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x-space analysis for the photon structure functions in QCD
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QCD predictions for the photon structure functions are analyzed with emphasis on the need of
retaining hadronlike contributions. The Altarelli-Parisi formalism for the photon structure function
is generalized to include next-to-leading-order corrections. Numerical results of the Altarelli-Parisi
equations are presented.

I. INTRODUCTION

In recent years the structure functions of the photon
have been studied by several authors using perturbative
QCD next-to-leading order predictions have been ob-
tained both for the Bjorken limit (where P = —p =0,
Q = —q large, 0&x =Q /2p q &1) and for the
kinematical configuration A «P «Q; here p and q are
the momenta (spacelike) of the target and probe photon,
respectively, and A is the QCD scale parameter.

Two types of terms contribute to the photon structure
functions in the Bjorken limit. Hadronlike terms exhibit
the same dependence on Q as hadronic deep-inelastic
scattering structure functions, whereas pointlike terms are
described by a series in integer powers of the effective
strong coupling constant a(Q ): The x dependence of
pointlike terms can be calculated in perturbative QCD;
hadronlike terms, on the other hand, are not completely
calculable by present methods: perturbative QCD predicts
only their Q evolution. Since in the limit Q ~ ao point-
like terms appear to dominate hadronlike parts, the claim
has often been made that the photon structure functions
in the Bjorken limit have the unique status of being cal-
culable in perturbative QCD. However, the results for the
pointlike parts are affected by spurious power singularities
at x =0, which must be canceled by corresponding singu-
larities in the hadronlike terms: these singularities become
more severe at each order in perturbation theory, thereby
compromising the convergence of the perturbation expan-
sion for the calculable part at larger and larger values of
x. Unphysical results are avoided only if hadronlike terms
are taken into account. This can be done performing an
analysis similar to the one used for deep-inelastic scatter-
ing off hadrons: Using data taken at a certain Q =Qo as
boundary conditions for the Q evolution, one can obtain
the structure functions at different values of Q . Vector-
meson-dominance estimates can only account for part of
the hadronlike terms, since they fail to reproduce the
singularity structure of the perturbation expansion.

As first pointed out by the authors of Ref. 5, in the
kinematical region A «P «Q the hadronlike contri-
butions can be computed and the additional scale P can
be used to fix the renormalization point so that the calcu-
lability of the x behavior is not subject to the limitations
discussed above. It should be noticed that several of the

features characteristic of the Bjorken limit are preserved
in this region: in particular, structure functions other
than those present in the Bjorken limit are of order P /Q
and can be neglected; moreover, the various contributions
to the structure functions can be consistently separated as
leading, next to leading, etc., according to their order with
respect to the large logarithm lnQ /A =1/a(Q ).

The next-to-leading-order predictions have all been de-
rived ' using Wilson's operator-product-expansion (OPE)
techniques. The results obtained in this way are, in fact,
the Mellin transform of the structure functions and nu-
merical inversion of these results back to x space is neces-
sary to obtain the structure functions themselves. In this
paper we show that the next-to-leading-order results can
be obtained using an appropriate generalization of the
Altarelli-Parisi formalism. In leading order this method
has the advantage over the OPE of a more transparent
physical interpretation for the quantities involved: in par-
ticular, the Altarelli-Parisi equations follow directly from
a simple diagrammatic analysis. ' The immediacy of this
approach is somewhat reduced beyond leading order by
the absence of a unique prescription to define parton dis-
tributions. Nevertheless, one still has the advantage of
dealing with equations already written in x space whose
solutions give the structure functions directly without the
need for additional inversion of the moments. Indeed, the
x-space formalism is intrinsically more accurate and it is
better suited for coxnparison with experimental results.

This paper is organized as follows. In Sec. II, a review
of the results of the OPE approach is presented. In Sec.
III, the Altarelli-Parisi formalism is discussed and gen-
eralized to include next-to-leading-order effects. Section
IV is devoted to the x-space solution of the equations and
to a discussion of our numerical results. Explicit formu-
las for the quantities entering the next-to-leading-order
equations are collected in the Appendix.

II. SUMMARY OF OPE RESULTS

The standard QPE approach consists in writing the mo-
ments of the structure functions in terms of products of
c-number coefficients with reduced matrix elements in tar-
get photon states of appropriate operators; for example,
the leading-twist contributions to the structure function
F2r(n, Q ) in the Bjorken limit are given by
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Here g is the renormalized strong coupling constant, p is
the subtraction scale at which the theory is renormalized;
the sum contains reduced matrix elements between target
photon states of the nonsinglet-fermion 0„, singlet-
fermion 0„, and gluon O„spin-n, twist-two operators:6

C„, C~ and C„are the coefficient functions relative to
these operators. As first observed by Mitten, the distin-
guishing feature of photon-photon scattering is the pres-
ence in (2.1) of terms containing matrix elements of the
photon operators O~: These are absent in the correspond-
ing analysis of deep-inelastic scattering off hadrons. In
leading order in aEM, the matrix elements of O„between
photon states is simply equal to 1; therefore, despite the
fact that the coefficients C„are 0(aEM), the last term in
the right-hand side (RHS) of (2.1) is of the same order in

aEM as the part containing hadronic operators [in these
terms the matrix elements are 0 (aEM) and the coefficients
are 0(1)]. In formula (2.1) only leading-twist contribu-
tions are included. This should be a good approximation
as long as terms of order 0(P /Q ) and quark-mass ef-
fects can be neglected; such effects will be neglected
throughout.

In the Bjorken limit the matrix elements of hadronic
operators cannot be calculated perturbatively. They are p
dependent and Q independent so that the Q evolution is
completely described by the coefficient functions.
Uematsu and Walsh pointed out that in the kinematical
region A «P «Q, these matrix elements are calcul-
able: Intuitively this can be interpreted by noting that real
photons behave like a hadron target, while virtual photons
with p »A exhibit hard pointlike behavior which can
be dealt with perturbatively. Explicit expressions for the
matrix elements can be found in the literature. ' '" At
lowest order they are 0(1) in the strong coupling con-
stant; they are renormalization-convention and infrared-
cutoff dependent: the expressions obtained setting the
quark masses equal to zero and using P as infrared cutoff
are appropriate for the kinematics under consideration.
One can use the additional scale P to fix the subtraction
point: letting p =P, one can rewrite (2.1) as

2

F2(n, Q,P )= gC„',g (P ),aEM A„' '
4~,. " P' '

F2 '«Q') = A Ns(Qo')MNS(g ',g o')
4m

+&Ns(g ' go' aEM) Cn '(1 g ') . (2.4)

Here aEMANS(Qo )/4m. is the reduced matrix element of
the fermion nonsinglet operator taken between real photon
states, g and go are the renormalized strong coupling
constants at Q and at the subtraction scale Qo ——p,
respectively [a(Q )=g /4m], and

n

MNs(g, g o ) =exp dg
go rNs g

p(g)

+NS(g EM)
XNs(g ~go aEM) dg

p(g)

(2.5a)

&&~NS(g '*g') . (2.5b)

Using (2 4) and (2.5), one can write F2 (n, Q ) explicitly
in terms of the coefficients of the perturbative expansions
for the anomalous dimensions rNS(g) and 1(.NS(g, a), for
C„(l,g ), and for the p function p(g):

r".(g)= ', r'."+ ', r'."+ (2.6a)
16m 16~

&EM
+Ns(g EM) 4~

2

+NS 2 +NSO, n g 1,n

16m.

