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Supersymmetry breaking at finite temperature: The Goldstone fermion

Daniel Boyanovsky
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In this paper it is shown that supersymmetry is broken at any finite temperature. The current-
algebra relations that indicate the presence of a Goldstone fermion are generalized to finite tempera-
ture in the real-time formalism. The existence of a massless pole in fermionic thermal Green's func-
tions is thus predicted. Explicit calculations in several models confirm the existence of this Gold-
stone fermion at finite temperature. It is found that the residue at the p„=O pole vanishes as the
temperature goes to zero.

I. INTRODUCTION

Supersymmetry plays a very important role in current
attempts to construct realistic models in particle physics.
(It might provide for solutions to outstanding problems
such as, for example, naturalness because it provides a
natural mechanism for canceling divergences. ) However,
despite its appealing features, supersymmetry (SUSY)
must be broken in nature since we do not observe any bo-
sonic partners of fermions. If SUSY is to be incorporated
in the framework of unified theories it is necessary to
understand the effect of finite temperature in these
theories since they are expected to describe physics in the
early universe.

Das and Kaku' were the first to realize that at high
temperature SUSY behaves differently from other
symmetries. While most symmetries —with few excep-
tions —if broken at zero temperature are restored at suffi-
ciently high temperature, unbroken SUSY at T =0 breaks
at high temperature.

In a more recent work, Girardello et a/. have studied
SUSY breaking at finite temperature. They conclude that
such breaking is a natural consequence of different statis-
tics for bosons and fermions.

However, despite this automatic breaking of SUSY at
T&0 they state that there are no Goldstone fermions asso-
ciated with this breaking, instead they suggest that SUSY
breaking is explicit due to boundary effects. Their argu-
ment relied heavily on the fact that in the Matsubara
(iinaginary-time) formalism the minimum energy of a fer-
mion is 2mT.

Van Hove has recently argued that there is a subtlety
in the definition of the thermal averages of variations of
operators under a SUSY transformation. This point has
been further investigated by several authors and they
conclude that a careful treatment of the SUSY transfor-
mations leads to a "graded" thermal average in which
both bosons and fermions obey periodic boundary condi-
tions in imaginary time. Thus, they were led to conclude
that if SUSY is unbroken at T =0 it stays unbroken at
any temperature.

Their proof relies on the fact that a SUSY transforma-
tion involves a constant anticommuting (Grassmann) pa-
rameter and proper account of this parameter in the densi-

ty matrix leads to the "graded averages. "
However, these authors compute Green's functions

which do not have physical realization because they do
not obey the physically correct boundary conditions in im-
aginary time. As has been realized by Girardello et al. ,
this Grassmann parameter cannot be constant in im-
aginary time if one decides to preserve the right boundary
conditions for the physical Green s functions. In this pa-
per we try to clarify some aspects of the problem looking
at the behavior of Green's functions with the correct
boundary conditions in imaginary time.

Although at finite temperature Lorentz invariance is
lost, one can still quantize a theory in a Lorentz-covariant
way. Indeed, it is well known that there are two different
formalisms that can be used to study theories at finite
temperature: ' imaginary time (Matsubara) where the
energy is discrete but momentum is continuous (nonco-
variant) or real time where energy and momentum are
continuous variables. Whereas the first is best suited to
study the perturbative aspects of the theory, it is well
known that in order to analyze real-time response func-
tions the second is necessary. " There are subtleties in go-
ing from one formalism to the other, and we argue that
when Green's functions are studied in the real-time for-
malism, the essential physics is exposed clearly.

It is shown here that zero-temperature Ward identities
do translate with minor modifications to finite tempera-
ture in the real-time formalism and, as a consequence of
this, a Goldstone fermion is associated with SUSY break-
ing at T&0. Since Goldstone particles arise as excitations
produced in a system as response to long-wavelength per-
turbations, it is necessary to study the corresponding
Green's functions in the real-time formulation to see the
presence of these particles.

The paper is divided as follows: in Sec. II the zero-
temperature Ward identities and current-algebra relations
are reviewed. In Sec. III the finite-temperature formal-
isms are reviewed exposing the difference between the
imaginary- and real-time approaches. The results of Sec.
II are extended to finite temperature in the real-time ap-
proach. Section IV is devoted to the explicit computation
of the fermion thermal Green's function for several
models exposing the physical mechanism that gives rise to
the massless pole and its limit as T~O. Since some
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doubts have been raised as to the validity of the effective
potential in terms of the auxiliary fields, an appendix is
devoted to this point. The conclusions are summarized at
the end of the paper.

