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We examine dynamical gauge-symmetry breaking and left-right asymmetry in higher-dimensional
theories by taking non-Abelian gauge theory on a manifold M &S, where M and S are a two-
dimensional Minkowski space and a two-sphere, respectively. It is shown that a shift in fermion
zero-point energies due to the compactness of the extra-dimensional space S induces dynamical
gauge-symmetry breaking, provided that there exist many heavy fermions. With additional Weyl
fermions incorporated in M )&S we obtain left-right —asymmetric massless fermions in M . The
effective Lagrangian in M is given. A relationship between four-dimensional and two-dimensional
anomalies is also established.

I. INTRODUCTION

In this paper we examine the problems of dynamical
gauge-symmetry breaking and left-right asymmetry in
higher-dimensional theories by taking a gauge theory on a
manifold M XS, where M and S are a two-
dimensional Minkowski space and a two-sphere, respec-
tively.

Generally speaking, higher-dimensional theories unify
particles with different spins in lower dimensions in one
multiplet, very similar to supersymmetric theories in four
dimensions. In the original Kaluza-Klein approach'
one starts from higher-dimensional Riemannian geometry
with the Einstein-Hilbert action to unify gravitation (spin
2), gauge fields (spin 1) associated with isometry of the
extra-dimensional space, and scalar fields (spin 0) corre-
sponding to deformation of the extra-dimensional space.
It explains the origin of gauge invariance to yield a rela-
tionship between the Newtonian constant of gravitation
and the gauge coupling constant. On the other hand,
gauge theory in higher dimensions unifies gauge fields
(spin 1) and scalar fields (spin 0). Although the origin of
gauge invariance is left unexplained, it has been shown re-
cently that a class of theories in this category exhibit
dynamical gauge-symmetry breaking by quantum correc-
tions, which could replace the Higgs mechanism in the
standard unified theory of electroweak and strong interac-
tions. Finally, higher-dimensional supergravity
theories' ' unify more. With supersymmetry incor-
porated they unify particles with spin 2, —', , 1, —,', and 0.
In particular, in 11-dimensional supergravity, in short,
geometry determines everything.

Higher-dimensional theories are efficient and attractive
due to their nature as unified theories, containing Inore
symmetry and fewer arbitrary parameters. An unsatisfac-
tory point is that so far none of them are realistic. There
are many problems to be solved to construct a realistic
theory. We briefly discuss them below, simultaneously to
explain the necessity of introducing at least some of the
gauge fields as external matter fields (sources to the

energy-momentum tensor T&„) rather than as a part of a
metric g„.

(a) The Einstein equation for gravity must admit a
solution with extra dimensions being compactified. A
ground state must be a product of four-dimensional Min-
kowski space (M ) and a compact extra-dimensional space
with tiny size. '

(b) In the reduced lower dimensions, namely in M, we
need almost massless fermions.

(c) The theory must admit left-right asymmetry in M .
(d) We need SU(3)XSU(2)XU(1) gauge symmetry at

Weinberg-Salam energies (-300 GeV).
All these requirements are apparently trivial, but indeed

appear as severe problems in constructing realistic
higher-dimensional theories.

Problem (a) implies that we need matter fields giving
rise to nonvanishing T&„, unless extra dimensions are flat.
Candelas and Weinberg have discussed that quantum
corrections due to quark and lepton loops are responsible
for the compactification. We take a viewpoint that exter-
nal gauge fields also are responsible for that.

Problems (b) and (c) are more serious. In general, mass-
less fermions in higher dimensions do not yield massless
fermions in lower dimensions. For a spin- —, spinor on a
compact manifold with no other matter fields present,
there is a simple mathematical theorem' that if the scalar
curvature R is positive definite everywhere, the associated
Dirac operator has no zero-eigenvalue mode. It means
that if an extra-dimensional space is a positively curved
compact space there are no massless fermions at low ener-
gies. All fermions have masses of O(M), where M is a
typical energy scale (- 10' GeV) characterizing size of an
extra-dimensional space.

It is very difficult to get left-right asymmetry, if one
starts from a system consisting of gravity and spinors
only. In even dimensions %'eyl spinors can be introduced.
But a higher-dimensional spinor of positive (or negative)
chirality always contains lower-dimensional spinors of
both positive and negative chirality so that one usually
ends up with left-right —symmetric theories in lower di-

29 731 Q~ 1984 The American Physical Society



732 YUTAKA HOSOTANI

mensions.
Problems (b) and (c) are interrelated to each other, and

can be avoided if there exist external gauge fields in a
theory. The main purpose of this paper is to show that
dynamical gauge-symmetry breaking induced by quantum
effects leads to left-right —asymmetric massless-fermion
content in lower dimensions, thus solving the problems (b)
and (c).