(2.6b)

with e; = the charge of the quark of flavor i in units of e.
One has to make sure that the various quantities entering
(2.2) are calculated in the same renormalization scheme:
we shall work in the inodified minimal-subtraction (MS)
scheme and use for A '„P the expression found from Ref.
10 and reported in the Appendix.

The Q evolution can be obtained by solving the
renormalization-group equations for the coefficient func-
tions: one solves such equations using as boundary condi-
tions the perturbatively calculable expressions for the
coefficients C„'(l,g ) at )((, =Q . Consider, for example,
the nonsinglet part of Fz~(n, Q ) in the Bjorken limit: one
gets

2+C„2,g (P ),aEM, i =f,G, NS .p2

2

C. '(1 g') = I+ 2 &Ns+
16m.

g3 g5

16& (16m )

(2.6c)

(2.6d)

(2.2)

Here g (P ) is the strong coupling constant evaluated at
P, and

The explicit form of the coefficients in the expansions
above is available in the literature up to next-to-leading
order and can be obtained, for example, from Refs. 2 and
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12. Using the expansions (2.6) in the integrands in the
RHS of (2.5), one gets
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Inserting (2.7) and (2.8) in (2.4), one gets

m —1
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Note that Ez (n, g ) contains a calculable (pointlike) part
which can be written as an expansion in integer powers of
the strong coupling constant, and a part which includes
terms noncalculable in perturbative QCD and which ex-
hibits the same Q behavior as hadronic deep-inelastic-
scattering structure functions. In fact, the treatment
above can be repeated for the singlet sector and the com-
plete result can be summarized by

F2(n, g )= a(n)+b(n)+ gr~(n)a. '
4m. pea

+ g gh; ~(n)a '

i 1 =o

knowledge of the structure functions at some reference
value Qo is not required to obtain them at values of g
large enough. It has, however, been noted that the quan-
tities m (n) of Eq. (2.9) have simple poles at those values
n of n where dNS ——m —1, so that their inverse Mellin
transform n. (x),

1

m~(n) =f dx x" 'm~(x)

exhibits at the origin singularities of the form (1/x)
Similar singularities affect the singlet analogs of m~(x).
In fact, since d" & d Ns, the x ~0 behavior of a (x), b (x),
and ri(x) is determined by the zeros of (d" —m +1). In
particular, for f=4 one has (see Table I)

i =+,—,NS . (2.11)
a (x) cc (1/x)" ='596, b (x) cc (1/x)" =

The quantities a(n), b(n), and r~(n) appearing here are
calculable in perturbative QCD, while the quantities
h; ~(n) contain noncalculable terms; the exponents d+ are
related to the eigenvalues A, + of the singlet one-loop
anomalous-dimension matrix by d+ ——k~/2Po.

Since the exponents d;" are positive for n & 2 (see Table
I) and since in the Bjorken limit Q is assumed to be large,
there has been a tendency in the literature to formally
treat the hadronlike parts as higher-order corrections
whose effect could be neglected at sufficiently large Q .
On this basis the claim has often been made that both the
x and Q dependence of the photon structure functions
are obtainable from perturbative QCD, i.e., that the

and r&(x)=(1/x) ', where n~ is the value of n at which
d" =l.

At each successive order the exponents ni grow larger
so that the power singularities at the origin become in-
creasingly severe. At any experimentally foreseeable Q
their effects cannot be significantly damped by the addi-
tional powers of a(g ). The presence of these singulari-
ties compromises the convergence of the perturbation ex-
pansion for the pointlike part at sma11 x and as higher or-
ders are taken into account larger and larger values of x
(those controlled by n & ni ) are affected.

From Eqs. (2.8)—(2.10) one sees that the singularities of
the pointlike part are in fact canceled by corresponding
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TABLE I. Values of the quantities d Ns, d", and d+ (four flavors).

dNS

0.427
0.667
0.837
0.971
1.080

d Ns(n =0.3099) = —1

dNS(n =1)=0
dNS(n =5.250)=1
dNS(n =26.58)=2

d"

0
0.609
0.817
0.960
1.074

d (n =1.596)= —1

d (n=2)=O
d (n =5.326)=1
d (n =26.59)=2

d+

0.747
1.386
1.852
2.192
2.460

d+(n =2.386)=1
d+(n =4.402) =2

singularities in the hadronlike terms since
r A

1
—2 —2

lim —1 — g, = —ln
A~pr4 g p g p2

Therefore even for values of Q well above the range (Q
of the order of 10 GeV ) at which current experimental
data are taken, hadronlike contributions must be included
in the theoretical analysis to avoid unphysical singular
predictions at x =0. At each successive order in perturba-
tion theory the effect of hadronlike terms becomes
relevant at larger and larger values of x.

In leading order only the region of very small x is af-
fected: hadronlike terms cancel from the nonsinglet and
singlet parts of a(x) spikes of the form (1/x) 3o 9 and
(1/x)' which are present, for example, in the plots ob-
tained for these quantities in Ref. 4. In next-to-leading
order taking hadronlike terms into account eliminates the
unphysical negative (1/x) behavior of the pointlike part
of F2r(x, Q ) obtained by Duke and Owens for the region
x &0.25. At the next order 0(a), one can expect signifi-
cant modifications of the pointlike result in the whole
range controllmi by n & 5.3 (i.e., x &0.8). It should, how-

ever, be noted that even for Q in the range at which
current experiments are performed there might well be no
strong need of pursuing the theoretical analysis beyond
the next-to-leading order [in particular, higher twists and
quark-mass effects might well yield corrections more siz-
able than those due to 0 (a) terms]. It might therefore be
argued that there is some region of x (0.5 &x & 0.8) where,
truncating at the next-to-leading level the perturbation ex-
pansion for the pointlike part alone, one obtains an ap-
proximate prediction for the structure function.

The treatment used for the Bjorken-limit structure
function can be repeated for the structure functions in the
kinematical region A «P «Q . As noted above„ the
matrix elements of hadronic operators can be calculated
for this region and the additional scale P can be used to
fix the subtraction point. Therefore, one obtains a com-
plete prediction for both the x and Q behavior which is
free of power singularities at x =0.