5$=5eg(x),

5$(x ) = [ —i QP(x ) —F(x)]5e,

(2.1a)

(2.1b)

II. REVIEW OF ZERO-TEMPERATURE
WARD IDENTITIES

Before analyzing the behavior of the SUSY theories at
finite temperature, we will briefly review the standard
T =0 Ward identities and their relation to well-known re-
sults in current algebra and Goldstone's theorem.

The theories we will deal with consist of supermulti-
plets (P,g,F) of bosons, Majorana fermions, and auxiliary
fields.

The supersymmetry transformations are written as

5F(x)=5Et'gg(x), (2.1c)

where 5e is a constant Grassmann (Majorana) parameter.
These relations can be generalized to chiral theories in a
straightforward manner. Under the transformations (2.1a)
and (2.1c) the change in the action is

5fW Z'x = f5~B„S„(x)a'x, (2.2)

where Sz(x) is the supercurrent.
We will generalize the transformations (2.la) and (2.1c)

with 5e(x) a space-time-dependent parameter. Define

fWy, gi(xi) exp( fd~x W[y]+ f1~x J,y, )
&gi(xi) 'p (x ))J

same for J=0 (2.3}

where g, (x;) stands for either bosonic or fermionic fields. Let us perform the infinitesimal transformation (2. la)—(2.1c)
in the numerator of (2.3); this amounts to a change of variable in the functional integral and since it is invariant under
this change we see that

&pi(xi) . y„(x„))J——0 .
5e(z)

Writing 5p;(x) =(By;/Bx)5e(x), Eq. (2.4) reads

Bq;(x;)
B„&S„(z)yi(xi)' ' ' p, (x„))g+5(x;—z) pi(x)) ' ' ' ' ' p„(x„)

Z BEx). ' J

+Jy(z) & y(z)q i
. ) + & [Hy(z) F(z)]p$ —. )Jy(z)+ Jy (z) &i Qy(z)q $

. ) =0 .

(2.4)

(2.5)

This is the most general form of the Ward identities. '

Consider the case n =1, yi ——g, and J;=0 in Eq. (2.4).
This gives

f ti
5 &y) +& &y —F) +

5
& &y)

sr . 5r er
5 5y 5F

or

B„&S„(z)f(x)) +5(z x) &i9P F)—=0—
d~z

p S„z x

(2.10)
(2.6)

Now take the functional derivative 5/5$(x}, and set the
sources to zero assuming &$(z))J ~ U, &F(z))g ~ f.

J~O J—+0
(2.7) We find

In Eq. (2.7) we have assumed that the fields p and F can
have position-independent vacuum expectation values.
Equation (2.7) is the well-known current-algebra relation,
if &F)&0 it implies that there is a Goldstone fermion in
the spectrum. Another interesting relation can be derived.
Consider Eq. (2A) with n =0 but J&0,

or

f dz 5(z x)+f-ar 5F
5 z 5$(x)5$(z)

=0

0= '
p „fSp (p =0), ——5V[F,P]

Bp F=f

(2.11)

(2.12)

B„&S„(z})+J&(z)& g(z) )

+ &i QP(z) F(z) )&J~(z)+JF(z) &iQQ—(z) )q ——0 .

Perform a Legendre transformation:

I [y;]=F[J]+fJ;(x)q&;(x),

5r[q;(x)]
J;(x)=

5y; x

Thus, after integrating over z, this leads to the result

(2.8)

(2.9)

where V[F,P]=—I [P,F] for constant fields (/=0) and
S~ '(p) is the inverse of the full fermion propagator. Re-
lation (2.12) is another expression of Goldstone's theorem,
since it implies that whenever f&0 the full fermion prop-
agator has a pole at zero momentum.

III. FINITE- TEMPERATURE FORMALISM

Although at finite temperature a field theory loses its
I orentz invariance because the plasma of excitations de-
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fine a reference frame (its center of mass), the theory can
still be quantized in a fully covariant fashion.