In a previous paper we showed that a gauge theory
with fermions on M"

&&S (M"=n-dimensional Min-
kowski space) exhibits dynamical gauge-symmetry break-
ing by quantum effects for n =4p+3 (p=0, 1,2, . . . ). The
analysis was limited to odd n because of divergences en-
countered. To handle the fermion problems discussed
above, we have to consider even-dimensional theories. In
four dimensions renormalization is well defined. For this
reason we investigate a gauge theory on M QS as a toy
model. It is a four-dimensional theory, but reduces at low
energies to a two-dimensional gauge theory. We will see
how gauge-symmetry breaking is induced by quantum
corrections due to the compactness of the extra-
dimensional space S, and how it leads to left-right-
asymmetric massless fermions in M . As a by-product we
establish a relationship between anomalies in four and two
dimensions, analogous to the 't Hooft condition' relating
anomalies in preons and composite particles.

We summarize the results in Ref. 9 in Sec. II. Renor-
malization is carried out in M &S in Sec. III to see that
gauge symmetry is dynamically broken under some condi-
tions. In the following sections we write the effective La-
grangian in M, analyze anomaly equations in both
M XS and M, and show that left-right asymmetry real-
ly arises at low energies. The final section is devoted to
summary and discussions.

II. ZERO-POINT ENERGIES

A~'"(x, 8,$ ) =0,
1

ey
2gr

Ap'"(x, 8,$)=+ ee r,
2gr

Ae "(x,8,$)=—

which yields nonvanishing field strengths

(2 1)

Fg"(x,8,$)= —
2

e„.r .
2gr

(2.2)

= —Trln[ D(A) +m—] .
2

For the two special configurations,

—D(A) =[8 ]„+D 2(A)

(2.3)

where [B2]„ is the d'Alembertian operator in M" and
D,(A) is the Dirac operator on S given by

Here g, r, and (e„,equi, e~) are the SU(2) gauge coupling
constant, radius of S, and unit vectors on S in r, 8, and

P directions. A„'" solves the equation of motion, though
classically unstable against small fluctuations. ' We will
see that the configuration A&'" can be stabilized by quan-
turn effects.

It has also been argued in Ref. 9 that A&
——0 and

A& ——A&'" represent two extremes of rotationally sym-
metric configurations on S, justifying to particularly pick
up the two configurations.

The effective potential is evaluated by first integrating
fermion fields O'. This amounts to evaluating eigenvalues
of a Dirac operator D(A), since fermion contributions to
the effective potential are summarized by

V ff[A ] =i Tr ln[D(A ) —m ]

As was shown in a previous paper gauge symmetry can
be dynamically broken on a manifold M"&&S by fermion
one-loop corrections. It is a phenomenon caused by a
shift in fermion zero-point energies due to the compact-
ness of the extra-dimensional space S, which is very simi-
lar to the Casimir effect' in electrodynamics. We sum-
marize the results of a previous paper in this section to ap-
ply them to the case n =2 in later sections.

We first consider SU(2) gauge theory (A&
——A&.~/2)

with doublet fermions (4) on M" &&S . Gravity is neglect-
ed. We look for a gauge field configuration minimizing
the effective potential V,fr[A]. We denote coordinates of
M" and S by x~ and polar coordinates (8,$), respective-
ly. Accordingly A„splits into A and (Ae,A~). (Ae,A~)
play the role of effective Higgs fields in the adjoint repre-
sentation in lower dimensions M". Unlike the standard
unified theory of strong and electroweak interactions there
are no arbitrary parameters associated with these effective
Higgs fields, all coupling constants being uniquely fixed
by gauge invariance.

