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The model-dependent contributions to the parity-violating electron-nucleon interaction arising
from yZ box diagrams are discussed on the basis of a formulation in which the hadronic parts of
the amplitude are treated exactly ab initio. This leads to a derivation of general properties and
more refined estimates of these effects. A method to take into account the large-distance part of the
hadronic contributions to the yZ mixing diagrams using experimental information on
e++e ~hadrons is briefly discussed. Predictions for the C;& (,i =1,2, N=p, n) are updated tak-

ing into account the more detailed estimates of this paper.

I. INTRODUCTION

The investigation of atomic parity violation has been
the subject of considerable interest during the last several
years. ' On the theoretical side, a number of studies have
addressed the problem of evaluating the one-loop correc-
tions to the parity-violating electron-nucleon interac-
tion. In particular, Ref. 5 presented detailed expres-
sions for the radiative corrections to the effective
electron-quark couplings C;„,C~~ (i=1&2) in terms of the
p-decay coupling constant G& and sin 0~(m~) defined by
modified minimal subtraction (MS). We recall that the
constants C~„, C&d govern the contributions involving vec-
tor hadronic and axial-vector leptonic currents
[(V")p,(Aq)t for short] while Cp„, Cpd are the effective
couplings of the (A")h(V&)t interactions. It was pointed
out in Ref. 5 that uncertainties due to the strong interac-
tions are expected to be small in the (V")t, (A&)t terms
while they are potentially significant in the (A")p, (V&)t
contributions. However, the analysis of Ref. 5 was based
on simple quark-model calculations. While such calcula-
tions give an accurate description of the short-distance
contributions, as can be verified by applying the current-
algebra formulation of radiative corrections in the frame-
work of asymptotically free theories of the strong interac-
tions, there is no particular reason why they should pro-
vide a suitable basis for discussing the long-distance,
model-dependent effects.

The aim of this paper is to examine in greater generality
and detail the model-dependent contributions associated
with yZ box diagrams (Fig. 1) and yZ mixing graphs
(Fig. 2). In particular, our discussion of the yZ box con-
tributions is based on a formulation in which the hadronic
parts of the amplitude are treated exactly ab initio, a fact
that allows us to obtain general properties of these contri-
butions without appealing to particular hadron models.
In that way we find explicitly in Sec. II that the graphs in
Fig. 1 lead to three classes of contributions: (a) long-
distance Coulombic corrections, which can be disregarded

because they are part of the effects associated with the
bound-state wave function already included in the treat-
ment of the lowest-order amplitude, (b) terms of
O(am, /mh) which we neglect (mh is a hadronic mass),
and (c) terms of O(a). For the latter contributions, we
find a rather important general property: they are
suppressed by a factor sin 8~——„(which is small since
sin 0~-0.215+0.014) in the (V")h (A„)i contributions but
not in the (A")h(V&)t terms. This property was already
noted in the quark-model calculations, but it is establish-
ed here without appealing to any model of hadron struc-
ture. The O(a) terms are then estimated in Sec. III by
calculating the short-distance part and approximating the
long-distance part by the Born amplitude for a physical
nucleon. In Sec. IV we discuss briefly the hadronic con-
tribution to the yz mixing diagrams in Fig. 2. In analogy
with similar discussions in Refs. 8—10, we describe a
method for eliminating the dependence on light-quark
masses by using experimental information regarding the
hadronic vacuum-polarization functions. It is interesting
to note that, aside from the contributions of Figs. 1 and 2,
the O(a) corrections to the (V")h(A&)t terms are essential-
ly unaffected by the strong interactions. Therefore, the
more general and detailed analysis of the model-dependent
terms carried out in this paper provides a stronger theoret-
ical basis for their formulation. In Sec. V we use the esti-
mates of the model-dependent terms to update the
SU(2)LO&U(1) predictions for the C& (i=1,2, X=p, n)
which parametrize atomic parity violation. Finally, we
conclude in Sec. VI with some comments about our re-
sults.

II. yZ BOX DIAGRAMS: GENERAL PROPERTIES

For vanishing momentum transfer between the initial
and final electrons, the sum of the amplitudes in Figs. 1(a)
and 1(b) can be written in the 't Hooft —Feynman gauge as
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(a) (b)
FIG. 1. yZ box diagrams contributing to the electron-nucleus

interaction.

(a) (b)
FIG. 2. yZ mixmg diagrams.
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where l, p, and k are the lepton, hadron and photon four-
momenta, a+ ——(1+y5)/2, e = —, —s, e+ ———s (c and
s are abbreviations for cos OII and sin 0~) and

T""(kp)= f d x e'"'"(p,f i
T[J~y(x)Jz(0)] ip, i) . (lb)

1 0
(2d)

In Eq. (lb) ip,i) and ~p,f) stand for initial and final
hadron states and J~& and Jz denote the hadronic currents
coupled to A" and Z, respectively:

J r =Wy "QIt

JZ ——
2 A' a C3$ sA "Qg—, (2b)

where P =(u c t ds b), a summation over the color de-
grees of freedom is understood, and

—1 0

(2c)

0 ——, 1

0 —1

Vp/pV v gyp V v gpvgp+gpvgp E ~ppv~P (3)

where eo)23 —1, Eq. (la) can be cast in the form

are 6&(6 matrices acting on the flavor degrees of freedom
(1 and 0 are the unit and null 3 && 3 matrices, respectively).
In writing down Eqs. (la) and (lb) we have chosen a per-
turbative scheme in which, to zeroth order, the electron
and nucleus are treated as noninteracting particles. Using
the Dirac equation for the electron and the identity

i — e I —T""(kp)g 2 d k v 1 1

C (2'�) k k —m

&(u,
1

k'+2l-k
1

pyv +g/lv+ vyp)
k —2l k

+ 2 +1 1

k —2l k k2+2l k
pyz+Iepp k y y5) (e a +@+a+)u, (4)

As we will see later in greater detail, as k —+0,
T""(k,p) ~k '. As a consequence, potential infrared
divergences can only arise from terms with numerators of
O(k ). The only such contribution in Eq. (4) is the term
proportional to 2l&y and we see from the structure of its
cofactor that the associated infrared-divergent contribu-
tions cancel. Thus Eq. (4) is free from infrared diver-
gences. Combining

(k' —2l.k) ' —(k'+2l k) —'

=4l.k(k +2l k) '(k —21 k)

we note that the terms proportional to 2l&y and
key —kg~„+ k y& are formally proportional to the lep-
ton momentum. At this stage it is convenient to separate
out the term of O(k ') in T" (k,p):