One can write a covariant density matrix operator ZG
(see Ref. 8) and the thermal averages of physical operators
as ( 0)=(Tr@ZG/TrZG). The heat bath defines a refer-
ence timelike vector U with U U =1. Thermal aver-
ages will depend upon the invariants p&U&, p&p", and
P&p" where P&

——(I/T)U& and T is a Lorentz-invariant
quantity (temperature in the rest frame of the heat bath).
In the rest frame of the heat bath

ZG ——Tre

Trd'e —t'0

Tre -&~

(3.1)

(3.2)

In Euclidean space (imaginary time) the partition function
(3.1) can be written as a functional integral over fields, ' '

r

ZG ——f&P exp —f d7 fd x W[y(x),r], (3.3)

where the ~ variable (imaginary time) is restricted to the
interval 0 & ~ & P and the fields obey the periodicity condi-
tions

Tr[e ~ Ty(x)qo(y)]
Tre-&H (3.5)

P(P, x )=P(O,x) (bosons),

f(P, x )= —f(0, x ) (fermions) .

An alternative way of quantizing the theory is the real-
time method in which, for example, the Minkowski-space
propagator is

where gr(x, t) =e' 'qr(x, O) ' ' is the Heisenberg field
operator.

While the imaginary-time formalism leads to nonco-
variant Feynman propagators in which energies are
discrete [(2n+1)m./P) for fermions, 2n(m/P) for bosons]
and momenta are continuous, the real-time approach leads
to fully covariant propagators with continuous energies
and momenta.

The imaginary-time method is best suited for the study
of the perturbative expansion of the theory. However, in
order to study the response of the system to external per-
turbations one has to examine the real-time linear-
response functions. The real-time (Minkowski-space)
propagator D(x, t) is the analytical continuation of the
imaginary-time (Euclidean) propagator &(v, x ) (Refs. 9
and 10) to —ao &t =is&+ oo. As has been pointed out
in Refs. 10 and 11, the Fourier transform D(kp, k ) is not
the continuation of &(co„,k ). &(co„,k) has to be contin-
ued to arbitrary Euclidean energy co (this continuation is
unique ), &(co,k) is analytic in the right and left co plane
with possible discontinuities along the imaginary axis that
yield the spectral density

p(kp, k ) =&(ikp —e, k ) &(—ikp+e, k ),
and finally

S(kp k)
D(kp k)=W(i(kp+i )ek )+

e ' —1

(3.6)

(3.7)

The poles of D(kp, k ) define the energy of excitations of
momentum k in the reference frame of the heat bath.

The real-time free propagators for bosons and fermions
(in the heat-bath reference frame) read '

Dp(k) =
k —m +ig

Sp(k) =
/jf —m +le

+2~
&

(bosons),
5(k —m )

e~ —1

—2m(0+m) (fermions), E =(k +m )'~5(k —m )

e&E+1

(3.8)

Now we are in position to extend the results of Sec. II to finite T.
We start our discussion recalling Eq. (3.3). It has been recognized by Girardello et al. 3 that the SUSY transforma-

tions (2 la) and (2 lb) with constant 5e are incompatible with the boundary conditions in Euclidean time for the physical
fields; therefore, one must impose

5e(0) = —5e(P) . (3.9)

We generalize the transformations (2.1a)—(2.1c) with 5e( x,w) with the antiperiodicity condition (3.9) in the ~ variable.
Define the thermal Green's functions in terms of the physical fields in Euclidean time:

exp( —f d~fd'xW+ f d~fd'xZ, g, )
yi(xi, wi) . g&„(x„,r„))p=

same with J=0

The steps leading to Eqs. (2.6) and (2.12) can be followed leading to

8& (S&(z,w)g(x, w'))ti+5(z —x )5(r—v')(if'(z, v) F(z,r))ti ——0 . — (3.10)
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In this expression we can continue analytically to real time
and integrate over z, t leading to

fdz dt d„(S„(z,t)y(x, t ') )p (—F)p . (3.11)

g2I P
+ (F)p ——0, (3.12)

5$(x, t')5$(z, t)

where we have assumed that P and F may acquire
position-independent thermal averages.

