while the marginal distribution Q(yc)
can be obtained directly by inserting Eqs. (A6), (A7), (A8),
and (A9) in Eq. (AS), the rapidity distributions of the P'
and T fireballs may be obtained by considering y~ as a
function of M and yJ (j =P, T ). For the sake of com-
pleteness, we also give the corresponding formulas expli-
citly:
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R(yj)= f dMP(M)g(Myj), MHQ(My ), (A10)

where j=P,T, and

q(yc(M, yj )
~
M)

~
Byc/Byj ~, for y HQ(y;M)

0, otherwise,g(M,y )=
(Al 1)

~
t}yc/t}yj

~

is the Jacobian due to variable transformation.
Q(y;M) denotes the set of all yj (j =P', T') satisfying
the conditions given in (Al), (A2), and (A3) for given M.
Q(M;yj ) is defined similarly.
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Ed n/dp =C exp( —P„p"),
P„=u„/T, p"=Eu",

~here u„ is the four-velocity, T the temperature of the sys-
tem, and E is the energy of the observed particle in the rest
frame of that system. C is a normalization constant. By us-
ing the identities

Ed n/dp =d n/dydp,

p~2 ——E {coshy) 2 —m2,

where pj, y, and m are the transverse momentum, the rapidi-
ty and the mass of the produced particles (all of them are tak-
en to be pions}, respectively, we obtain

)2
dn '&].max'

dy
=ac d(p& )exp ——(p& +m )' coshyT

The value for p&,„ is determined by the mass (M) of the fire-
ball, and the constant C is determined by the condition

f dyd" =n.

The result of dn /dy as a function of y and the fireball mass M
can be written as

dn n I(M y)
dy {coshy) &(M)

Here,

1(~,y) = 1+—coshy e m/icos y+ 1+ e
—m M

T T

EC(M}= dy I (M,y)/(coshy)

where the integral is taken over the entire allowed rapidity re-
gion. Numerical calculations show that approximation as
given in Eq. {12) is sufficiently good, provided that the mass
of the fireball is much larger than that of the produced parti-
cles (the overwhelming part of which are pions).
In order to compare the calculated result directly with the
data, the final result is given in terms of pseudorapidity (g)
distributions. The transformation from dn/dy has been car-
ried out in the approximation in which all the produced parti-
cles are considered as pions, and the magnitude of the trans-
verse momenta are given by the standard empirical average
value 3 GeV/c.
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