Tpv(kp)T(I)pv(kp)+T(II)p1/(kp) (Sa)

where, by definition, T" ()k,p) contains all terms of
O(k ') as k~0. Elementary power counting shows that
the contribution of T' &"n(k),p) to the terms proportional
to (k&y„4'g„+ k„y&)2l ka—nd 21„y in .Eq. (4) are of
order O((m, /mI, )ln(mI, /m, )) or O(m, /m), ), where mh is
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a hadronic mass. Therefore, the contribution of
T'"'&"(k,p) to those terms is greatly suppressed and hen-
ceforth will be neglected. On the other hand, T'""'(k,p)
can give non-negligible contributions to those terms be-
cause in the limit l~0 the k-integral diverges linearly in
the small-k region. Thus, we may expect that the contri-
butions of T' '" (k,p) to the integrals proportional to
21&y and (key„—4'g„+ k y&)2l. k are indeed of 0( l )

and, therefore, not suppressed W. e will now show, howev-
er, that if terms of 0 (m, /mp, ) are once more neglected,
these particular T' '"" contributions can be identified (to
the order of our calculation) with the long-distance
Coulomb interaction between the nucleus and the electron.
We recall that the terms of 0(k ') in T""arise from the
Born approximation insertions of J&

and Jz in the exter-
nal legs of the nucleus (Fig. 3). As a consequence, we can
write

T' '" =i2Zpl'I v 1 1

k +2p.k+ie k —2p.k+ie

(5b)

where Z is the electric charge of the nucleus. Inserting
the first term of Eq. (5b) into Eq. (4), the d k integration
for the terms proportional to (key, —Ijrg&„+. k„y„)2l.k

2——~——k

p+k

(a) (t)
FIG. 3. Born-amp1itude contribution to T ~ in Eq. (1b)

1 1+
2M~ko+ig —2M~ko+i e

im.5(k0)

M~
(5c)

Indeed, the error resulting from this approximation is of
0(m, /ml, ). In this way we find that, with the neglect of
0(m, /M~) terms, the contribution of T'"~ (k,p) to the
terms proportional to (k&y„—Ig'g&„+ k,yz)2l k and 2l&y
in Eq. (4) is given by

and 2l&y„can be exactly evaluated. However, since the
terms of 0(l ') in the integration arise from the region
k &&M~ (M~ is the nucleus mass) it is more instructive to
apply in the nucleus rest frame the approximation"

1 1+
k +2p k+ie k —2p-k+ie

2

i g— , (pf ~jz~pi)

X 5(k0) 210 u,'y (e a +@+a+)u +u,'d k 1, 0

k'+» k

koy —@go +k.yo
(E 0 +E+Q+ )Qe . (5d)

k +2l-k

Equation (5d) has a simple physical interpretation: if we consider the interaction mediated by Z-boson exchange between
the plane wave electron and the nucleus [Fig. 4(a)], an elementary calculation shows that ~' represents the corrections
associated with the initial and final Coulomb interactions between the nucleus and the electron [Figs. 4(b) and 4(c)] in
the limit of very large nuclear mass. In the usual treatment of the Z-mediated lowest-order electron-nucleus interaction,
the electron is represented by a bound-state wave function rather than a plane wave. Such bound-state wave functions
reflect, of course, the interaction of the electron and nucleus to all orders in the Coulomb interaction. Thus, we avoid
double counting by simply disregarding the contribution of M . In summary, we have shown that the terms proportion-
al to (k&y„—k'g& + k,y&) and 2l&y in Eq. (4) give rise to contributions which can be identified with the long-range
Coulomb interactions already included in the bound-state wave-function description, and to terms suppressed by factors
of 0(m, /mr, ).

On the other hand, the term proportional to uzi„~k y y5 in Eq. (4) represents a genuine correction of 0(a). Denoting
such terms by A", we see that they give rise to two types of contributions to the parity-violating electron-nucleus in-
teraction:

'2
, (~++~ ), d'k krAI' (k,p) 1 1

(2~)4 k'(I ' —m ') k'+2I k k' —2I.k
2

g z
(~ —~+), ~ d k kr V"'(k,p) 1 1

(2m) k (k —m ) k +21.k k —2l.k

(6a)

(6b)

Az = ——'A' "ysC30

Vz =—4A'"«3 —4&'Q 4'

(7a)

(7b)

where A""(k,p) [V&"(k,p)] is the pseudotensor [tensor] ob-
tained by substituting Jz~Az [Vz] in Eq. (lb) and

are the axial-vector and vector parts of Jz. Although Eqs.
(6a) and (6b) involve two-current correlation functions in
the hadron sector rather than matrix elements of simple
currents, it is clear that ~~' and ~2' give contributions of
the types (V")~(A&)r and (A")~( V&)r, provided we general-
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contributions [terms of O(k ') and O(k )] and in the
case of a physical nucleon, it can be evaluated in terms of
known electromagnetic and weak form factors.

III. DETAILED ESTIMATES OF yZ BOX DIAGRAMS

A. Asymptotic behavior

In the limit g, (k )=0, the asymptotic behavior for
large k of T" can be obtained by an elementary applica-
tion of the Bjorken-Johnson-Low limit or by carrying out
short-distance expansions in the free-field theory. Either
way, one obtains

(c)
FIG. 4. Lowest-order electron-nucleus interaction mediated

by the Z boson and Coulombic corrections arising from an infin-

itely heavy nucleus.

The corresponding asymptotic behaviors of 3" and V"
are obtained by separating out the vector and axial-vector
current operators in the matrix element on the right-hand
member (RHM) of Eq. (8). Thus for A" and V& one re-
places the matrix on the RHM of Eq. (8) by

ize (V")I, and (A")~ to represent hadronic amplitudes
transforming as vectors and axial vectors, respectively,
rather. than matrix elements of local vector and axial-
vector currents. Recalling the values of e and e+, we
note that (e+ +e )/2 = —,

' —s, (e —e+)/2 = —,
' . This

leads to the rather important result that MI' [i.e., the
(V")~(A&)~ contributions of 0 (a) from yZ box diagrams]
are suppressed by a factor —,

' —s . Thus, this inhibition is
not merely an artifact of simple quark-model calculations
or other approximate descriptions of hadron structure, but
emerges here as a general feature. On the other hand, we
see that ~z' is not suppressed by a similar factor.

