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Global-operator perturbation theory for a self-interacting boson system
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We consider a single-mode self-interacting boson system with an arbitrary interaction. The Van Vleck-
Primas operator perturbation theory can be used to obtain the perturbative solutions to any desired order
in closed form. In contrast to ordinary perturbation theory, which deals with each state individually, the
present method is global and treats all the states in the spectrum collectively. The solution process in-
volves the systematic application of four basic rules.
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and the rest of the f&'s are zero. For the model Hamiltoni-
an studied by Taked and Ui, the Hamiltonian is

We consider a single-mode self-interacting boson system
with the following Hamiltonian:

H =H, (N) + Xd[y„(N) a'+H. c.],
jj

where only a finite number of the functions f» are nonzero,
a and a are the annihilation and creation operators, and
N = a a is the number operator. The often-studied problem
of the anharmonic oscillator and the recently studied model
Hamiltonian by Takeda and Ui with special cubic and quar-
tic self-interactions, both in the weak-coupling and strong-
coupling limits, as well as many higher-order self-interacting
systems, all fall into the category of Hamiltonians that can
be represented by Eq. (1). Specifically for the quartic
anharmonic oscillator, we have

E = g(Ep)

U, H; and g =g(Hp) are related by

(6)

Vleck'-Primas' operator perturbation theory (VVP OPT).
This procedure involves the repeated application of four
rules: (i) normal ordering, (ii) contraction, (iii) computa-
tion of commutators, and (iv) solution to operator equa-
tions in closed forms.

VVP OPT (Refs. 2—4) seeks perturbative solutions to the
Van Vleck operator U that takes the unperturbed state to
the perturbed state and to the operator g that maps the un-
perturbed energy to the perturbed energy. Whereas the or-
dinary Rayleigh-Schrodinger perturbation theory deals with
each state in the spectrum individually, VVP OPT is global
and treats the whole spectrum collectively. Moreover, it
does not even require knowledge of the unperturbed wave
functions. Let Hp and H = Hp+ g,X'H„where only a finite
number of H&'s are nonzero, denote the unperturbed and
total Hamiltonians of a system and let (ilip, Ep) and (p,E)
denote the corresponding eigenfunctions and eigenvalues.
Then (i]ip, Ep) and (P,E) are related through the mappings

(5)

HT" = (a'+via'ai) (a +Tlaa)

In the weak-coupling limit (Tl 0), X=Tl, and

(3) UgU =0
U is unitary and one can define a Hermitian matrix A such
that

0TU, S'

fTU, W N

f" =N(N —1)

In the strong-coupling limit (q ))1), X = I/Tl, and

(3a) U = exp(i A)

(3c)
A = Xh."Ak

k 1

(3b) The perturbation expansions of A and g have the form

(8)

HTU s Tl2(N N)

fTU, S

fTU, S

(41)

(4c)

g= Xdg, .
j-0

(10)

On substituting Eqs. (9) and (10) into Eq. (8), we obtain

The rest of the f~'s are zero. Thus a study of the general
solution to the Hamiltonian in Eq. (1) would be of interest
in the study of a wide range of problems, ranging from
atomic and molecular physics to particle physics.

I would like to show that a global perturbative solution to
the Hamiltonian in Eq. (1) can be written down in closed
form to any arbitrary order by the application of the Van

oo OO

gz~ gr„„=H,+ X~'H, ,
0 n 0 i 1

where
pk 1r„=n!j

n —1

j —11

X [iA„, , [ [iAJ, ~,,g~,]]]
jG 0

(12)
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Equation (11) can be rewritten in the hierarchical form

(13)

where Eq. (14a) has been used. The solution for Ak to Eq.
(17) is given by'6

Ak = lim J exp(iHpt) Vpexp( —iHpt et—) dt . (18)a~0+

go=Ho,

g)+[iAt, gp] =H)

and for k ~2,
k —i k

gk+[lAk, gp] =Hk X [tAt.gk —i] XI ik
J~i j~2

(14a)

(14b)

(14c)

gk+ [tAk Hp] I k + ~k (15)

We immediately note the following: (1) The operator equa-
tions in the hierarchy are linear. (2) The right-hand side
(RHS) of the kth-order equation is known once the equa-
tions earlier in the hierarchy are solved. (3) The kth-order
equation is similar in form to the first-order equation except
that the effective first-order perturbation involves more
terms; however, because of the linearity of the operator
equation, this presents no difficulty, in principle. (4) The
solution to gk is obtained by taking the diagonal part of the
kth-order equation. (5) Ak is determined up to an additive
function of operators that commute with Ho. Its unique-
ness cpn be fixed by the requirement that this additive func-
tion be zero. We now turn to the general solution of the
kth-order equation:

a "f(1V) =f(N +n) a" (19a)

f(N)a™=a f(N+m) (19b)

Rule II: All operators involving the simultaneous appear-
ance of a's and a 's must be contracted (for m ~ n) accord-
ing to the relations

With gk and Ak thus obtained, one then moves to the
(k+1)th-order equation and so on up the hierarchy until
singular behaviors show up in Eq. (18). If this situation
never develops, then in principle VVP OPT can be used to
solve bound-state perturbation problems globally to any
given order.

In practice, this integral in Eq. (18) is not easy to evalu-
ate. However, for the class of Hamiltonians represented by
Eq. (1), the solutions to the operator equation (15) are
most easily obtained by taking advantage of the Lie struc-
ture' among the operators a, a, and %=a a. The entire
solution process for each equation in the hierarchy involves
the systematic application of four rules.