Equation (3.11) can be written as

8 VP(F(P) )

ay
=fSp~ '(ko ——0, k =0)

(p}p——v

=0 (3.13)

The physical meaning of Eq. (3.11) is that if the auxiliary
fields acquire a nonvanishing thermal average a zero-
momentum (long-wavelength) fermionic (collective) exci-
tation can be created with zero energy; this is the analog
of the Goldstone theorem at T =0. '

The above analysis indicates that whenever f+0 there
is a "massless'" excitation; however, there remains the
question of under which circumstance f&0. To under-
stand this we recall the zero-temperature relation'

mp' —mF'- (F), (3.14)

where mp ——mass of the boson and mF ——mass of the fer-
mion. This relation can be seen to hold at the finite tem-
perature leading to the result that (F)p&0 at T&0.
Indeed at finite temperature the left-hand side of (3.12) is
replaced by the temperature-dependent "effective" masses
and the right-hand side by (F)p. However, since the
thermal bath of excitations treats fermions differently
from bosons through the statistics we expect their "effec-
tive" masses to be different, indicating that (F)p&0 at
T&0, and indeed explicit calculations shows this expecta-
tion to be correct.

We are therefore led to conclude that at any finite T&0
SUSY is broken and as a consequence there is a massless
fermionic excitation. Mass here is defined as the value of

By the same token, introducing the Legendre transform
I"~ and continuing to real time we find

fdz dt 5(z —x )5(t t')—SI~
5

the energy necessary to create a long-wavelength excita-
tion in the reference frame of the heat bath.

In Sec. IV we will carry out the calculations outlined
above for some specific models to show how the Gold-
stone fermion arises in these examples.

IV. EXPLICIT CALCULATIONS IN SOME MODELS

In this section we will compute explicitly the fermion
propagator at finite temperature in the real-time formal-
ism as well as the effective potential for the scalar fields in
different theories and the relation (3.13) will be checked.
We study examples for which SUSY is unbroken at T=0.
and show the mechanism of breaking at T&0 and the ap-
pearance of the massless fermion.

A. Model A: %fess-Zumino model in D =4

This model (Ref. 16) is defined by the supermultiplet
@=(N,y, A ), where ~=(Ilv

2)(~+i%�),

0' is a Ma-
jorana spinor, and A =(I/v 2)(P +t'9') is an auxiliary
field. M and W are scalar and A and S are pseudosca-
lar fields. The Lagrangian is

W=B N"d„& + , PiQQ+A A—+AP'(W)

+~ H'(W' ) —,' P[y+P"(H)+—y P"(H*)]Q,

P(W) = —lM+LM'
6

(4.2)

with I and g positive constants. In order to calculate the
effective potential, we assume that the scalar fields W and
W can acquire expectation values 2 and I', respectively.
We shift the fields M=M'+A, ~ =~ '+F; the induced
niasses for the particles can be read as follows:

mg ——~- ~A F—2 g, R 2 (4.3a)

mp ——-~ ~A +F2 g 8 2 (4.3b)

(4.3c)

The one-loop effective potential in terms of A and F is

(4.1)

where y+= —,'(1+y5) and P(W) is a polynomial of at
most third order in Z. We choose

d kV,tt[A, F]=V„«[A,F]+—,f 4ln(k +mz )+ —,f ~ln(k +mz ) —f —ln(k +m~ ),
(2m) (2m ) (2'�)'

V„„[~,F] = ,'F' v2F L~' l——— —
(4.4)

) —21n(1+e ")], E;=(k +m; )'~

Following the methods of Dolan and Jackiw' the finite-temperature effective potential can be written as
V,ff ——VT o+ Vp with

Vp ——— ln 1 —e +ln II —e
l d k PE

(4.5)
l3 (2n. )'
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2 f (2~)4 (k +mg2)(k +my ) (k +mii )(k +my )

To apply the results of Sec. III we are interested in BV,rf/BA. From Eqs. (4.4) and (4.5) we find

8 V,ff
aa

+ —,g A
d'k 1

(2~) E (e~ & 1)

1 1+ PE +2
f3E

E~(e —1) Ep(e "+1)
(4 6)

It is interesting to note that the first two terms (the T =0
contributions) vanish for F =0, thus there is a supersym-
metric solution at T =0; however, the finite-temperature
contribution does not vanish at F=0. A similar result is
found for 8 V,rr/BF, so that at T =0 there is a solution for
the set of equations av, ff/BA —0 BV ff/OF=0 with
F=0; at finite temperature these equations cannot be
satisfied with F =0.