Considering now the specific evaluation of Eqs. (6a) and
(6b), the general discussion of Ref. 7 and the calculations
of Refs. 2—5 indicate that these contributions give rise to
terms proportional to In(mz /M ) where M is a mass
scale representing the onset of the asymptotic behavior,
i.e., the regime in which the strong-interaction coupling
constant g, (k )/4m becomes small. (We assume in this
discussion that the underlying theory of strong interac-
tions is asymptotically free. ) Moreover, the coefficient of
ln(mz /M ) is independent of the dynamical details of the
strong interactions. The latter do induce contributions of
O(g, (k ) } in the Feynman integrals which lead to further
corrections of O((lnln(mz /M )). On the other hand,
the precise value of M and the constant terms accom-
panying the leading-logarithm contribution are in general
affected by the strong interactions. Thus, the best we can
do for the low-frequency part is to provide an estimate.
The above discussion suggests the following strategy: we
first compute the high-frequency contributions which lead
to the large logarithmic term proportional to ln(mz /M )

and then approximate the low-frequency contributions by
the Born approximation for the case of a physical nu-
cleon. The latter approximation has two noteworthy
features: it correctly describes the very-low- frequency

a(~I')„„= i " (—1 —4s )K(u,'y you, )
2 4'

x&p;f
I A.Qc Nip (9a)

a(~z')„„=—i " X(u,'y u, )
vZ 4~

& &p'f
i
A'a's(QC3 —4&'Q'W

i

p'i & (9b)

where

dK g, (a )Z=mz'
(x +m ) 4 2 (9c)

In Eq. (9c) we have included, following the discussion of
Ref. 7, the lowest-order corrections induced by the strong
interactions in the asymptotic domain. If the O(a, (~ ))
terms are neglected, then

IC=ln(mz /M )+O(M /mz ) .

A method to calculate with good accuracy the integral in-
volving g, (v )/4n is explained in Appendix A and we see
from Table I that, for A—

s ——0.16 GeV, it decreases E by

.&P'f
I
e—3'—g' (QC 4'Q'W —iP' &

respectively. Next, we insert these asymptotic expressions
for A" and V"' into Eqs. (6a) and (6b), respectively, per-
form a Wick rotation and restrict the range of integration
to Euclidean momenta a. )M for which Eq. (8) is ap-
proximately valid. Since lo,

i
1

i «M, we can also set
l=O in the integrand. In this way we obtain for the
asymptotic contributions
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TABLE I. yZ box-diagram corrections as a function of M. For comparison the free-quark-model re-
sult is given in the last column.

M
(GeV)

0.3
0.5
1.0

2

ln
M

11.49
10.47
9.08

—0.85
—0.65
—0.50

10.64
9.82
8.58

12.68
11.86
10.62

12.38
11.56
10.32

l
~z 3
~2

12.99
11.97
10.58

—7.6% if M=0.3 GeV and —5.7% if M= 1 GeV. From
the same table we see that K ranges from 10.6 for M=0.3
GeV to 8.6 for M= 1 GeV. We will adopt %=9.6+1 as a
reasonable estimate of this asymptotic contribution. We
note that Eqs. (9a) and (9b) involve the matrix elements of
hadronic currents constructed from the quark fields.
Therefore, if the effect of strange and heavy quarks is
neglected, Eqs. (9a) and (9b) may be interpreted as contri-
butions to the parity-violating interaction between the
electron and the u,d quarks. Furthermore, if corrections
of O(g, (a )/4n)in E. q. (9c) are also ignored so that
IC=ln(mz /M ), these contributions coincide with the

terms proportional to ln(mz /M ) in Eqs. (2a)—(2d) of
Ref. 5.

B. Low-frequency part

As mentioned before, we will approximate the low-
frequency contribution by the Born-approximation ampli-
tude. We do this for a physical nucleon. The Born ampli-
tudes for A" and V" are given again by Fig. 3, but this
time we keep terms of O(k ) and, furthermore, we insert
the appropriate weak and electromagnetic form factors at
the vertices. A detailed calculation leads to

Gp(m,")2)= — " 16ma(1 —4s')(u,'y you, )(u NypuN)(gp'p ~—& ),
2

P —~ a pP(~z')2) = — " 16+a(u,'y u, ) (u Nypy5uN)(g~Qp —Qa) — E„~u Nc7 uNR z~2 ltd~

(10a)

(10b)

where the subscript B on the LHM reminds us that we are considering the Born amplitude and

d4k k Pk g(N)(k2)G(N)(k2)

(2m. ) (k +2p k)k

d4k ki'k. G' '(k')
QP f ™

[G v(N)(k2) 4 2G(N)(k2))
(2m) (k +2p k)k

d4k k~k
IG(N))Gv(N) 4 2G(N)]+4 2F(N)G(N) & y(N)Gv(N)+G(N)Fv(N)~~

(2 )4 k4(k2+2 k) M M M ) M z 1 M M

In Eqs. (10c)—(10e), G~'(k )=F) (k )+2mNF2 '(k ), F '(k ) (i=1,2X=p, n) are the standard nucleon electromag-
netic form factors, GM' '(k ) is the isovector contribution to GM '(k ) normalized so that

GM GM
V(p) V(n) (p) (n)

~V(p) ~V(n) ~(p) ~(n)
r

g(P)(k2) g(n)(k2) (k2)

(10c)

(10d)

F(N)(k2) F(N)(0)(A2/A2 k2)2

with A =0.83mN and approximating g((k ) =g)(0)(A /A —k ) with the same A, the integrals in Eqs. (10c)—(10e) be-
come proportional to

where g)(k ) is the usual axial-vector form factor and p& and mN are the nucleon momentum and mass, respectively.
For brevity we have not indicated explicitly the k dependence of the form factors in Eq. (10e). Employing the dipole
parametrization

p d4k A
(Zn. ) k (k +2p k) A2 —k

which is evaluated in Appendix B. Explicitly,

(10f)
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P
(Iz) =

2 Az(r)g —Bz(r)p i p P 5'a

16m. Pl~
(10g)

where r =—A /mN and Az(r), Bz(r) are given in APPendix B. Numerically, Az(0. 83)=0.2436, Bz(0.83)=0.2006. Insert-
ing these expressions into Eq. (10a) and using the nonrelativistic approximation for the nucleons, we find

iGp
(mI')B ——— "322(r)—(1—4s )g) '(0)GM '(0)(u,'y you, )(u Ny uN) .

2 7T

Setting

gI )(0)= —g')"'(0) =1.25, GM'(0) =2.79, GM'(0) = —1.91:

iGp ~(~I')B ——— " —(1—4s )(u,'y yqu, )(u Ny uN)(g()B ',
2 7r

where

(g, )I'=2.55, (g, )B'"'=1.74.