Rule I: All operators need to be normal ordered accord-
ing to the relations

where we have decomposed the RHS of Eq. (14c) into a di-
agonal part Vk and an off-diagonal part Vk. According to
remark (4) above,

(16)

and

¹!
mf(N) n ( )m n -~ f(N )(N —n)!

nf (N) am ~ f(N a) am —n¹!
(N —n)!

(20a)

(20b)

[iAk, Hp] = vkp, (17)
I

and Ak is obtained by the solution to the linear operator
equation: Rule III: After normal ordering and contraction have

been performed, all of the commutators encountered can be
computed as given below (for m ~ n),

[a™f(N),a "g(N)] =(a )m+"[f(N+n) g(N) —f(N) g(N+m)]

[f(N)a",g(N)a ] = [f(N) g(1V +n) —f(N+m) g(N)]a" +

(2 la)

(21b)

[f(N)an, a mg(N) ] = (a ) m —n (N+m)! f(N +m —n)g(N) — ' f(1V —n)g(N —n)
¹!

(N +m —n)! (N —n)!
(21c)

and

[f(N) a, a "g(N) ] =—(N+m)! g(N+m —n) f(N) — ' g(N —n) f(N —n) a¹!
(N + m —n)! (N —n)!

(21d)

In Eqs. (20) and (21), the factorial sign is conveniently used
for

of two forms and the corresponding solution can be ob-
tained as follows:

(N+m)! "g(N+ .)(N+m —n)! t p
(22) [A,g(N)] =f(N)am A =f(N) [g(1V +m) g(N)] 'a-

(23a)

Rule IV: After the RHS of Eq. (14c) has been computed
according to rule III, it will appear as a sum of normal-
ordered terms. Because of the linearity of Eq. (14c), its
solution is the sum of the solutions corresponding to each
normal-ordered term on the RHS which appears only in one

and

[ag(N) ] = a"f(N)
~ B = —a™f(N)[g(N+m) —g(N)] ' (23b)

Thus, the solution to each equation in the hierarchy can
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be obtained by the systematic application of rules I to IV.
On examining Eq. (14), we note that the unperturbed Ham-
iltonian Ho corresponds to the function g(N) that appears
in Eq. (23). Hence, if Ho(N) exhibit degeneracy, that is, if
there exists a pair of numbers (n, n+m), where both n and
m are positive such that Ho(n) and H o(n+m) are equal,
the solutions to A and B in Eq. (23) may be singular. How-
ever, if f(n) vanishes [it is not necessary that f(n+m)
vanishes] the singularity may be avoided. The model Ham-
iltonian of Takeda and Ui in the strong-coupling limit is
such an example. We now apply the present technique to
the quartic anharmonic oscillator and the Takeda-Ui model
Hamiltonian.

Example I: The quartic anharmonic oscillator. The pertur-
bative solutions to the Van Vleck operator and the level
shift operator are calculated via Eqs. (14) and rules I—IV.
We state the results to second order:

g Ao = —(2N2+2N+ I)
g" =

8
(2N+1)(17N +17N+21)

(24a)

(24b)

A" = [a +4a" (2N+3)]+H.c.
16

(24c)

pAO
48 32

a (2N+5)

a (22N +66N+57) +H.c. (24d)

gTU, W 0

gTU W 2X
AT""= i(a'N Na), —

(25a)

(25c)

For the case of the ground state (N=0), the first- and
second-order energy shifts are in agreement with the
Bender-Wu calculations. Hence VVP OPT appears to face
the same convergence difficulty associated with the quartic
anharmonic oscillator.

Examp(e II: Tpie mode! Hamiltonian of Takeda and Ui (Eq.
(3)J for a sing/e mode self interact-ing bo-son system in the
weak coupiing lim-it We substitute Eqs. (3a) —(3c) in the
hierarchy 0f Eqs. (14), and obtain the results to second or-
der:

(4a) —(4c) in the hierarchy of Eqs. (14). We state the
results for the shift operator to fourth order and for the Van
Vleck operator to third order:

gTUs 0 for i =123
rU, s I N(N —I)

8 (2N+1)(2N —3)

A)TUS i(a a)
2

(26a)

(26b)

(26c)

AP = [a(2N+1) ' —(2N+I) 'a]
8

AP = {a [(2N+3)(2N+1)]
16

—a (N —1) [(2N+1)(2N —1)] ']+H.c.

(26e)

Our result for g4 agrees with that of Takeda and Ui. ' It is
interesting to observe that for this model Hamiltonian, the
perturbation does not exceed the unperturbed term in the
asymptotic region (when written in terms of x and p) in
contrast to the anharmonic oscillator. Thus, one has good
reasons to expect that the perturbation expansion for the
energy is a convergent one. The present method provides a
convenient way to calculate this energy perturbatively.

The three examples presented in this Brief Report
represent certain particular choices for the functions FEp(N)
and f~(N) in Eq. (1). The possible choice for these two
functions is, of course, limitless. However, the rules for
carrying out the perturbation calculation have been clearly
laid out. As the examples given in this paper have shown,
we just require the systematic applications of rules I-IV
given in Eq. (19)-(23).

Extension to higher order is straightforward in all cases.
The present method can be extended to multiboson systems
with mutual and self-interactions. If the interactions intro-
duced do not couple among degenerate states, it is simple to
develop the rules analogous to rules I-IV for the multibo-
son systems, especially when the unperturbed Hamiltonian
for the multiboson system is a well-behaved function of the
number operators of the individual single-boson systems.
The resulting rules can definitely be applied to any nonde-
generate states of the multiboson system even though the
system exhibits degeneracy.

AP =0 (25d)

These results are in harmony with those of Takeda and Ui.
Example III: The Hamiltonian in example II in the strong-

coupling limit. Here, the energy shift operator vanishes for
the first, second, and third orders. We substitute Eqs.
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