This interesting result can be traced back to the fact
that bosons and fermions obey different statistics in agree-
ment with the conclusions reached in Sec. III and by
Girardello et al. From (4.6) we find that the solution to
BV,rr/BA =0 gives rise to

(4.7)

where Cp is the third contribution (temperature correc-
tion) in (4.6).

At low temperatures we can set mz ——m~ ——m~ ——m in

C& and we find
3/2

d k exp[ P(k —+m )'i ] z T
(217)' (k +m )'

—rn /Te
m

2g 2+~
Pl

3/2

e
—m/T

(4.8)

(4.9)

for T ~&m.
The next step is to compute the real-time inverse fer-

mion propagator at pp ——0, p =0:
S-'(p) =S,-'(p) —&(p),

So '(p) = —i(p —m~) .
(4.10)

Using the real-time propagators quoted in Eq. (3.8) we
find for one loop

X=XT P+XP,

&r=o(p„=O)=ig'
2 2 2 2 2 2 22 (2m)4 (k2+m„)(k2+m~ ) (k +mii )(k +m~ )

ig ~A d'k
2F (2'Ir) E~ (e "—1) E~(e —1) Ey(e ~+1)

(4.11)

8 V,gg

aa
==F(iS '(po ——0, p =0))=0 . (4.12)

where we have used the relations (4.3a) and (4.3c). Com-
paring Eqs. (4.11) and (4.6) we find that indeed

a = 1,2, . . . , N. The Lagrangian for the theory is

2
[n'( d )n'+g'i—9g'+F'F']1

2g
(4.13)

Therefore, since F&0 [see (4.9)] S '(po ——0, p=O)=0;
thus, there is a pole at po ——0, p =0 in the fermion propa-
gator. It is interesting to notice that due to conditions
(4.7) and (4.9) X~ in (4.11) turns out to be temperature in-
dependent (at low temperatures).

Although we have not mentioned the renormalization
procedure for this theory the reader can be easily con-
vinced that renormalization will not affect our results,
since renormalization can be performed in a temperature-
independent fashion.

with the constraints

n'n'= 1,

g'n'=0

'

2n oFo g OQQ

(4.14a)

(4.14b)

(4.14c)

We introduce a supermultiplet of real Lagrange multi-
pliers (Ao, Fo, go) and write the Lagrangian of the theory
as (after integrating over F')

B. Model 8

Now we will study the nonlinear o. model in two dimen-
sions in the large-X limit. ' The model is described by a
supermultiplet (n', g', F') of real fields and

1 Fp + —,n'( —O' —A, ' —F, )n'
2 g

+ 2 0'(i& Ao)0 +Con'4. , — (4.15)
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where we have integrated over I and rescaled the super-
multiplets ( n', F', g')~(1/g)(n', F', g') and (Ao, Fo, fo)
~(1/g2)(Ao, Fo,go). The leading order in the large-N ex-

pansion is obtained integrating out the n' and g' fields.
We end up with an effective theory in terms of the fields
Ap, Fp, and gp with the effective Lagrangian

1 +o
~cff 2 g

2
iN iN 2 2

— l
Trln(ig —Ap)+ Trln —8 —Ap Fp ——Pp .

2 2 19—Ap
(4.16)

and effective potential

dk d k
V ff[Ap, Fp) = —— +—I ln(k +Ap +Fp) ——I ln(k +Ap ) (4.17)

The finite-temperature effective potential is written as V,ff = Vz p+ Vp with

Vp ——— ln 1 —e —ln 1+eN dk —pE~ pE

P 2m. (4.18)

Egg (k +m——~p ), mg ——Ao +Fp, mp =Ao2 2 1/2 2 2 2 2 (4.19)

The extremum condition for Ap reads

dk 1 1 dk 1

(2m. ) k +mg k +m~ 2nE(e.& s 1)

1+ PE
E~(e ~+ 1)

(4.20)

At zero temperature it has been recognized by Alvarez' that the particle associated to the field Ap is a fermion-
fermion bound state created by the operator g'g' and go is associated to a fermion-boson bound state created by the
operator n'if'' and is the superpartner of Ap. Their propagators have a pole (and branch cut) at k =4m with
m = (Ap ) the ground state being supersymmetric (mz ——m~) the extremum equations allow a solution with (Fp ) =0.