(1 la)

(1 lb)

Combining Eq. (11b) with the corresponding asymptotic contribution in Eq. (9a) we find in the case of the physical nu-
cleon

iGp ~ ( )(N)

(ml')„„+(~I')B=— " —(1—4s )(u,'y you, )(u Ny uN)(g'))' y' K+ (N) (1 1c)

where (g)),'By= —, and (g)),'",y= l. The contribution of Eq. (11c) to the nucleon parity-violating coupling C» is simply ob-

tained by dropping the iG„/~2—factor. Comparison of Eq. (11c) with the results of Ref. 5 shows that in passing from
the free-quark-model calculation to the more detailed analysis of the yZ box diagrams carried out in the present paper,
the difference in the evaluation of ~I' lies in the replacement ln(mz /M ) + —,~K+ (g))B '/(g)),' y'. These quantities
are tabulated in Table I. We see that for a given value of M, the present calculation of this amplitude is very close to the
free-quark-model result of Ref. 5. This is mainly due to the dominant role of the leading-logarithmic term ln(mz /M )

in both calculations and the fact that, although the two approaches treat the low-frequency parts quite differently, the
constant terms that emerge are not far apart. An important feature, as stressed before, is the suppression factor (1 —4s )

which diminishes the effect of the uncertainties associated with this amplitude.
Performing a completely analogous analysis for (Mz')B, we find

iGp(~2 )B (u y u )(u Ny ysuN ) I [Az(r) —Bz(r)]Gpss'(0)[GM '(0) —4s GM '(0)]
2 7T

+3 (r)[F', '(0)G ' '(0)+G' '(0)F, ' '(0) —8s F', '(0)G' '(0)]I .

Setting

GM'~'(0) = —GM'"'(0) =4.70, FI"'(0)= 1, F')"'(0)=0, F) '~'(0) = —F( '"'(0)= 1

leads to

iGp ~(~2')B ——— " —(u,'y u, )(u Ny y5uN)(gz)B ',
2 7T

(12b)

where (gz)I'=2. 389—6.776s =0.932 (for s =0.215) and (gz)B"'——0.8513—0.6275s =0.716 (for s =0.215). Combina-
tion of Eqs. (9b) and (12b) leads, in the case of a physical nucleon, to

—iGI(~2 )asy+(~2 )B (u e3 ue)(u Nl al 5uN)[(kZ)asy++(kz)B
2 7T

(12c)

where

(g'2)',~y-0. 935 ( —,——,s ) —0.36 ( —,——,'sz)

=0.135,

(gz),'",y- —0.44 ( —,——,s )+0.765 ( —,——,s )

=0.0426 .

(12d)

As explained in Ref. 5, the numerical coefficients 0.935,
0.36, etc., in Eqs. (12d) and (12e) reflect the fact that the
nucleon matrix elements of axial-vector current operators
such as uyay&u and dyayzd involve SU(3) Clebsch-
Cyordan coefficients and are further affected by the contri-
bution of the axial-current anomaly. ' We note that in
Eq. (12c) (gz)B

' is considerably larger than (gz) sy'. Indeed,
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in this case the "low-frequency contribution" (gz)PP' is of
the same order of magnitude as the "leading-logarithmic
term" (gz),',„'X. Thus, in the case of the ~z amplitude,
the present analysis leads to a result quite different from
the free-quark- model calculation, in which the expression
between the square brackets of Eq. (12c) is given by
(gz)'„„'[ln(mz /M ) + —', ].' For practical applications,
using X=9.6+1 we will adopt

4 asy 4 I
and

(g~)',",yK+ ( g~ )g"' = 1.1+0.1

as our estimates of the square brackets in Eq. (12c).
comparison, for M =0.5 GeV the free-quark-model calcu-
lation gives 1.5 and 0.48 for the proton and neutron cases,
respectively.

In the above considerations we have combined the
asymptotic contribution arising from Euclidean momenta
a &M (Sec. IIIA) with the low-frequency part (See.
IIIB), where the virtual momenta are suppressed by the
factor [A /(A + ~ )] [cf. Eq. (lofl]. It is interesting to
ask whether it is possible to relate the "infrared cutoff M"
of the high-frequency contributions to the "ultraviolet
cutoff A" of the low-frequency part by means of a plausi-
ble physical criterion. We first note that integration over
the range M &v & oo in Eq. (9c) is essentially equivalent
to the substitution sc ~~ + M in the photon propagator
and integration over the full range 0&x & co. Indeed, to
zeroth order in g, /4m, both methods of treating the
asymptotic contribution differ by negligible terms of
O(aM /mz ). Now (a +M ) '=(a )

' —M /(M
+~ ). Thus, our introduction of the "infrared cutoff M"
is equivalent to subtracting the asymptotic integral regu-
lated with the factor M /(M +a. ). A possible criterion
to relate M and A is to demand that the slope at x =0 of
the factor [A /(A +~ )], which regulates the low-
frequeney contribution, coincides with the corresponding
slope of the factor M /(M +~ ), which regulates the part
subtracted from the asymptotic contribution. This pro-
cedure leads to M =4A or M=A/2=0. 43 GeV. It is
a reassuring fact that this plausible criterion leads to a
value for M that lies well within the range 0.3(M &1
CxeV used in the estimates of Sec. III A.

IV. HADRONIC CONTRIBUTIONS TO
yz MIXING DIAGRAMS

At zero momentum transfer, appropriate for the present
applications, the quark-model calculation of the graphs in
Fig. 2 depends logarithmically on the quark masses. A
method to avoid such dependence in the corrections to the
tree-approximation relation musing~ ——ma/(@26&) was
carried out in Ref. 8 and, independently, in Ref. 9. A
similar procedure for yZ mixing diagrams was suggested
in Ref. 10. In this section we briefly discuss the im-
plementation of that idea.