One can see from {2.7) and {2.10) that the part of
F2 (n, Q ) containing ANs(Qo ) has the same form as the
complete nonsinglet part of a hadronic structure function.
In fact, Eq. (2.10) can be rewritten as

EM 00

F2 (n, Q )= CNs(l, g )f(n, g) g lr (n)

'm —1

g
2

16m

g2 dNs gp

go 1677'

'm —i

CNs(1 g )f(n g) g Ns
FNS( Q 2)

CNs(i go')f {n go) go'
(2.12)

The last term which contains A&s(Qo ) contributes to Fl (n, Q ) already in leading order and of course it is the only
term which survives at Qo ——Q . On the other hand, in the region A «P « Q the matrix elements of Eq. (2.3) which
enter the analog of Eq. (2.10) are of order 0 (1) and begin contributing to the structure function in next-to-leading order.

In practice, perturbative expansions such as (2.10) can be carried out explicitly only up to a certain order: At present
results are available up to next-to-leading order. For the region A «P «Q these can be written in the form

r

4' Poa 2

1+d", ', 3;(n) 1—

B;(n) 1—
i

I +dg
+Dy(n) ', i =NS, + . (2.13)
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Here a& g——(P )/4m; the explicit form of L;(n), A;(n), and B;(n) can be found in Ref. 5 and

Dr(n) =3f(e )(Br +2A ~ ) (2.14)

where 8& is the one-loop photon coefficient function.
In the Bjorken limit, one can write the next-to-leading-order structure function in analogy to (2.12}as the sum of two

parts: The first is proportional to (y
~
Or ~

y) and has the form (2.13) with a~ substituted by ap ——gp /4m and with
terms containing A „'P in A;(n) and D&(n) set equal to zero; the second part contains matrix elements of hadronic opera-
tors and its form is the same as that of structure functions of hadrons. ' Here we report the result for the valence part
(the part proportional to (e )) only:

aEM (e ) 4n. 12'(n, Q )=
2

—LNs(n) 1—
p

1+dNS A N's(n)

2Po CXp

dNS

BNs(n)

2po ap

+ NS

4 +EM n a —ap+3f(e ) Br+ 1+ RNs4m. 4~ CKp

NS (e ) FNS
&")—&")' ' "'Q' (2.15)

Here Aps(n) is obtained from ANs(n) of Eq. (2.13) d«p-
ping terms containing A „'G and

1,n
n n

&Ns =&Ns+
2Pp

o,.
2P 2 YNS

F2"(n, Q =Qp ) =3f(e ) Br4m.

(e ) FNs 2 2

The different way in which matrix elements of hadronic
operators enter (2.13) and (2.15) is attributable to the dif-
ferent physical significance of the scales P and Qp . In
(2.15), Qp is an arbitrary scale (within the perturbative
range) at which data are taken. From these data, using
(2.15) and its analog for the sea part, one can predict the
form of the structure function at different values of Q .
Within the precision afforded by perturbation theory,
these predictions must be Qp independent if the theory is
to be consistent. On the other hand, I' is a parameter
determined from experiments; for any P and Q which
satisfy the condition A «P «Q, Eq. (2.13) predicts
completely (up to next-to-leading order) the form of
F2(x,Q,P ): these predictions depend on both Q and
p2

It should be noted that in Eq. (2.15) (and in its analog
for the sea part}, terms containing matrix elements of had-
ronic operators are renormalization-convention dependent
in next-to-leading order: Since the whole valence part
must be convention independent and since at Q =Qo one
has

I

dependence of Bz. At Q &Qp, the convention depen-
dences of B& and F2 (n, Q ) are canceled by the conven-
tion dependence of the term containing A N's(n).

Vector-meson-dominance (VMD) arguments have often
been used in the literature to obtain estimates of the had-
ronlike contributions. It is apparent that the VMD model
can account for only part of the hadronlike terms since it
cannot reproduce the detailed singularity structure of the
perturbation expansion discussed above. In attempts to
identify those terms of the structure function which can
be accounted for by the VMD model, one should notice
that such parts must be convention independent. Since
the VMD model can account for the yy total cross section
up to Q =1 GeV, it is possible to obtain VMD predic-
tions for F2"(x,Q =1 GeV) and its analog for the sea
part; on the other hand, since at these low values of Q,
perturbative expansions such as the one in the RHS of
(2.17) are unreliable, one is left with the problem of
evaluating the quantity F2 (n, Q =1 GeV) that might be
used as a boundary condition in (2.15).

The quantities d;" which enter the exponents in (2.13)
and (2.15) are proportional to (ln n) at large n; as a result,
in the region x~1, which is controlled by large n, the

d;terms containing (a/az) ' and (a/ap) ' become less and
less relevant. The limiting behavior has been studied in
detail in Ref. 14. It turns out that the predictions of per-
turbation theory are unreliable in this region: in fact, the
leading term is suppressed by a ln(l —x) with respect to
the next-to-leading term, which is negative. As a result an
unphysical negative result for the structure function is ob-
tained for x=1 at finite Q .

(2.17)

so that the scheme dependence of the next-to-leading part
of F2 (n, Q =Qp ) must be such as to cancel the scheme

III. x-SPACE FORMALISM

Use of the Altarelli-Parisi equations in the context of
photon-photon scattering has first been discussed by the
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authors of Ref. 4. The difference between these equations
and the ones for hadronic deep-inelastic scattering is that
in addition to the quark q'(x, t) and gluon G (x,t) densities,
one has to consider the elementary photon density I (x, t)
in the target photon. The densities q'(x, t) and G(x, t) are
0 (aEM), I (x, t) is simply

I (x,t) =5(x —1)+0(aFM)

(t»s is the translation in parton language of
(1'

~
&„~y) =1). Therefore the Altarelli-Parisi equations

at lowest order in azM and in the effective strong coupling
constant a(t) are

r

dq' 1 ' dy 0 & . 0(x,t) = .a(t) Pqq
—q'(y, »+PqGdt 2m ~ y y

dG a(t) ' dy p x J p(x, t) = PG, —&q (yt)+PGGdt ' 2~ ~ y ',, y

with the photon structure function Fz (x, t) given by
2f

F~(x, t)= ge; xq'(x, t) .

y

y

G(y, t) +aEMe; Pqr —I (y, t) . ,
y

G(y, t)

(3.1)

(3.2)

(3.4)

Here t =inQ /A, a(t) =4nlispt, an.d Pqq(z), PqG(z), PGq(z), and PGG(z) are the ordinary Altarelli-Parisi fragmentation
functions. The new fragmentation Pqr(z) is given by

P;, (z) =3a'(z) =6'', (z), (3.3)

where a o(z) =2z~ —Zz + 1 and the factor 3 corresponds to quark densities summed over colors.
Ordinarily the equations are rewritten in terms of singlet and nonsinglet quark densities. Letting

q (x,t)=—g q'(x, t), q (x,t)= —,
' [q"(x,t) —q (x, t)]2

(3.5)

(q" and q" refer to densities of quarks with the same charge assignment of the up and down quark, respectively), one gets
r

(x,t)=3((e ) —(e ) )'~ a (x)+ I P —q (y, t),

q (x,t)=3(e ) a (x)+ f Pqq
—

q (y, t)+PqG —G(y, t)dt 2' ot "yyy
r

G(x, t)= 2fP« —
q (y, t)+P« —G(y, t)

d 2 'dy o x s o x
dt pt & y

(3.6a)

(3.6b)

Fz(x, t)=Fz (x,t)+Fz(x, t)=2f[((e ) —(e ) )'~xq (x,t)+(e )xq (x, t)] . (3.7)

Due to the new fragmentation function Pqr(z), (3.5) and
(3.6a) contain inhomogeneous terms which are absent in
the corresponding equations for deep-inelastic scattering
off hadrons.

