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SU(2) lattice gauge theories in two or more space dimensions with any value of the bare coupling are
shown rigorously to possess a nonconfining phase at sufficiently high temperature.

Simple physical arguments suggest that pure gauge
theories possess a nonconfining high-temperature phase. '

This may be explicitly shown in the infinite-coupling limit of
lattice theories, and is supported by weak-coupling pertur-
bation theory, ' and numerical Monte Carlo simulations.
In this Rapid Communication, we present a rigorous proof
of the existence of this nonconfining phase for SU(2) lattice
gauge theories. Specifically in two or more space dimen-
sions, and for any value of the bare coupling, g ) 0, we
find a temperature T'(g ) (~, above which confinement
cannot occur.

Proving the absence of confinement at nonzero tempera-
ture is equivalent to demonstrating that a certain discrete
global symmetry (described below) is spontaneously broken.
Our method for proving this symmetry breaking is based on
a modern version of the Peierls argument, in which one
bounds the probability of domain walls or "contours" which
separate regions of differing magnetization. In standard ap-
plications of this argument to theories with discrete global
symmetries, one typically shows that, as some parameter of
the theory is varied, the energy per unit area of a domain
wall becomes exponentially large and consequently the
probability of formation of domains is exponentially
suppressed. This then allows one to deduce a nonzero
lower bound on the spontaneous magnetization, thereby
proving spontaneous symmetry breaking. If the energy per
unit area of a domain wall can be arbitrarily small, as in typ-
ically the case in theories with continuous global sym-
metries, then this approach cannot normally be used. Our
case of SU(2) gauge theories is in between these two typical
situations. As the temperature is increased, the probability
of a domain wall is only suppressed by a power of the (in-
verse) temperature. Consequently, bounding this probabili-
ty requires much more accurate estimates than is normally
the case. %e overcome this problem by developing what is
in essence a one-dimensional renormalization-group
transformation which may be rigorously controlled. Vfe are
unaware of any other examples without exponential

suppression of domain walls in which Peierls arguments
may be successfully applied.

An alternative proof of the absence of confinement at
high temperature for three or more space dimensions has
recently been given by Borg and Seiler. Their proof uses
the method of infrared bounds, ' which is commonly em-
ployed in systems with spontaneous breaking of a continu-
ous symmetry. The bounds of Borg and Seiler are in fact
better at weak coupling than the bounds we are able to
prove. However, the method of infrared bounds does not
work in the lower critical dimension (d =2). Furthermore,
the approach used here is, we believe, rather more direct
and physically transparent and has some novel features
which may be useful in other contexts.

We consider the standard (Wilson) SU(2) lattice gauge
theory on a rectangular (d + 1)-dimensional periodic hyper-
cubic lattice A of size L, &I, A may be regarded as an an-
isotropic lattice with "timelike" and "spacelike" lattice
spacings a, and a„respectively. The physical temperature is
defined as T = (L,a, ) . The "spatial" lattice obtained as a
time slice of A will be denoted by A, . The basic variables
U[b] C SU(2) are defined on bonds b E A. The partition
function is given by

Z~=& X dU[b]exp(A~)
bGA

where dU[b] denotes normalized Haar measure on SU(2),
and the action is

A~= P, X tr(U[Bp, ] —1)+P, X tr(U[tlp, ] —1)
p Eh

(2)

Here p, (p, ) indicates a timelike (spacelike) plaquette, and
U [tlp ] indicates the ordered product of link matrices
around the plaquette p. The timelike and spacelike coupling
constants are defined as P, = (2a,~ 4/g2) (L,a, T) and

P, = (2a, /g )(L,a, T) ', where g is the conventional
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bare coupling constant. We use anisotropic couplings in or-
der to allow continuous independent variation of tempera-
ture and coupling.

Since our lattice is periodic, in addition to the usual topo-
logically trivial Wilson loops, there exist topologically non-
trivial loops winding around the lattice. For such paths
parallel to the time axis, we define the "Wilson line":

I.
1 1 A

L-, —= —,trO-,. =——, tr g U, [ i + nt)
n 1

(3)

(Here i labels sites in the spatial lattice A„while U, [s] in-
dicates the timelike bond variable originating at the site
s 6 A. ) The potential between a static quark and antiquark,
F~'I( i ), is determined by the correlation function of two
Wilson lines, '

The Peierls argument' now allows one to bound (P-+, "P.=,. ")
in terms of nearest-neighbor projections,

(P-", 'P=,. ) (P +, P=;) -— X ( rI P „+P=, } .-(8)
(kI) e~

Here P-+,. = P-+,. is the projection onto the upper hemisphere
of SU(2) (i.e., L-, & 0), and P=, the projection onto the
lower hemisphere. The sum is over a11 "contours" y de-
fined as connected, coclosed sets of bonds which separate
the sites i and j . (In other words, if C is a minimal length
path of bonds from i to j, then y p C = 1.) (kl) denotes
the bond of A, running from site k to the nearest-neighbor
site l . Each term in (8) may now be related to an exten-
sive quantity by means of a chessboard estimate,

IyI/d I, I

exp[ —P)8'( i —j )/T]=—(L —;L—, ) g

If the "magnetization"

m =— lim lim (L —, L -„)'~

j I ~Ls

(4)
1 odd

Here k "even" ("odd") indicates spatial sites whose first
coordinate (k~) is even (odd). The "equatorial" projection
in (7) may similarly be bounded by a chessboard estimate,

(I. —.
, L. -', ),~&(T)'&0 (6)

for all T & T'(g2) uniformly in I i —j I and IA, I. Further-
more, p, (T) 1 as T

We now sketch our method for proving long-range order
(i.e., (L-, L-, ) & 0). Define P=,. " to be projection opera-
tors onto all configurations satisfying + L —,. ~ k, and

p( —gg)
y p+A. p —A,

i i

( I r(. I & I ). Then one can show

(L, —, L'-„) ~ r(.
' —2(I+a')(P-+, "P=„").