The diagrams in Fig. 2 involve the tensor

II~rz(q)=i J d qe'~ "(0
~

T*['J(~rx) Jz( )0]
~

0) . (13a)

II "z(q) =(—,
' —s')ll I ~(q) — 111"=o(q)+II '""(q),

(13c)

where 11~1"
~ [II~t o] is the tensor obtained from Eq. (13a)

by replacing both current by the isovector current
J&=' ———,

'
(u y&u —d y&d) [isoscalar current J&=

= —,
'

(u y&u + d y&d)]. The remaining term II '""(q) in-

volves various bilinear combinations of J&=,sy&s, cy&c,
etc. If, following Wetzel, we assume that QCD annihila-
tion diagrams in II '&"(q) are unimportant:

1 1II '""(q)=—
3 4

s ~ 1 1II","(q)+———
3 '

3 2
4 2

11~"(q)

(14a)

where II"," (II",") is the tensor obtained from Eq. (13a) by
replacing both currents by sy I"s (c y "c) and the ellipses in-
dicate terms associated with higher mass flavors (b, t. ..).
Clearly, relations analogous to Eqs. (13c) and (14a) hold
under the same assumption for Ilrz(q ). Therefore

II z(q )=(—,
' —s )III=i(q ) — Ilz=o(q )

+ ———— 11,(q')
3 4 3

1 1+—
3 2

4s2
CII (q )+. ~ ~ . (14b)

The yZ mixing amplitudes involve the polarization func-
tions evaluated at q =0 in some convenient renormaliza-
tion scheme. Consider, for example, III ~(0). To bypass
the dependence on the u, d quark masses it is convenient
to write

11, ,(0)= 11, ,(0)—II, , ( s)+ II, , ( —s), (15a)

where we choose —s to be a very large spacelike momen-
tum. For the first two terms we have the dispersion rela-
tion

—s ZI =i(s')ds'II,( —s) —II,(0)= I . . . (15b)
12m' s'(s'+s)

where R (s' ) is related to cr(e+e ~hadrons) by
o(s')=R(s')4+a /3s'. The next step is to split the in-
tegral from the two-pion threshold up to s

&
and from s I to

oo, choosing s& sufficiently large so that perturbation
theory can be applied in the range s') s& and s sufficiently
large so that s &~s &. This leads to

Since it is not possible to construct a pseudotensor out of
the single four vector q", only the vector part Vz of Eq.
(7b) contributes. Furthermore, due to electromagnetic-
current conservation, Eq. (13a) is of the form

II~ =II, (q')(q~q —g~ q') . (13b)

Recalling Eq. (7b), separating out contributions which are
bilinear in the u y "u and d y "d currents and using isospin
invariance we have
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II, ,( —s) —11, ,(0)

&'l RI l(s' )ds'

0 g'
1 5

RI l(s l )ln
12~ S)

(15c)

Computing III l( —s) in perturbation theory in the MS
scheme with lM =m w (this corresponds to the renormaliza-
tion scheme in Ref. 5):

masses m„=md -75 MeV and m, =250 MeV, or,
equivalently, ln(m w/m„) = ln(m w/md) =7.0 and
ln(mw/m, ) =5.8. The important point, however, is that
we can circumvent the uncertainty related to the values of
the light-quark masses m„, md, m, by replacing Eq. (16a)
by Eqs. (14b), (15f), and (15g). On the other hand, for the
large-mass flavors one expects perturbation theory to pro-
vide a suitable basis, since the corresponding contributions
II"(0) are dominated by distances considerably smaller
than (AMs)

3 1 sx (1—x)III l( —s) = dx x(l —x)ln4~' fly gr
(15d) V. EXPERIMENTAL IMPLICATIONS

Combining Eqs. (15c) and (15d)

—9 1 sIII l(0) = —ln
12~' 6 m ~

5

18

1
RI l(sl)ln(s/sl)

12~

l RI l(s')
+ c&

12~'
(15e)

Note that in Eqs. (15e) and (15f) we have circumvented
the dependence on I„, md by using experimental
e+e —+hadrons data. Similarly, using Wetzel's estimate

S(f ds'R' (s' )/s'=9. 5
0

Clearly, RI l(sl)= —,'. From the experimental data on
e+e annihilation, Wetzel has estimated that

SIf ds'RI, (s' )/s' = 8

for s
&

——9 GeV with the same result for
SIf ds'R, ,(s' )/s' .

Setting sl ——9 GeV in Eq. (15e), using Wetzel's estimate
and including the QCD corrections discussed in Appendix
C, we find

III l(0) = III P(0) =0. 178

Several experimental groups have already detected or
are preparing to search for parity-violating effects in
atomic transitions. Ongoing heavy-atom experiments
with bismuth, ' thallium, ' and cesium' have observed
atomic parity violation at a level consistent with the
SU(2)I )& U(1) model and attempts to measure such effects
in hydrogen and deuterium are currently underway. "
The latter because of their single-electron structure have
little uncertainty in their atomic-physics calculations.
Hence, very precise measurements of parity violation in
those systems may allow the observation of higher-order
electroweak radiative corrections. The analysis of the
model dependent parts of the yZ box diagrams and had-
ronic contribution to yZ mixing presented in the preced-
ing sections when used in conjunction with our earlier
work provide rather precise SU(2)L XU(1)-model predic-
tions for certain atomic parity-violating effects with little
uncertainty. In this section we present the O(a) correc-
tions to the electron-nucleon parity-violating interaction,
provide numerical predictions, and comment on some im-
plications of our results for the various ongoing experi-
ments.

The electron-nucleon parity-violating (PV) Hamiltonian
(at zero momentum transfer) is conventionally
parametrized as follows ' ':

Gp
HPV ~ (C1Nue 1 p3 5llellN1 NV2

for s l
——(3.5 GeV) one finds by the same procedure

II, (0)=0.292 . (15g)
N=p, n,

+C2N e Yp e+NY ) 5&N) r (17)

In the free-quark-model (FQM) calculation

[IIrz(0)]FQM 2 g (C3fgf —4s Qf )ln(mw/mf),
8a

(16a)

where the sum is over flavors, Qf =—electric charge of fla-
vor f (in units of

~

e
~
), C3f=twice its weak isospin (i.e.,

C3 C3d —1) and mf the corresponding effective mass.
Comparing the contributions of the u, d, and s quarks to
Eq. (16a) with Eqs. (14b), (15f), and (15g) one finds that
the dispersive analysis corresponds in this case to effective

Clp= z ppv[1 —4l~pv(0)sin Ow(mw)] ~ (18a)

pPV ( 1 —4s )[ (gl)B (kl)B ) (18b)

where G„=(1.6632+0.00002)&&10 GeV is the muon
decay constant. The C;N's in Eq. (17) can be obtained to
O(a) by combining our previous calculation in Ref. 5
with the new model-dependent estimates given in Sec. III
for the yZ box diagrams and the phenomenological deter-
mination of the hadronic contribution to yZ mixing made
in Sec. IV.

In the case of C&~ and C~„, we find
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where

cx 3
ppv ——1+ lnc-

8s4
7 3 m~ 3g ln(c /g') 1 in)'

8s 8s mw 8s c —g c

—1 — —4(l —4s )[K+—', (g))g] — (1——9's )[1+(1—4s ) ] . ,5 16 2 2 9 (19a)

a 7a.pv(0) = 1—
2~s

2

+ —, g(C3;Q; —4s Q; )ln +

6 m, 6
ln +—+(—, —4s')(I —4s')[K+ —, (g, )~]

+ ( —, —2s + —,s )[1+(1—4s ) ]
s c

(19b)

ppv =0.9764+0.0057

~pv(0) = 1.0055+0.0030,

C )p ——0.066+0.028,

Ci„———0.4883+0.0030 .