Using the convolution properties of the Mellin
transform

(n, t) =as(n) — [dqqq (n, t)+dqGG—(n, t)],
d~

' t

dG & ~ s(n, t) = — [2fdGqq (n, t)+dGGG(—n, t)],dt ' t

where

(3.9b)

f dxx" ' I P —h( y)= P( )n I(t)n,
'dy x

0 x y y
0

( )
EM (( 4) ( 2)2)1/2ap(n)

2'
(3.10)

1

where f(n)= dxx" 'f(x), one obtains the n-space
0

version of the equations
as(n)= (e )a (n),2'

0 1 yg

NS

dt
(n, t) =aNs(n) —dNsq (n, t), — (3.8)

and where the quantities d,j are related to the Mellin
transform of P,J(z) and to the usual one-loop anomalous
dimensions y,j'" by
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O, n

Pqq(n) =—
4

Pqg(n) =—

Pgq(n) =—

O, n
3 fG
gf
O, n

VGA

O, n
VGG

Pgg(n) =—
4

Po
dqq =—

qq

Po
dqG

13o „„
Gq

Po
dGG e

i3o
dNS

(3.11)

of F2 (x,Q ) containing matrix elements of O„has not
been accounted for in the above treatment. To do so one
can treat such parts independently with ordinary homo-
geu. eous hadronic Altarelli-Parisi equations' and add the
two parts at the end of the calculation. Equivalently, '

one can include the solution of the homogeneous equa-
tions directly in the boundary conditions and use

qN'(n, t) =gh„t 1 ——' ~qNs(n, t, )

Once a set of equations such as (3.5) and (3.6) or (3.8)
and (3.9) is written down one must specify an appropriate
set of boundary conditions for the t evolution. In practice,
one must get insight from other methods such as the
OPE. This is illustrated by the following example. Con-
sider (3.8). In the Bjorken limit, following Ref. 4, one
may require

(3.16)

in place of (3.14).
The leading-order results in the region A «P2«Q

can be obtained from Eqs. (3.8) and (3.9), requiring

t
q '(n, t, t )=gh, '(n)t 1—

qN'(n, t)=h(n)t 1+0— (3.12) I

q (n, t, t )=gh„(n)t 1— (3.17)

Then from (3.8) one gets

a Ns(n)
h (n)=

1 +dNs

On the other hand, one may require

q (n, t) =gh„(n)t 1—

Substituting (3.14) in (3.8), one gets

ghg 1+(A —1)

0 to
+NS +4dNS

and separating different t dependences one obtains

+dNS

(3.13)

(3.14)

G(n, t, tz)=ggz(n)t 1—

where t~=lnP /A . The procedure used in the first of
Ref. 5 is equivalent to these prescriptions. Contrary to
what happens for the Bjorken limit [see (3.16)], no term
containing matrix elements of hadronic operators enters
the leading-order result in this case. This is in agreement
with the fact discussed in the previous section, that for
this region such terms are O(1) in a(Q ), so that they
start contributing to the structure function in the next-to-
leading order.

Extension of the Altarelli-Parisi formalism to next-to-
leading order for hadronic deep-inelastic scattering has
been discussed by several authors. ' One major novel
feature is that there is no unique way to define parton den-
sities the most common approach, which will be adopt-
ed below, can be illustrated considering formula (2.4) for
the nonsinglet portion of Fz (n, Q ). One can define
q (x,Q ) as the inverse Mellin transform of

that is, there is one value of A for each different n and the
corresponding h~(n) is given by (3.13) so that (3.14) be-
comes

NS(n Q2) qNS~H(n Q2)+qNS~y( Q2) (3.18)

0 1+dNS

q (n, t) = &NS tO
t 1— (3.15)

1+dNs

Letting to=lnQo /A, Eq. (3.15) reproduces the complete
leading result of OPE for the part of (2.4) containing the
matrix element of the photon operator. On the other
hand, Eqs. (3.12) and (3.13) give the result in the formal
limit Q ~ oo. l.e., when powers of a/ao are dropped and
only the pointlike part is retained. The results of Ref. 4,
which are obtained solving the equations in x space with
boundary conditions of the form (3.12), indeed exhibit at
x ~0 the singular behavior of the pointlike part.

The Altarelli-Parisi formulation does not itself provide
any reason to choose (3.12) or (3.14) as boundary condi-
tions. By the same token it should be noted that the part

where

sq"' (n Q')=&@ IO."'I X)mNS(g'(Q') g'(Qo')),

(3.19a)

~Nsq (n Q')= &7 I O'
I r &~Ns(g '(Q'»g '(Qo'»aEM)

(3.19b)

[the charge factor 5NS
——2f((e ) —(e ) )'~ has been in-

troduced to ensure consistency with (3.4) and (3.7)]. The
structure function is then obtained as

FNS(XQ2)JXCNSQ2qNS(yQ2)P
X

Here C (z, Q ) is the inverse Mellin transform of
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C„(l,g (Q )) and can be interpreted as an elementary
cross section for the scattering of a current off a quark
with an effective Q -dependent distribution q (x,Q ).
Alternatively, one can, for example, express the structure
function completely in terms of a quark density
q (x,Q ) defined by

F2 (x,Q )=x5Nsq (x, Q ),
where 5Ns is some charge factor. These two definitions
are both equivalent in leading order to (3.7). The advan-
tage of the first one is that the structure-function-
dependent part of (2.4) is separated from the universal
quark density: for example, to obtain the nonsinglet part
FI (x,Q ) of the longitudinal structure function
F~r(x, Q ), one only has to convolute qNs(x, Q ) defined by
(3.18) with the appropriate coefficient function CL (z, Q ).
The disadvantage is that the parton densities and the ele-
mentary parton cross sections defined in this way are
separately regularization-prescription dependent and, in
general, gauge dependent: therefore, to compare corre-
sponding parton distributions for different processes, one
has to make sure that they are defined consistently in the
same renormalization scheme. We shall use the MS
scheme throughout. Incidentally, the two definitions
above can be related, respectively, to the two-step and
one-step procedures of Ref. 20.

Severa1 sources of higher-order contributions must be
taken into account to write the Altarelli-Parisi equations
in next-to-leading order. For hadronic deep-inelastic
scattering there are higher-order terms in the coefficient
functions, in the fragmentation functions, and in the P

function. To deal with the latter it is convenient to write
the equations using a itself, instead of t, as the evolution
parameter: this is done by observing that the derivatives
with respect to t can be rewritten as

Po , Pi , da+ za4~ (4~)2 da (3.20)

For two-photon processes it is also necessary to take into
consideration higher-order corrections to the inhomogene-
ous terms. In particular, since PGz becomes relevant at
this order inhomogeneous terms are now present in all the
equations.