For T&0 the extremum conditions I3V/c}Ap ——0, BV/BFo ——0 cannot be satisfied with (Fp)p ——0 and we find
(Fo)if=me

To calculate the self-energy of the fermion gp we use the real-time propagators given in Eq. (3.8). The interaction ver-
tex is W;„,=/on'g' The l.eading contribution in large N is

r

Xy(pp, p )= Nf-d k
(2n. }

P+}jf+m~ (p+?f.'+m~)5(k m~ )—
2 2 2 2 PE[(p+k) my ](k mz ) (e B 1}[(p+k}2 m 2]

(p+Ig'+m~)5((p+k) —m~ )—27Tl PE
(k —mg )(e ~+1)

(4.21)

Using (4.19) and (4.20) we find ((,Fo )p &0)

=&Fo&p~y, '(po=o p=o)

In this case the "Goldstone fermion" arises as a boson-
fermion bound state. In leading order, the model is renor-
malized by wave-function renormalization for Eo and, as
can be seen, this does not modify our results. '

At this point there are two puzzling questions that can
be raised. The first is how is it that at T~O SUSY is ex-
plicit and the fermion is massive, and at T&0 SUSY is
broken and the fermion Green's function acquires a mass-
less pole even at very low T? The second question is how
is the current-algebra relation (3.11) realized' ?' To answer
these questions we will study a simple model in two di-
mensions in which the physics of these phenomena will be
clearly exposed.

BV0=
&
——m~/ —4m fmyCp+2mmyCp,

ay

, /=f~y (so=0 p=o»
(4.24)

where

C. Model C

The Lagrangian for this model reads

, [(f}qp) +pi9p+—F 2mF(p b) 2—mppg] . — —
(4.23)

As usual to calculate the effective potential we shift the
fields P~P+y, F~F+f, (F)=0. Using by now stan-
dard techniques we find at T&0
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p7ly=2mtp ~

m~ ——2mf +4m qP,
d k I

(2m) (k +my )(k +ms )

dk 1
Cp —— +

2K E (e 8

1

E~(e"~+1)
with the definitions of Ez, E~ given in Eq. (4.19). From
(4.24) we find at low T

f= m~e— X (power of m IT) . (4.25)

S —i' (P =0)—i3 OPpBp —i 'Y PDii (4.26)

where Bii, Dia are temperature-dependent (momentum-
independent) constants. Since at finite temperature the
theory is not Lorentz invariant Bp&D~ and we will calcu-
late S '(po, p =0}. The one-loop contribution to the self-
energy X can be calculated using again the real-time prop-
agators. We find the finite-temperature contribution to X
linear in po..

Since the inverse propagator vanishes at po ——0, p =0 it
can be written at small po, p as

4m'&(2)'OPO) dk Ea
4m iXp(po, p =0)=

(ms —m& ) 2n. (e~ —1} PE
(e "+1)

(4.27)

From Eqs. (4.24) and (4.25) X~ can be written as

/ ~ m&/T
Xp l popo'

Therefore, we see that as T +0 this t—erm overwhelms the zero-temperature contribution to S '(p), hence
m&/T-

S(po, p =0) — = && (powers of Tjms ) .
popo 'Yopo

T—+0

(4.28)

(4.29)

This expression indicates that the residue of the Goldstone pole vanishes as T~O [from (4.27} we see that the residue is
positive] clearly exposing the fact that the Goldstone contribution should vanish as T—+0.

To study the way in which the current-algebra relation (3.11) is realized we notice that in this model the supercurrent
1S

S„=(QP+iF)y"P . (4.30)

After shifting the fields Eq. (4.30) can be written as

(4.31)

Since (gg) is proportional to f as p~O, it is easy to see that the first term in (4.31) contributes to higher order in
—m&/T

e to (3.11). The second term gives rise to

(4.32)

Using the linearized equation of motion for I',

F=ming+ (4.33)

and adding and subtracting the mass terms for P and f we find

B&S& (m& m——s )PP+—[( P+m~ P)P+(9P+im~g)(QQ+im~g)] .