(2 la)

(21b)

(21c)

(21d)

The only large uncertainty resides in C]z and that comes
about primarily because of the 6.5% uncertainty in
sin Ow(mw). Eventually, measurements of m~, mz, and
Z' decay asymmetries should determine sin Ow(mw) to
within a few tenths of a percent; then even C~z will be
very precisely predicted by Eq. (18a).

In the above expressions a=i/137. 036, s =sin Ow(mw)
(defined by MS), c = 1 —s, g =m ~ /mz (m ~

=Higgs-
scalar mass), I,=top-quark mass, Q; =fermion electric
charge, C3;——twice the weak isospin, K is the short-
distance contribution to the yZ box diagram, and (g&)~"
denotes the long-distance yz box-diagram contribution es-
timated using the Born approximation. The theoretical
uncertainties in the above formulas were discussed in Secs.
III and IV; they are numerically insignificant. Other
(presumably temporary) uncertainties reside in the precise
values of s, m„and g that should be employed. For-
tunately, our results are not very sensitive to the probable
range 0.01&(&100 and m, becomes important only if
m, &mw. Of course, the presence of additional fermions
or Higgs scalars would modify the O(a) corrections; how-
ever, their effect can be easily included if required.

To obtain numerical predictions we employ the values
K=9.6+1, (g&)z ——2.55, and (g&)z ——1.74 obtained in Sec.
III and the "effective" light-quark masses m„=md=75
MeV, m, =250 MeV determined in Sec. IV. In addition
we use m, =1.5 CieV, mb ——4.5 GeV, and for definiteness
take m, =36 GeV for the other quark masses in Kpv (the
lepton masses m„m„, and m, are fixed). Then, employ-
ing /=1, mw ——38.5 GeV/sin8w(mw), and the experi-
mental range

sin Ow(mw) =0.215+0.014 (20)

allowed by deep-inelastic neutrino scattering, we find

The quantities C]z and C&d
—=C]z+ C&„———0.422

+0.030 may eventually be measured by experiments em-
ploying hydrogen and deuterium'; however, such mea-
surements are not yet in progress. At present, only
heavy-atom experiments have observed atomic parity
violation. They measure a coherent effect which is pro-
portional to the so-called weak charge Qw where'

Qw(A, Z)=2(A —Z)Ci„+2ZCi~ . (22)

For the three elements so far examined, our results in Eq.
(21) imply

Qw( s3Bi)= —112.1+5.3,
Qw( 8iT1)= —110.4+5.2,
Qw( 8iTl)= —108.4+5.2,
Q w( 5sCs) = —68.9+3 5

(23a)

(23b)

(23c)

(23d)

Qw(Bi) = —140+40,

Qw(Tl) = —155+63,

Qw(Cs) = —57. 1+9.4+4.7+8.2

(24a)

(24b)

(24c)

where the uncertainties are statistical, systematic, and in
some cases an estimate of the atomic-physics theory un-
certainty. To get some feeling as to how precise a com-
parison of theory and experiment can be accomplished, let
us focus on cesium. The first results from cesium became
available last year. ' One would expect that the +9.4 sta-
tistical error quoted above may be substantially reduced
by much longer runs and perhaps the systematic uncer-
tainty of +4.7 will be lowered in the process; but what

where again most of the uncertainty comes from the al-
lowed range in sin Ow(mw) [see Eq. (20)]. Eventually,
these theoretical predictions will be fine tuned to have an
error less than 1%', but how well can experiment do? [We
note that the contribution of C2& and C2„ to parity viola-
tion in heavy atoms is considerably less than 1% in the
SU(2)1 XU(1) model because it is incoherent and in addi-
tion suppressed by a (I-4s ) factor. ]

Presently completed experimental runs have found'
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about the approximate 15%%uo uncertainty (+8.2) in the
atomic theory? That uncertainty stems from a lack of
precise knowledge regarding cesium's electronic wave
function; it would have to be lowered considerably before
parity violation in cesium could possibly be used to test
the SU(2)L, XU(1) at the level of its radiative corrections.
If a significant improvement in the wave function calcula-
tion were possible it would be well worth the undertaking.
In that event, Q~(Cs) might eventually determine ppv
with high precision. At the level of a few percent, ppv is
sensitive not only to the higher-order corrections we have
included, but also to potential new phenomena such as
heavy fermions, Higgs scalars, dynamical symmetry
breaking, etc. At present the cesium result implies

(Thallium and bismuth give larger values for p pv, but also
with big errors. )

We now go on to examine the theoretical predictions for
Cpp and Cz„. Again we rely primarily on the analysis in
Ref. 5 and supplement it with our new estimates for the
yZ box-diagram and hadronic contributions to yZ mix-
ing. It should be pointed out that in the case of Czz and
Cq„ there are other sources of rather large uncertainty due
to strong interactions which we have not tried to improve
on. Those include long-distance contributions to the
charge radii ' and axial-vector-current renormalization as
well as QCD-induced axial-vector isoscalar neutral-
current effects. ' '

We find up to O(a),

ppv =0.83 0'35 (cesium) (25)
l

C2p =0.676ppv[ 1 —4a'pv(0)s ]
2 2

+——0.114(1—4s )+0.184 ln +——(0.144—0.330s ) ln +-cx 1 z mw 1

7T m' m 6

+ + (1—4s )(0.054 —0. 189s +0.282s )+(0.135%+2.389—6.776s )
$2 $2c2

(26a)

Cp„———0.6025ppv[1 —4vpv(0)s ]
2 2

+—0.070(1—4s ) —0.219 ln +—+(0.0914—0. 187s ) ln +-cz mw 1 z mz 1

7T m 6 m 6

(1—4s )(0.030+0.0144s —0.083s )+(0.0426IC+0. 8513—0.6275s )s~ s~c (26b)

where

cx 3ppv=1+ lnc—
4~ 4$4

cx 7
apv(0) =1—

2~$

7 3 mt 3 g ln(c'/g) 1 1ng

4s 4s m 4 s~ c —g c 1 —g
+ +- +

2

3
+ —,g (C3;Q; —4s Q; )ln(m; /m~ )

(26c)

(26d)

and m is a charge-radius cutoff that we take here to be
=0.5 GeV. Using the parameter values employed for C»
above and the range of sin g~ (m ~) in Eq. (20), we obtain

ppv =0.993+0.00

xpv(0) = 1.040+0.007,

Cpp ——0.082+0.030,

Cp„———0.068+0.030,

CpD =Cpp +Cp~ =0.014 0 00
+0.001

(27a)

(27b)

(27c)

(27d)

(27e)

Again, the uncertainty in C&& and Cz„ is mainly due to the
allowed spread in sin 8~(m~) and their sensitive depen-
dence on that parameter. However, these quantities un-
fortunately also suffer from rather intrinsic strong-
interaction uncertainties which are present at least at the
S~o level. Ongoing experiments' with hydrogen are try-
ing to measure Czz,' as yet no results are available.

