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Of the two possible types of initial singularity in the Tolman model, one is merely a locus of she11-

crossing points which we characterize here in terms of a surface energy tensor, with well-defined energy
density, which satisfies an intrinsic strong energy condition. Thus characterized, the surface is not accept-
able as an inhomogeneous generalization of the standard big-bang singularity.

Shell-crossing singularities, naked examples of which are
known to develop in a wide variety of circumstances, are
generally considered to be unphysical since they probably
represent mere artifacts of the continuum approximation. '

Moreover, such singularities produce negligible tidal forces
on neighboring particles. A locus of shell-crossing points
would, therefore, not be acceptable as a singularity of the
type envisioned for the big bang. It is the purpose of the
present remark to point out that, of the two possible types
of initial singularity encountered in the Tolman solution
(the simplest solution of the Einstein equations which exhi-
bits shell-crossing behavior, and which can be considered an
inhomogeneous cosmological model), one is a locus of
shell-crossing points that can in fact be described in detail
by means of a surface energy three-tensor, with well-
defined energy density, which (just) satisfies an intrinsic
strong energy condition.

Eardley and Smarr have given an extensive discussion of
the singularity structures in the Tolman models by use of
Cauchy time functions which involves a "mean" extrinsic
curvature to spacetime slices. The present remark is distinct
from this analysis since we are concerned here with the de-
tailed intrinsic structure of a specific type of singularity, the
locus of shell-crossing points.

The Tolman (spherical dust) solution, in synchronous
co-moving coordinates, is given by

8 = 0 and R'= 0 are distinct scalar polynomial singularities
(away from r =0, where they intersect6). In a cosmological
context, one labels these surfaces by their equation for t(r )
and takes the maximum, at a given r, to be the (inhomo-
geneous) big bang of the model. Here we are interested in
the (partial) three-surface (X):

A'=0, 8 &0, r &0,

which, according to Eq. (1), is timelike.
We treat X as a thin she113 with flat interior and take

(8, $,t) as the coordinates intrinsic to X. Following Israel,
the Lanczos equations, which describe the surface energy
three-tensor S„., reduce to

Svr Sg = g~~E —Eg

where K,~ is the extrinsic curvature three-tensor of X, g~ is
the metric intrinsic to X [given by the metric (1) with
R'=0], and K =—g'JX,~. The flat interior induces on X the
proper surface density cr with

which, from Eq. (1), reduces to'

ds2= — dr +8 d 0 —dt

where dA =—d8 +sin 8dg, f =,f(r) ) 0, R =R(r r),
and a prime denotes 8/dr Revolves ac.cording to

R =f —1+—+2 2m AA
A 3

where m =m(r) and an overdot denotes 8/Br The density.
is given by p, where

Moreover, from the intrinsic metric and Eq. (5) it follows
that

Sgu Q~=
2 9 Q)S
1

so that for an ideal fluid three-tensor S& the surface pres-
sure I' reduces to

I4mp= P = —o./2

We assume that m'(r) ) 0 for r ) 0.6 Both the surfaces In summary, we have shown that the surface X defined
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by (4), which is a locus of shell-crossing points, though ex-
hibiting poor C behavior (as demonstrated by the four-
scalar p), has a well-defined C' structure (as shown by the
behavior of the three-scalar a. ). In contrast, the singulari-
ties R =0 do not have a well-defined C' structure (e.g. , in
terms of a surface density). In a cosmological context, X is

not a suitable initial surface (i.e., generalized "big bang").
Rather, X could be interpreted as a bubble boundary (e.g. ,
between dust and, say, vacuum) as detailed above.
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