Let us first consider the kinematical configuration
A «P «Q . As remarked above, for this region terms
containing the matrix elements of hadronic operators first
appear in the next-to-leading order. The way such terms
are included in the equations below is equivalent to solv-
ing separately a set of homogeneous Altarelli-Parisi equa-
tions for the hadronic term with boundary conditions of
the form

Ns, H( ) g (2)Ns

and to add these terms to the photonic contribution ob-
tained solving inhomogeneous equations. Since the pro-
cedure used below accounts for the hadronic parts
through an alteration of the inhomogeneous terms and the
photon coefficient function only, in the diagrammatic for-
mulation of Ref. 3 one may interpret such modifications
as a change in the coupling between the photon of
momentum p and the fermions.

One obtains

Po P& d N aEMa + a (x a a )= 6(&e'& —&e'&')
4m. (4~)2 da 4'

a (x)— [CpFqg(x) Ii(x)] + f— PNs —,a q (y, a,ap),2&

r

a (x,a, ap) = 6(e ) a (x)— [CpFqg(x) Ii(x)]-Po 2 Pi 3 dq EM 2 o a
4~ (4~)2 da 4m' 4m

(3.21)

a ~dy x s X+ Pqq —,a q (y, a,ap)+ qg, a G(y&asap)2K
(3.22a)

a (x,a,ap)=4f (e ) [CpFgg(x)+J)(x)]Po, Pi, dG 4 aEM, a

r

2fPgq —,a q (y, a,ap )+Pgg —,a G (y, a,ap )
a dy x s X

X y y
T

F2 (xaap)=2f((e ) —(e ) )'~ x q (xaap)+ f BNs —
q (yaap)a «dy x

4 Ns» p

(3.22b)

(3.23)

Fq(x, a,ap)=2f(e )x q (x,a,ap)+ f B~ —q'(y, a,ap) +3(e )x f Bg —G(y, a,ap),4~ x y y 4m ~y y
L J

(3.24)
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Fq(x, a, az) =Fi (x,a,az)+Fz(x, a, ai, )+ XDr(&)
4m

(3.25)

In these equations the fragmentation functions are ex-
panded according to

q (n, a, a~)= /hz (n) 1—

PNs(z, a) P,'q(z——)+ PNs(z),
2m'

(3.26a) +USE (n) 1—Ns (3.31)

PJ(z,a)=P~)(z)+ P (z) .
2~

(3.26b)

The two-loop fragmentation functions are related to the
analytic continuation of the even-n two-loop anomalous
dimensions by

1,n
QNS

PNs(n) =—
8

1,n 1,n
1 'VfG

Pqg = —
2~8

(3.27)

1,n 1,n
QGQ 1 XGG

Pg (n)=—,Pgg ———
8

P

8

The new quantities which appear in the inhomogeneous
terms are related to the matrix elements of hadronic
operators and to the two-loop anomalous dimensions
which represent mixing between the photon and hadronic
operators by

and similar boundary conditions for the singlet and gluon
densities.

Because of our treatment of the hadronic part, the set
of equations (3.21)—(3.25) is appropriate only for the
kinematical configuration A «P « Q . As pointed out
above, a simple way to deal with the Bjorken limit consists
in writing two separate sets of equations: an inhomogene-
ous set for the parts containing the matrix element of the
photon operator such as q 'r(x, g ) and its singlet and
gluon analogs, and a homogeneous set for densities such
as q ' (x,g ) which contain the matrix elements of had-
ronic operators. One obtains the appropriate inhomogene-
ous equations from (3.21) and (3.22), dropping terms con-
taining Ii(x) and Ji(x); the equations for the hadronic
densities are exactly the same as those used for hadronic
deep-inelastic scattering, ' i.e., one retains only the homo-
geneous terms in (3.21) and (3.22). The two sets of solu-
tions must then be added together and substituted in the
coefficient equations (3.23) and (3.24). In place of (3.25)
one has to use

F2(»g )=F2 (&,Q )+Fz(&,g )

On (2)g
4 Yiiii~ ng (3.28a) +3I("&,™xa,(.), (3.32)

Ji(n) = —
4 ygpA „g

On (2)g (3.28b)

KN's —— 24f((e ) —(e ) )C—FFqg(n), (3.29a)

Kg" —— 24f(e )C~F—qg(n),

Kg'" 24f(e )C~Fgg(n) . ——

(3.29b)

(3.30)

The explicit x-space expressions for these quantities and
for the coefficient functions BNs(z), 8~(z), and Bg(z) are
collected in the Appendix.

One can use the relations (3.26)—(3.30) to obtain the n

space version of the equations. Once appropriate boun-
dary conditions for the a and a~ (or ao) dependences of
the solutions are specified, such equations can be treated
in the way used to obtain (3.15); in this way the moments
results of the OPE approach can be reproduced solving a
set of simple algebraic equations. For example, the re-
sults of Ref. 5 for the quantities I.;, A;, and B; which
enter Eq. (2.13) can be reobtained using

where &&(x) is the inverse Mellin transform of the one-
loop photon coefficient function.

In agreement with the discussion of the previous sec-
tion, the solutions of the inhomogeneous and homogene-
ous sets of equations are, when considered separately,
renormalization-prescription dependent in next-to-leading
order. Only when the two sets of solutions are added to-
gether does one obtain a result which is prescription in-
dependent and Qo independent within the precision af-
forded by perturbation theory in next-to-leading order.

To solve the homogeneous equations one needs to know
the form of the densities at some reference value go in
the perturbative range. These should be obtained from ex-
periments and present data are too inaccurate to allow a
quantitative analysis. In the next section we solve nurneri-
cally the equations for the kinematical region
A «P «Q where no such knowledge is required. We
have also solved the inhomogeneous set of equations for
the Bjorken limit in the MS scheme. The quantity ob-
tained in this case is the inverse Mellin transform of the
part of the structure function proportional to the matrix
element of the photon operator [the last term in the RHS
of (2.1)]. In the next-to-leading order it can be written as
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r r

4m Poa 2 CXp

Ag '(n) 1—
i ao

B;(n) 1—
i (Xp

+3f(e )B& ', i =NS, +, (3.33)

where A; i(n) are the quantities obtained from the A;(n) of
Eq. (2.13) letting A '„G" equal to zero and are therefore
renormalization-convention dependent. Note that the sum

g ' +3f'(e')B", , i=NS, +,—
i

is convention independent so that the next-to-leading-
order pointlike contribution b (n) of Eq. (2.11) is prescrip-
tion independent. On the other hand, the term

A; '(n)

2Po ao

in (3.33) is convention dependent and such dependence
must be canceled by the convention dependence of the
solutions of the homogeneous equations.