The effective potential is evaluated for two typical con-
figurations, a pure gauge configuration (Az ——0) and a
monopole configuration (A„=A„'"). The latter' is given
by

Ds& (A)=oi — + —, cot8 igAO—(0) 1

r

a+02 . —lgAy
rsinO 8

= eg 0 —le 0r ae

+ey o
1 8 . 1

rsin8 BP ~ r

l lA=exp ——Po3 exp ——8o2
2 2

Eigenvalues of Ds&(A) are easily found, since

D 2(A =0) =
2 [( I + —,o ) + 4 ],

(Amon)2 ( ( + i ~+ & ~)2
r

or in a rotationally symmetric representation by

D,(A) =AD'2'(A)Qt

(2.4)

(2.5)

(2.6)
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Here I is the orbital angular momentum on S expressed
in terms of 8 and p. Ds2(A =0) has eigenvalues

(j+—, ) /r (j=—,',—,,. . .) with multiplicity 4(2j+1),
whereas Ds, (A '") has eigenvalues j(j + 1)/r
(j=0,1,2,~ ~ ~ ) with multiplicity 2 for j=0 and 4(2j+1)

I

otherwise.
To evaluate V,ff[A] we employ the dimensional regular-

ization of 't Hooft and Veltman, ' to find for a Dirac fer-
mion

V2 ——V,ff[A =0;M"XS ]
r

dn 1 ao ~ 2
2[n/2] I 4~ ln +2+ J +I2

(2m. )n 4n.r j, (
r

2[n/2] —n —2

n/2+ 1
I

VF V [g mon. Mn ~S2]F

2t n/2] —n —2

n/2+ 1
I

ao

4J'(J'2+b2) /n2

r +

OO

b"+ +2(2j+ 1)[j(j+1)+b ]n~

j=1

(2.7)

(2.g)

where b =mr In t.he flat-space M"+ fermion contributions to V,ff are given by

V) ——V,ff[A =0;M"+ ]

2[n/2] —n & ~ n +2
I&~2+' 2 n +2

(2.9)

The sums over j in Eqs. (2.7) and (2.8) have to be first done for n & —2 and to be defined for positive n by analytic

continuation. Detailed calculations are given in the Appendix. The results are

pgI —— f, (n, b) (a =2,3), (2.10}

bn+2 b (b2 2)n/2
f2(n, b}= +2 I dx

nrem " x(x' b)"~—
+2 cos dx

b e 2~x

R" nm A $8
f3(n, b)= + dx sin +2x cos

+2 o e2mx 2

R =[(x b') +x']—'~', w =tan ' (0&w &m-) .
b2 2

For even n, f, (n, b) can be evaluated in a closed form:

f2(4,b)= , b6+ „b4 —b2~„—, , f—3(4—,b)= , b6+ ,', b4+ ,', b2 ——„,, et—c . —

In our approximation the difference between total effective potentials for A&
——0 and A&

——
A &

'" is

b, V"' = V"'[A ".M"XS']—V'"[A =0 M"&&S']

=Tr(F~~'" ) + g [V3 ( m; ) —V2 ( m; )]

(2.11)

1

Zg 2p4

2[n /2] —n

, I —— g [f3(n,m;r) —f2(n, m;r)] . (2.12}

For odd n the correction term in (2.12) is finite. Since

f3(n, mr) —f2(n, mr)- (mr)" &0
48

for m &&r ', we conclude that gauge symmetry is dynam-
ically broken (hV,'ff &0) for n =4p+3 (p=0, 1,2, . . .),

provided that there exists a very heavy fermion. For even
n the correction term in (2.12) diverges and has to be

properly renormahzed. We discuss this problem in the
next section for n =2.

So far we have calculated only fermion-loop correc-
tions. If one calculates gauge-boson-loop contributions,
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one would find an imaginary part, since A '" is a saddle
point of the action. This imaginary part, however, is a
fictitious one and should have vanished if dressed gauge-
boson propagators with fermion loops were used in the
calculations. This implies that the loop expansion is not
very good.

III. RENORMALIZATION

To extract physically meaningful finite results, the ef-
fective potential must be renormalized in even dimensions.
It is not very clear if this can be done consistently for gen-
eral n and m even at the one-loop level. In four dimen-
sions, namely for n =2, renormalization of gauge theory
on a curved manifold is well defined. In our approxima-
tion in which only fermion one-loop corrections are
evaluated, renormalization of g, A&, A (cosmological con-
stant), and coupling constants associated with R, R,
Rz„, and R&„~ is enough to render the theory finite.
(Here R, R„, and R& z are scalar curvature, Ricci ten-
sor, and Riemann tensor, respectively. ) Arguments simpli-
fy for the difference hV',g in (2.12), since divergences as-
sociated with gravity (A,R,R, . . .) cancel.