-2Z(I+~)(PI,.=""') . (7)

is nonzero, then the quark-antiquark potential is bounded
for all separations, and static quarks are not confined.

In addition to being invariant under the usual local gauge
transformations, the action is also invariant under a global
Z(2) transformation which changes the sign of all timelike
bond variables which emerge from the equal-time slice A, .
Under this transformation, topologically trivial Wilson loops
remain invariant, but the Wilson line (3) changes sign. In
other words, the Wilson line is an order parameter for this
Z (2) symmetry. Hence, if the magnetization (5) is
nonzero, then the measure (1) does not describe an ergodic
state and multiple phases must occur. In the pure phases
(which could be selected by adding an infinitesimal "mag-
netic field" h g —; ~ „L—, ), a single Wilson line has a

nonzero expectation,

lim (L-, )), = + mh~0

and the Z(2) global symmetry is spontaneously broken.
Conversely, if the Z (2) symmetry is not spontaneously bro-
ken, then the magnetization must vanish and static quarks
are confined.

To establish that the Z (2) symmetry is in fact broken at
sufficiently high temperature, we prove the following.

Theorem: For every coupling g ) 0 and dimension d ~ 2,
there is a temperature T"(g ) and a function p, (T) such
that

(P-'.+ "') 88p(, ,)}ul,
I LL k (10)

We will show that

+

and

k even
1 odd

(12)

where K(T) and q(T) vanish as T ~. Assuming these
bounds (whose proof we will return to in a moment), we
may now complete the Peierls argument. Equations (8),
(9), and (11) imply that

(P-+, "P=„")~ g N(.lyl)K(T)
IzI-4

(13)

where N ( I y I ) is the number of contours of length
A standard counting argument bounds this by
(d/18) 3 "

I y I

' ( '). Consequently, one finds

(P-+"P=")~ cK(T.)4/[I —9~(T)']~ '

for constant c, provided the temperature is sufficiently large
that 88 ( T ) ( 3 . The stated theorem is finally a conse-
quence of inequalities (7), (10), (12), and (14).

The crux of the proof is thus the estimates of the thermo-
dynamic expectations (11) and (12) . Unfortunately, the
simple energetic estimates commonly exployed in conjunc-
tion with chessboard estimates turn out to be inadequate.
This is because in our theory the action does not uniformly
suppress the probability of a domain wa11. Specifically, in
the expectations (ll) and (12) there are configurations of
bond variables which contribute and for which the action is
arbitrarily close to zero (the maximal action). However, the
"phase space" of these exceptional configurations vanishes
as T ~, and this leads to power suppression of the ex-
pectations (11) and (12) as T
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In order to deal with this problem, we use the following
decimation procedure. Consider, for example, the numera-
tor of the expectation (12). We may first set P, =O since
this only increases the numerator. Each spacelike bond
variable now only interacts through the timelike plaquettes
immediately above and below it. Consequently, the space-
like bond variables on every other time slice may now be in-
tegrated out (exactly). The integrand for the remaining in-
tegrations is now a product of modified Bessel functions
(I~'s). However, using the log convexity of Bessel func-
tions, one may bound the integral by an integral of precisely
the same form as the original except that (i) L, has been

I

halved, (ii) the timelike coupling has been changed,

4&r
and (iii) an overall factor of e ' for each bond integrated
out appears. One may show that this bound only errs in the
overall constant; the exponential dependence and the
powers of temperature are correctly reproduced. Successive-
ly iterating this procedure allows one to integrate out all
spacelike bond variables. This leaves an effective theory of
interacting "spins" 0 —, on the spatial lattice A, . Explicitly,

exp [P [cos(cu -„—co —, ) —1]]
2P since k sincu-,

(1 ) 2)1—d
C

(2P)'

+ Ioj~
Here (e "] are the eigenvalues of 0 k, and P is the ef-
fective coupling which results from the iterated decimation
precedure. The remaining integral is precisely the partition
function of a d-dimensional x-y model. A similar decima-
tion procedure, now applied in a spacelike direction, may be
used to bound the final integrals. Finally, one must bound
from below the original partition function in the denomina-
tor. This may either be done directly, or one may use a
variant of the decimation technique which yields lower
bounds instead of upper. Eventually, one finds the bound
(12) where ri( T ) is a complicated but explicit function
which decreases as T ' as T ~. An essentially identical
procedure is used to evaluate (11) and one finds
K(T)=0(T "")as T- ~.

Instead of using the magnetization (5) as a confinement
criterion, one may alternatively choose to study the
electric-flux free energy. This measures the change in free
energy due to a topologically nontrivial sheet of electric flux.
The same technique described here can be used to bound
directly the electric free energy. 'o This actually yields a

I

slightly better bound on the critical temperature. [One can
also prove in general that the electric free energy is bounded
by the quark-antiquark potential, Fg'"/L, ~ F~~ (x)/~ x ~.

' ]
For simplicity, we have restricted ourselves to the sim-

plest non-Abelian gauge theory, SU(2). For discrete Abeli-
an Z(W) theories, a similar approach may easily be success-
fully applied. For general SU(%) theories, although the
physics and overall strategy are the same, technical compli-
cations arise due to the fact that a much more elaborate set
of projections for decomposing the configuration space of
timelike links is needed. %e have not attempted to carry
this out in detail.
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