The quantity CzD in Eq.(27e) is a measure of the axial-

I

vector isoscalar neutral current which is zero in lowest or-
der for the SU(2)L XU(1) model. The prediction given is
entirely induced by higher-order electroweak and QCD
corrections. In addition to the error quoted in Eq. (27e),
there are QCD uncertainties at the level of
+0.002-0.003. Unlike the other parameters that we
have discussed, an experimental measurement of CzD
would directly detect a higher-order effect. For that
reason, CzD seems to be the most interesting parity-
violating parameter accessible to atomic-physics experi-
ments.

VI. CONCLUSION

We have estimated the model-dependent corrections to
the electron-nucleon yZ box diagrams and the hadronic
contribution to yZ mixing. Taken together with our pre-
vious calculation of the short-distance radiative correc-
tions, we now have rather precise predictions for the
electron-nucleon parity-violating interaction. For the case
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when the nucleon amplitude is vector (rather than axial-
vector) our results are very insensitive to strong interac-
tions and thus provide the possibility of experimental
probes of higher-order effects. To avoid atomic-physics
complications, hydrogen and deuterium seem to be the
likely candidates for atomic experiments dedicated to ob-
serving such higher-order corrections. Heavy atoms be-
cause of coherent enhancements and much larger wave
function overlaps are potentially interesting, but only if
theoretical uncertainties in the atomic-physics calculations
can be overcome. In the case of the nucleon axial-vector
amplitude, our results are somewhat clouded by strong-
interaction uncertainties. In any case, the induced axial-
vector isoscalar coupling arises completely from higher-
order effects and it may be measurable in atomic deuteri-
um experiments. The direct detection of this effect with
the predicted sign and magnitude would represent a tri-
umph for the standard SU(2)1 && U(1) model at the level of
its quantum corrections.
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2 2
u3(1C )=-

b3ln(a. /AMs )

where

4b331nin(lC /AMs )

b3 ln (lC /AMs )

N m,. +1 dK2 C()
2 (i)—X

1n(lC /AMs )

c'1'inln(lc /AMs )

ln (x. /AMs )

b3 — ( 1 1 —2XF/3)1

2'
b33 ———

2 (102—38XF/3),1

8~

are the coefficients of the one- and two-loop contributions
to the QCD P function and X~ is the number of quark
flavors with mass (~. We wish to evaluate the second
term of Eq. (9c):

(A4)
M (C (IC +mz )

where M is a mass of 0(l GeV), larger than AMs. We split
the integral into two regions, M & ~ & m, and
m, & ~ ( oo. In the first region we approximate
(lc + mz )

' —+mz and the integral splits into a sum of
the form

APPENDIX A (AS)

In this appendix we discuss a method for evaluating to
good accuracy the contribution involving g, (lc ) in Eq.
(9c). The running strong-interaction coupling constant
a3(lc )—:(lc )/4lr is given by

where m1 ——M, m 2
——Inass of next heavier quark,

mN+1 ——m, and co' and c 1' are evaluated for 2VF ——number
of flavors of mass less then m;+1. Introducing
z = in(lc /AMs ), the integral over this region becomes

(i)
Cp c1 nz

Z2

Zi+1 (.) 111z) +1+1
' +C1

Zl Zi+1

lnz;+ 1

Zi
(A6)

where z; =ln(m; /AMs ).
In the region m, (lc & oo we evaluate co and c1 for the maximum number of flavors (6 in the standard model). In-

troducing again z=ln(lc /AMs ) and defining e'—:mz /AMs ~&1, the contribution from m, &lc & oo is

CpC)0 dz

lr )n(m&2/A&& ) (1+e~ ~) Z

c 11nz

Z2

1

lr(1+m, /mz )

—cpln ln
m,

A—2
MS

—c)[ln ln
177g Ply+ 1]/lnA-

MS
%-

MS

(X) e' dz+—I [c()lnz+ c 1 (lnz+ 1)/z],
(n(m&2/A~&2) (1+e~ )

(A7)

where we have performed a partial integration and retained terms of O(m, /mz ). Next we note that the factor
e' /(1+ e' ") is strongly peaked at z=v. The idea is then to expand the relatively slowly varying factor
colnz+c)(lnz+ 1)/z about z =v. For our purposes, it is sufficient to keep the first term in such an expansion (i.e., we set
z=v in the square brackets within the integrand) in which case the remaimng integral in Eq. (A7) simply reduces to
(1/lr)(1+m, /mz) '[colnv+c1(lnv+1)/v]. Inserting m„ml„m, (see Sec. V) and the appropriate Nz values in Eqs.
(Al) —(A7) leads to the determination of b,K. Values of hK and K=ln(mz /M ) —~ as functions of M are given in
Table I for AMS =0.16 GeV.

APPENDIX 8

In this appendix we evaluate the integral (I2)~ defined in Eq. (10f), for arbitrary values of r—=A /mN . It is con-
venient to first study the simpler integral



W. J. MARCIANO AND A. SIRLIN

(2m. ) k (k +2p k) A —kz (81)

p~p~ A (1—y)
m~ [m& x y +A (1—y)]

(82)

Performing the x integration

Combining denominators, shifting the variable of integration, and performing the d k integration in the usual manner,

1 I g~~ m~xy +A(1 —y)
(I&) ~= dx ydy ln

(2m ) 2 fPl X g

i~ ' g ~ y +r(1 —y)
(I&) ~= f dy y ln +[r(1—y)]'~ tan

(2m) o 2 y
ap PPa p

2rn~
(83)

By judicious changes of variables and partial integrations
Eq. (83) leads to

I

It is useful to verify the asymptotic behavior for large r

l
a p

~,(.)g i' —B,(.) P P
16' m~

(84)
Qo ~ 1+—+ lnr ——2+ —+0 lnr

2 6 1

r' r 3

(813)
where

3 i(r) =(r —4) Qo/24+ — 1 ——lnr+
4 6 12

B~(r) =(r —4)(r —l)Qo/6+ -r»r+ —,(3 r) — r
6 3

dx
0 0 ~ /r+1 —x

(85)

(87)

A, (r)~ —,
' {lnr+ —', ), (r &&1)

B,(r)~ —,', (r &&1)

Az(r)~ —,
' (lnr+ —,

' —1 ——,——, ), (r &&1)

Bz(r)~ —,', (r»1) .