Up to one loop (3.11) can be written as

I(p)= —i2m f [(—2mf) —(k —m~ )+(4'+m~)(p+k m)]D(k)S—(p+k)S(p)5(p),
d k 2 2

(2n )

(4.34)

(4.35)

where D(k), S(k) are the real-time boson and fermion
propagators, respectively. In Appendix B it is shown that
the p&-independent contribution cancels out and as p&~O
and T~O,

I (p) = lim i 4m fXii(0)S(p),
p~O

(4.36)

where Xii(0) is the linear term in po of the temperature
correction to the self-energy.
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From Eqs. (4.26) and (4.27) we find the relation

Sg ' ——4m iXj(0) .

Therefore, the relation (3.11) is fulfilled.

V. CONCLUSIONS

(4.37)

where we explicitly wrote A' in the one-loop contribution.
If we keep Ii as a variable the effective potential is cal-

culated as usual after shifting I'~I" +f, P~P+y. The
result is

I eff[f~ p] = +tree [fag ]
d k

ln k +2m +4m tp(2n. )

In this paper we have shown that in any theory with
unbroken SUSY at T =0, the symmetry is broken at any
temperature T&0 due to different statistics for fermions
and bosons in agreement with previous work.

Furthermore, looking at the real-time thermal Green's
functions, we established that the breaking of SUSY is as-
sociated to a massless pole in ferinionic Green's
functions —Goldstone fermion —as a consequence of the
Goldstone phenomenon. Therefore, there is a definite
physical observable as a consequence of this breaking.

%'e have shown that at very low temperatures the resi-
due at this massless pole is of the form e i where m is
the common mass of the supermultiplet at T =0, hence
the contribution of this pole vanishes at T =0. We have
also shown how current-algebra relations are fulfilled at
finite temperature.

The extremum conditions read

BV dk Smy=0=2mf q&+—,(A3a)
Btp 2 (2m. ) k +2mf +4m tp

BV 2

a
=0= f+m (p— b)—

d k 1
+mA

(2m. ) k +2mf +4m qP
(A3b)

d
~2

2 2 2

1
2 2 ~ ~

d k
(2m. ) k +4m qP+2m (y b)—

Equation (A3b) has to be solved iteratively in powers of A',

and we find up to order fi
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Using this result for f in (A2) and keeping terms up to or-
der A' we find Eq. (Al).

This result generalizes to higher orders. This is in
agreement with what has been suggested recently by Mur-
phy and O'Raifeartaigh. '

APPENDIX B

Here we perform the computations leading to Eq. (4.36)
in the text. Using the real-time propagators (3.8) the term

APPENDIX A Bi i2m f—— (k m~ 'D(k)S(P—+k)
(2~)

(B1)

In a recent paper by Alvarez-Cxaume et aI. , there was
a conflict regarding the effective potential as a function of
two variables f and t)It. In their computations, the effective
potentials as a function of f and t)t was different from the
one obtained after eliminating the field f at the classical
level. It is shown in this appendix that in the loop expan-
sion there is no such puzzle which we believe is due to an
inconsistency in their solution to the extremurn equations
for f. The Lagrangian of the theory is given by Eq. (4.23)
without the Fermi fields.

After integrating out the field F using the equations of
motion and shifting P~P+tp we find up to one loop

can be written as

B& ———2mm~
d k 1 dk +y

(2m. ) k +m~ 2n. E~
(B2)

The term

is written as

d k
B2—— 2im f —(0+m&)(p+4' m~)D(k)S(p+k)—

(2n. )

&.rr[g ]= I't-.[V ]
d k+—f 21n[k +2m (3qP —b)],

2 (2m)
(A 1)

d k 1 dk +afB2 ——2mm~ +(2~)~ k~+ pyz
2 2~ E~

(B3)
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dk na
+2mm~ +

'1T
(B4)

Therefore,

d k 1B,+B2=—4m fmg
(2m) (k +m~ )(k +my )

yields

d k . 1
X(p =0)=4m fm~ (2n. ) (k +my )(k +m~ )

d'k nz n ~
mm~ +

7T
(B6)

The p„=O part of the term

X(p)=t 4m'f I D(k)S(k+p)
(2m)

(B5)

therefore B& +B2+X(p =0)=0. Hence, as p~O, T~O,
the leading contribution comes from the term in Xp(p)
linear in po (at p =0) giving rise to Eq. (4.36) in the text.
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