One can see from (3.33) that Ff"(x,Q, Qo } is free of
power singularities at x =0 and it is completely calculable
for any given Q and Qo . The hadronlike terms in Eq.
(3.33) cannot be obtained from a homogeneous Altarelli-
Parisi equation; essentially this is because such terms con-
tain matrix elements of the photon operators and, as noted
at the beginning of this section, this involves the presence
of inhotnogeneous terms. Of course, to reproduce such
hadronlike terms correctly one has to use boundary condi-
tions of the form (3.31}with az replaced by ao.

R (n)
ln

m=i t
CXp

(4.2)

Next, isolating a trivial charge factor, we write the inverse
Mellin transform of (4.2) as

q (, , p)= 6((e ) —( ) )

4~ ~ H (x)
n

poa i m! ap

R~ (x)
ln

m. a&
(4.3)

the structure function. Indeed, the solutions obtained in
this way exhibit at x =0 the singular behavior discussed
in Sec. II.

If one has to implement in x space conditions of the
form (3.31) where the exponents A and E are themselves
n-dependent, the separation procedure is slightly less
straightforward. To accomplish the separation in the
kinematical region A «P «Q, we rewrite (3.31) as

NS 4~ ~ m
q (n, a,az ) = — g (n)ln

poa i nt . ap

IV. SGLUTIGNS GF THE EQUATIGNS
IN x SPACE

Substituting this expression in (3.21), dropping terms of
order O(a ), and equating terms with the same a and a~
dependences, we get the recurrence relations

To solve in x space Altarelli-Parisi equations such as
(3.21)—(3.25), the a and a~ dependences have first to be
separated from the x dependence: it is at this stage that
the particular forms of the boundary conditions are taken
into account. After the separation one is ordinarily left
with a set of integral equations for the x-dependent parts
which can be solved by standard methods.

The authors of Ref. 4 solved the leading equations (3.5)
and (3.6) using boundary conditions of the form (3.12). In
this case the separation procedure is very simple. One has

H, ( )=xa (x),

H~+ i(x) =H~ (x) JPqq —H—~ (y),
po

R i(x)= [Ii(x) CFF G(x)]— H—i(x),
p 2

R +|(x)= [H (x) H+&(x)]-
po'

(4.4a)

(4.4b)

(4.5a)

q (x, t) =htqs(x)t,

q (x,t) =hs(x)t,
G(x, t)=h (x)t .

(4.1)
+m 3

po 3'

Substituting (4.1) in (3.5) and (3.6), one immediately gets a
set of integral equations for hzs(x), hs(x), and hG(x). As
remarked in the previous section, using boundary condi-
tions such as (4.1) reproduces only the pointlike part of

o "3' (4.5b)

Similarly, substituting in the singlet equations the expres-
sions
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4~ oa, m! a~

S (x)
1Il

m=i CXp

(4.6)

Gi(x) =0,
r

K +)(x)=K~(x)— f P,~ —K~(y)
Po " y, y

+2fP g —G (y)

(4.8b)

G(x,a,a~)= 4f(e )4~
G (x)

lnPoa, m! az G +&(x)=G (x)— f Pgq —K (y)
Po " y y

(4.8c)

Q (x)

m=i ~. ~P
(4.7) +pgg

one obtains the relations

K&(x)=a (x), (4.8a)
I

and

(4.8d)

1 2Si(x)= [I,(x) CFF g(x)]—— K, (x),

Qi(x)= [Ji(x)+CpFgg(x)],

(4.9a)

(4.9b)

r r

S +&(x)=
& [K (x)—K +&(x)]—,f ' y p' —K (y)+2fp'g G

' f "" P,', —S.(»+2fPqe —Q (y)gg ttl
y

r

Q~+~ 2 [ ~ ~+~( )]— 2 f„pgg—K~(y)+Pgg —G~(y)
y

(4.9c)

Gq Smy ++GG my
Po "y y y

Inserting the solutions of (4.4) and (4.S) and (4.8) and (4.9) in (3.23)—(3.2S), one finally gets for Fz (x,a,a~ )

(4.9d)

F2(x,a,a&)= 12f(e )x g ln
m=i ~' ~P

H (x) R(x) —f B—Ns
—H (y) +Dr(x) .

Po

+ 12f(e ) x g, ln [H~(x) —K~(x)]+R~(x)—S~(x)
4m , m! ap oa

r

1 'dy x X+ ~Ns [H~(y) Km(y)] —&g —G—~(y) . (4.10)
Po "y

Here we have separated the contribution proportional to (e ) (valence part) from the contribution proportional to (e2)
(sea part). In practice the sea part turns out to be of some relevance only for x very close to zero and this is a conse-
quence of the fact that the nondiagonal terms in the singlet Altarelli-Parisi equations mix effectively the fermion singlet
and gluon sectors only at small x: i.e., in formal operator language, mixing of gluon and fermion operators of spin n & 2
is very weak: as a result, outside the small-x region, one has H (x)=K (x) and R~(x) =S~(x).

Using the results from the leading-order recurrence relations (4.4) and (4.8), one can obtain the longitudinal structure
function FL (x,a,a~ ) by means of a simple quadrature with the appropriate coefficient functions
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I

aEM
FL(x,a,a )= 12f(e )x ,B—1.(x)— g ln f BNsL, —H (y)

r

+ 12f(e )~x—Q ln f By I —[H (y) —+ (y)]—BG~ —G (y)m=1~ ~p "y GI. m

(4.1 1)

where' [for color group SU(3)]

Br L(z)= BGL, (z—)=16z(1—z),2

16
BNS,L(z) =By 1.(z) = 3 Z

(4.12)

(4.13)

The procedure described above can be used to solve the
inhomogeneous set of equations appropriate for the Bjork-
en limit to obtain the quantity F2 (x,Q, QO ) of Eq.
(3.33), where

1

F$ (n, g, go )=f dxx" Ff"(x,g, go ) .

In leading order the two quantities Ff"(X,g, go ) and
Fz(x,a,az) coincide if Qo =P . Of course, the physical
interpretation for the two quantities is different:
Fz(x,a,az) gives a complete prediction for the structure
functions in the kinematical region A «P «Q;
F$"(x,Q, Qo ) accounts only for the portion of the struc-
ture function F2(x, g ) proportional to the matrix ele-
ments of the photon operators. To obtain a complete
Qo -independent prediction for the structure function
F2(x, Q ), one must add to Ff"(x,g, go ) the solution of
a set of homogeneous equations obtained using data taken
at Qo as boundary conditions.

Uematsu and Walsh have stressed that as P grows
closer to Q, the expressions for F2 and FL relative to the
kinematical region A «P «Q approach the corre-
sponding parton-model results. In fact, since

The first two terms in square brackets in (4.15) are indeed
the same which enter the parton-model result for
tnt «P «Q (m; stands for the ith-quark mass). '2
One should, however, notice that the term of order
O(1/1ng /A ) contains parts proportional to ln(1 —x)
which at x= 1 are competitive with the lng /A in the
denominator: for this reason, in the large-x region there
are sensible differences with the parton-model expression
even for large P .