{814)

(815)

(816)

(817)

which when substituted in Eqs. (85), (86), (Bll), and
(812) leads to

Explicitly,

2 ) 2/r —1

X
tan X

] 1+tan X (r (4)

0
1 lnr+ 2 lnX

2 (r =4)
1 —2/r +X

1+X

(88)

= ——r1 4 8 1

6 ()r3 r
(89)

Expressing back the derivatives of Qo in terms of Qo and
more elementary functions, Eqs. (89), (85), (86), and (87)
lead to the desired results

where X=[(4/r) —I]'~ when r &4 and X=[1 (4/r)]'—
when r ~4.

The integral (Iz)~~ of Eq. (10f) is related to (I ~ ) ~ by

03
Iz~————,(A ) I)~

B(A ) A [1;k;k k, ]J].2. 3 ——Si
(k +2p).k)(k +2pz k)k

A' d4k
X

A —k (2m)
(818)

when the cutoff A is not large with respect to the
masses.

In the usual treatment of the Feynman integrals in which
A »m~, the asymptotic behaviors of A&, B& are ob-
tained directly from Eq. (82) and those for Az and Bz fol-
low by applying Eq. (89). Thus Eqs. (814)—(817), ob-
tained here from the exact expressions of Eqs. (85), (86),
(Bll), and (812) constitute a welcome check. Using the
exact expressions, we find for r=0.83 corresponding to
the dipole fit to the electromagnetic form factors:
Qo(0.83)=1.1235, Az(0. 83) =0.24363, Bz(0.83)=0.20063
and, for comparison, A ~(0.83) =0.50627, B&(0.83)
=0.32164. Analogous methods can be used to evaluate
the traditional Feynman integrals

APPENDIX C(810)
For simplicity, in the various formulas of Sec. IV, per-

turbative corrections induced by strong interactions in the
functions II( —s) and in the contributions to Eq. (15b)
arising from the asymptotic region s'&s&, were not expli-
citly exhibited. In this appendix we briefly explain how
the leading effects due to these corrections can be incor-
porated. Consider, for example, II&,( —s) —IIq &(0). As

r Qo 3r
12+ 6 2

Az(r) = 1

(r —4)
(811)

Bz(r) =
z

r ——1 + (5—2r) . (812)
r 2Qo

(r —4)

a p
(Iz ) ~=

z &z(r)g ~ Bz(r)—
16m m~
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in Sec. IV we split the integral [see Eq. (15b)] for this
quantity into two intervals: 0&s'&s] and s& &s'& ~. In
the latter we write Rt ~(s')= —', [1+a3(s')/~] where the

represents the free-field-theory result (see Sec. IV) and
1+a3(s')/m is the QCD correction factor induced by
strong interactions for o(e+e ~hadrons). Neglecting
terms of O(s&/s) we find

111= i( —s) —III = i(0)=—

1
1

s

8~ s~

1 Z (s,s I ),
8m

2
fflb S (Z(s, s~) = lnln —lnln

AMs' AMs'

12

@pity

+ ln ln —ln ln
&Ms' AMs

where

g 00 (X3(s')ds'
Z(s,si) =—I s'(s'+s)

Comparison with Eq. (A4) shows that the integral in Eq.
(C2) can be obtained from LAC by substituting mz ~s,
M ~s~. Thus Z(s, s~) can be evaluated with the methods
of Appendix A. Retaining only the leading-logarithmic
contributions arising from the first term in Eq. (Al) and
neglecting terms of O(m, /s) we find for m, (s ~ & mq .

parison with the QCD mass scale and the perturbative
corrections induced by strong interactions vanish. Using
Eqs. (Cl) and (C3) we incorporate the leading perturbative
corrections induced by strong interactions in Eq. (15c) for
large s. On the other hand, the long-distance effects are
included in the integral on the RHM of Eq. (15c) and that
contribution does not require theoretical corrections since
it is extracted from experiment. In order to obtain
IIt t(0) we must subtract III &(

—s). To zeroth order in
a3, that function is given in Eq. (15d). Under the assump-
tion that m; /m w « 1 the leading corrections to
III ~( —s) can be obtained from the following considera-
tions. (i) Because the function is evaluated at the nonex-
ceptional momentum —s, it does not involve mass singu-
larities and the various quark masses may be set to zero.
In that limit III ~( —s) depends on three mass scales: v s,
the 't Hooft mass unit p which we have set equal to mw,
and AMs. (ii) The s dependence of II( —s) must cancel
that of Z(s, s&) for all values of s. As a consequence, for
large s the leading corrections to II( —s) must be of the
form

12 1
[lnln(s/AMs ) f(mw /AM—s )] .2 2 2

(iii) For fixed s, mw the corrections cancel as AMs ~0.
Therefore, f (mw /AMs )=lnln(mw /AMs ) plus terms
that vanish as mw /AMs ~ ao, i.e., plus nonleading func-
tions of large ratios. Combining these observations with
Eqs. (15d) and (Cl) we obtain

RI i (s )ds
III )(0)= —,I, +ln8~' S

2
12 s I,

ln ln —ln ln
21 Z—,' A—,'

+ 3 +Z(mw, s)) (C4)

+ ~ ~ '~ (C3)

where the - . represent nonleading contributions. While
the leading terms given in Eq. (C3) behave as lnln func-
tions of large ratios, it is easy to see that the nonleading
contributions behave as lnln/ln functions of the same ra-
tios. It is also interesting to note that, for fixed s, s&, and
m; (i =b, t . ), Z(s,s~)~0 as AMs~0. In that limit all
the relevant mass scales become infinitely large in com-

Inserting Wetzel's evaluation of the integral for s&
——9

CieV (see Sec. IV), the appropriate mass values and
AMs ——0.16 GeV we find that Z(mw, s~) induces a small
correction of +2.9%. The analogous analysis for II,(0)
shows that the corresponding correction is + 3.3%. To
evaluate the radiative corrections all one needs are the
functions II& ~(0) III p(0) II (0), or, equivalently,
the effective values of in(mw/mf) in Eq. (16a). As we
have seen, the effect of Z(mw p&) on these quantities is
quite small. On the other hand, the determination of "ef-
fective" light-quark masses is more sensitive to
Z (mw, s &) on account of the exponential dependence.
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