Our results for Fz(x,a,a~) are shown in Figs. 1 —4.
The normalization is that of Ref. 5. All these results refer
to f=4: in the normalization used the corresponding
curves for f=3 and f=5 differ by a few percent at most
from those presented here, except for small x (x &0.15)
where the sea contributions become relevant (note that a
factor

0.6—

0. 5

0. 4

0.3
a

a&

lng /P
lnQ /A

Pt 2 2
ln 1 —ln ln

lng/A P P A

2

0. 2

0. 1

——ln 2 + 0 ~ ~

2 p2 (4.14)

2
Fz(x,a,az)= 12f(e )x a (x)ln +Dr(x)

only the first few terms in the expansions (4.3), (4.6), and
(4.7) are relevant when P gets close to Q, and one im-
mediately obtains

0
0 0. 1 0. 2 0.3 0. 4 0. 5 0.6 0.7 0 8 0 g 1

X

FIG. 1. The quantity plotted is

FY(x Q2 P2)

+0
lng /A

(4.15)

with Q2=20 CxeV2, Pt= 1 GeV2, and P Ms=200 MeV. Curve A
is the next-to-leading order Q CD result. Curve B is the
leading-order QCD result (4m/Pott=t, 4m/Potty =t~). Curve D
is the parton-model result for m; «P « Q .
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0.6—
0.4

0.36—

0.5— 0.32—

0.4—
0.28

0.3— 0.2

0. 16—

0.2— 0. 12—

0. 1

0.08—

0.04

I I I I I I I I

0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0.7 0. 8 0.9 1

X

FIG. 2. Same as Fig. 1 with Q =20 GeV~, Pi=0.5 GeV,
and P Ms

——200 MeV.

0 I I I I I I I I I

0 0. 1 0. 2 0. 3 0. 4 0. 5 0.6 0. 7 0. 8 0. 9 1

X

FIG. 4. The quantity plotted is the same as in curve A of Fig.
1, but with different values of AMs. Curve E refers to Q =20
GeV, P =1 GeV, and P =400 MeV. Curve F refers to

Q =20 GeVi, Pi= 1 GeV, and AMs=100 MeV.

is present in the denominator of the quantities shown in
the figures). Here no attempt has been made to keep into
account effects due to the quark masses and massive
quark production thresholds. The latter should manifest
themselves with increases in the measured structure func-
tion at x smaller than certain threshold values xsr for the
production of inassive quark pairs of mass M. Figure 5
shows the result for the longitudinal structure function
obtained from (4.11). In this case the parton-model result
for Q »P is independent of both Q and P~ Note that.

in the figures the variable x is assumed modified to cover
the range 0&x &1 (strictly speaking for P &0 one has
x &1 P /2p q). W—e use AMs ——200 MeV and obtain a
and uz from (2.4). One can see from Fig. 4 that the re-
sults are quite insensitive to the value of AMs. As one

0. 7

0. 6

0. 5

0. 6

0.4—

0.5
0.3—

0. 4—
0.2—

0. 3— 0. 1

0. 2

0. 1

I I I I I I I I

0 0. 1 0 2 0.3 0. 4 0 5 0.6 0 7 0 8 0 9 1

X

FIG. 5. The quantity plotted is

I I I I I I I I I

0 0 ~ 1 02 0.3 0. 4 0. 5 0.6 0.7 08 0.9 1

X

FIG. 3. Same as Fig. 1 with Q = 10 GeV, P =1 GeV~, and

Ms=200 MeV.

F(xQ P)

at lowest order. Curve A refers to Qi=20 GeV~, P =1 GeV~,
and P Ms=200 MeV. Curve B refers to QUA=20 GeV~, P~=0.5
GeV, and P Ms

——200 MeV. Curve D is the parton-model result.
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might expect from the discussion at the end of the second
section, next-to-leading order corrections turn out to be
especially relevant at large x. In practice, from a physical
point of view, one should take with due skepticism those
among the results which refer to P =0.5 GeV because of
possible breakdown in the perturbation expansion, and
those for which P /Q =0.1 because O(P /Q ) correc-
tions may prove sizable.

A few comments about our computations are in order.
The 5(1—x) present in FGG(x), namely in the inhomo-
geneous term of the singlet equation for the gluon distri-
bution, has been treated using the ordinary Gaussian form

5(1—x)= exp
2 (x —1)'

rr

0.28—

0.24

0.2

0. 16—

0. 12

0.08—

0.04—

-0.04—

(the factor 2 is in accordance with the definition

I dx5(l —x)=1) .

The choice of the parameter e depends on the type of
mesh of data points in x. Due to weak mixing between
gluon and single fermion sectors at large x, the results for
Fr2(x, a, a~) are not very sensitive to the type of approxi-
mation used. Note that Q~(x) does not enter F$(x,a,az)
in next-to-leading order.

The expansions (4.3) and (4.6) and (4.7) are series of the
exponential and therefore they are always convergent; in
practice if

~
in(a/az)

~

is large the expansions fluctuate
wildly before starting to converge: as a result, one is limit-
ed by the number of significant digits one's computer can
handle. At any rate, this is not a major problem: our
double-precision program on a VAX 11/780 computer (16
significant digits) could treat values of ~ln(a/a~)

~

(1
and all physically relevant values of P, Q, and A fall
within this range. With a mesh of 69 data points in x it
took approximately 15 min central-processing-unit time to
obtain the set of curves relative to each set of Q, P, and
A values. We checked our results by comparing their
moments, computed numerically with the actual moments
obtained from the OPE results: the agreement is quite
good (within a few tenths of a percent for 2 (n & 60).

Results for the quantity F$"(x,Q, QO ), which is the in-
verse Mellin transform of the part of the structure func-
tion proportional to the matrix element of the photon
operators, are shown in Figs. 6—8. As discussed above,
this quantity is renormalization-convention dependent.
Our results are obtained in the MS scheme, solving the in-
homogeneous equations relative to the Bjorken limit. As
noted at the end of the last section, there is no power
singularity at x =0. As Q approaches Qo Ff"(x,Q, QO )

is expected to differ more and more from the complete
structure function Fz(x, Q ). Essentially this is because
those terms in F$"(x,Q, QO ) which depend on Qo be-
come more relevant [note that the complete structure
function Fq(x, Q ) should be Qo independentj. In the
limit Q =Qo, the leading part vanishes and in next-to-
leading order one has

F$"(x,Q =Qo )=3f(e ) xB&(x) .
4m.

Since one is dealing with quantities which are Qo and

-0.08—

-0. 12—
I I I I I I I I I

0 0. 1 0 2 0.3 0. 4 05 0.6 0. 7 0 8 O. g 1

X

FIG. 6. The quantity plotted is

in the MS scheme, with Q =20 GeV aud AMs=200 MeV.
Curve A is the leading-order result for Qo ——1 GeV . Curve B is
the leading-order result for Qo ——2 GeV . Curve C is the next-
to-leading-order result for Q02 ——1 GeV . Curve D is the next-
to-leading-order result for Qo ——2 GeV .
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FIG. 7. The quantity plotted is

2
Ff"(x Q Q )/3f (e") ln

4rr Q02

in the MS scheme with Q =20 GeV and Qo ——1 GeV2. Curve
A is the leading-order result for AMs=100 MeV. Curve B is the
leading-order result for AMs=400 MeV. Curve C is the next-
to-leading-order result for PMs=100 MeV. Curve D is the
next-to-leading-order result for P Ms=400 MeV.



866 GIUSEPPE ROSSI 29

0.28—

0.24

0.2

0. 1. 6—

0. 12

0.08

0. 04

-0.04

-0. 08—

prospect of obtaining A from yy experiments, since
presumably the solution of the homogeneous equations
will not be any more sensitive to the value of A than had-
ronic structure functions.

The x-space formulation presented here has, over the
ordinary moments inversion techniques, the advantages
of increased accuracy and -reliability in dealing with the
end-point (x =0, x = 1) behavior. Present experimental
results are affected by large uncertainties and the predic-
tions of the theory are not dependable at large x. There-
fore the increased precision may not prove very significant
at present. However, this formulation is no more compli-
cated than the usual one; it makes it possible to work
directly in x space and, as has been stressed by the authors
of Ref 16, its reliability at small x should make it useful
in future analysis of experimental results.

-0. 12 C—
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X

FIG. 8. The quantity plotted is the same as the one in Fig. 6
with Qo ——1 CxeV and P Ms

=200 MeV. Curve A is the
leading-order result for Q =20 CyeV . Curve 8 is the leading-
order result for Q2=10 GeV2. Curve C is the next-to-leadiug-
order result for Q =20 CxeV . Curve D is the next-to-leading-
order result for Q =10 CreV2.
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convention dependent, one should be very cautious in
drawing conclusions from the results shown in the figures.
%'e only remark that the poor sensitivity of the results on
the value of A (see Fig. 7) is not very encouraging for the

APPENDIX

In the MS scheme the coefficient functions are given by
[for color group SU(3) CF ———,, C~ ——3]

BNs(z) =By(z) =CF 2(1+z )
ln(1 —z)

I —z
3 1+z
2 (1—z)+

1+ "
l~+ -,' (9+»)—9+ g 1 —z)

2'
1 —z ' 3

(Al)

BG(z)=2f (2z —2z+ 1)ln —1+8z —8z2 (A2)

Br(z) = BG(z),—2

and Dr(z) is the inverse Mellin transform of the quantity introduced in (2.14),

D&( )z=12f(e )D&(z)=12f(e )[—2(2z —2z+1)lnz —6z +6z —2] .

(A3)

(A4)

For the fragmentation functions we use expressions consistent with the results of Refs. 18, 12, and 19 [the authors of
Ref. 11 report a different result for the part of PGG(z) proportional to Cz ]. For PNs(z) we use Refs. 18, 20, and 19,

PNs(z)=(Cy' ——,
'

CpCg) PF(z)+Pg(z)+&(1 —z) —— +2/(3)
8 2

+ ~ CFC~ PF(z)+PG(z)+5(1 —z) + —4$(3)
43 13m

24 18

+CF P~ —5(1—z)—f 1 2~'
2 f 6 9 (A5)

where
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Pt;(z)= —2(l+z )
lnz ln(1 —z)

1 —z
—3 —2z lnz —

z (1+z)ln z —S(1—z),
+ 1 —' (A6)

P~(z)= —4 Li2( —z)+ ln z —41nzln(l+z) — +2(1+z)lnz+4(l —z),
1+z' . 1+z'
1+z 1+z 3

(A7)

67
Pg(z) =

9
1+z 1+z 2 Il+ (ln z+ —,lnz)+2(1+z)lnz+ —,(1—z),40

(1—z)+ 1 —z (A8)

PN (z)=-f ——', lnz —2(1—z) .
9 (1—z)+ '

1 —z
(A9)

Here Liz(z) is the ordinary dilogarithm

g

Liz(z) = —J — ln( 1 t)—
0 g

(A10)

lnz ln(1 —z)
1 —z

lnz ln(1 —z)
1 —z

(A12)

and g(x) is the Riemann g function [g(3)=1.2020569].
The distribution [f(x)]+ is used to regularize singularities
at x = 1 and it is defined by

[f(x)]+——f(x)—5(1 x)J—dt f(t) . (A 1 1)

This formula is used to regularize nonintegrable singulari-
ties before inserting the coefficient functions or the frag-
mentation functions in a computer program. It is con-
venient to use it also for the singularity of Pz(z) in (A6)
even if such singularity is integrable. Of course,

r

The remaining four fragmentation functions can be
written as

Pqq(z) =PNs(z)+ CzfFqq(z),

Cg ) CF
Fqg (z) — Fqg (z),Pqg(z) =—

(A13)

Pg (z)= Ct: Fg (z)—C+C„Fg (—z)

CF Fgq(z) (A15)

Pgg(z)=C~ Fgg(z)+Cr—Fgg(z)+Ca—Fgg(z) .f f z 2 3

2 2

(A16)

W'e checked that the expressions for FJ (z) of «f. 20 a«
correct. We use such expressions, except in the case of
FGG. In this case to be consistent with Refs. 18, 12, and
19, we use

Fgg (x)= —+8(25+ 109x)—3 (2S—1 lx +44x ~)lnx + 4+2x ~—

+1n x +4x —2x +1 2 1

1 —x 1+x
—4 ——2+x —x lnx ln(1 —x)

x

+4 —+2+x +x—I 2 1
[Li2( —x)+lux ln(1 —x)]1+x

4
lnx ln(1 —x)

(1—x) + —,
'

(
—", —~') + [—,

' —g(3)]&(1—x) .
(1—x)+

(A17)

The functions Fqg(x) and Fgg(x) which appear in the inhomogeneous terms of (3.21) and (3.22) are, of course, the same
as those which enter (A14) and (A16).

Finally, we report the explicit expressions for the new quantities I ~ (x) and J~ (x) which account for the hadronic parts:
for color group SU(3) one has

0 x 4mI~(x)= Pqq
—Ag (y)=( —,x —16x+8)Liz(x) — (1—2x)

X 2

+ 3 [(4x —4x+2)ln(1 —x)[lnx —ln(1 —x)]+(2x —x + —, )ln x

—(4x —4x ——,
' )lnx +.(4x —6x ——', )ln(1 —x)—(Sx —6x+ —, ) J, (A18)
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O x —(2)PJI(x)=f Pgq A—G (y)
3'

, r
2(1 —x) Liz(x) — - + —,x +x —1 — ln(1 —x)

6 ' 3x

+( 43x2+3x —1)1~—(1—x)ln2x — '9'x2 —
3 x —

3 9x
(A19)

where we have used
-(2)P

AG (x)= —2I(2x —2x+1)ln[x(1 —x)]—2x +2x+1I,
which is the inverse Mellin transform of

(A20)

-(2)g
A„g ——2

2 1 4S((n)+-
n +1 n (n +2)~

4 1

(n+1) n
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