Divergent parts in Eqs. (2.9) and (2.10) are given by

where @=2—n. In particular

g yF(d' ) yF(dh ) yF(di )
3 2

24~ r
(3.2)

Z3 ——1 —
LYLY

T)—g 1

6H (3.3)

Zg ——1+Ng 2 Ty —,g2

12m'

for SU(X) gauge theory, where T~= —,
' for fermions in the

fundamental representation and N~ is the number of fer-
mion species. In this gauge

To carry out renormalization with the monopole back-
ground field it is most convenient to take the
background-field gauge. We introduce a dimensionless
coupling constant by substituting g in the preceding for-
mulas by gp', where p is a scale parameter. In the back-

g' )=Zggp'~. If only fermion one-loop corrections are
taken into account,

~~F(div) 1 4 1
2m4~2 (3.4)

T&F(div)
Y 3

4 1 m'
2 m +

4~ 12~ r
1 1 1

120~2 r4 e
'

1 4 1 m 1 1
2m + +4~2 12~2 r 2 30~2 r 4

(3.1) Note that the renormalization constants in (3.3) are deter-
mined in the Aat spacetime M .

Now we are ready to show that the renormalization
(3.3) removes the divergence (3.2):

g y(ren) Z T (~mon )2+g yF

+g yF(div) +g yF(fIIIite)
2g2p'r4 12' ~

, ,+, , ln2v ~pr+ 1 —y
2g 2r 24m. r 2

1 1, ~ g f'(2, m(r) .
2g 2r4 Wr4

Here the coupling constant g should be defined at the energy scale p. In passing,

z „gf'(2, m;r)+O(E),1

I

where f(n, b) =f3(n, b) —f&(n, b). By choosing a scale p=e(r )~zl2V mr=0. 23/r we h'ave

(3.5)

(3.6)

lnp
~( ) 12ir~

is a scale-invariant quantity in our approximation. f (2,b) is given by

f'(2, b)= I dx —,x[1+2(b —x )]1nR+ —,(b —3x )w —x(b —x )ln
~

b —x (3.7)

For large b

f'(2, b) ——„lnb+ —„+0 1
(3.8)

l

Numerically, f'= —7.8&&10, 0, 1.5X10, 1.2&&10
and 1.9)& 10 ' for b =mr =0, 0.75, 1, 10, and 100,
respectively. Unlike higher-dimensional theory (n & 2),
the dependence of f' on m is very weak. To have dynami-
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cal gauge-symmetry breaking in four dimensions, nainely,
to get b, V,'fr"'&0, we need a large number of heavy fer-
mions. For instance, if g /4~ &g and mr-)0, we need
—30 fermions. Consequences of dynamical gauge-
symmetry breaking are examined in the following sec-
tions.

In actual fact all divergences in (3.1) can be removed to
define a renormalized effective potential for each case.
Coefficients in counterterms in gauge theory on a curved
spacetime have been determined in Ref. 20. By using the
results there and noting that R =2/r, R„„R"=2/r,
and R&„&~R""I' =4/r for M &&S, one can confirm that
the divergences (3.1}are precisely canceled by the counter-
terms.

IV. EFFECTIVE LO%'-ENERGY THEORY

and

(4.3)

In this representation the Dirac operator for 4 is given by

D =ipi +pz +ip3Ds, '(A "),
Bt Bx

where Dzz'(A '") is defined in (2.4). In the rotationally
symmetric representation it becomes

Let us assume that there exist both massless and mas-
sive fermions in M &&S, say, one massless fermion and a
large number of heavy fermions (m & r ') so that gauge
symmetry is broken by the mechanism discussed in the
previous section. The aim of this section is to clarify the
particle content and their interactions at low energies,
namely, in the reduced two-dimensional space M .

The monopole background field A&'" breaks SU(2)
symmetry down to U(1). The associated two-dimensional
U(1) gauge field a~(x) (m =0, 1) is related to A&(x, 8,$)
by

D =ipi +pz +ip3D~z(A '"),
Bt Bx

the chirality operator being given by

I 5
——p3Qo. 3Q =y&e„o. .

(4.4)

(4.5)

It is clear from (4A) that an eigenstate of D z(A '")
with an eigenvalue m corresponds to a particle with a
mass

~
m

~

in M . Only zero modes of D,(A '") are ob-

servable at low energies. From (2.6) we see that there are
two zero modes:

A = a~(x)e, .w,4V' ~r
A e p Ae p"(8,——(b ) .

Indeed

r Q x—' TrF I I'"

(4.1)

D,(A '")u' +—'=0,g2

ug]

Q2)

Q22

~ ~—sine e

cose+ 1

cose+ 1

sine e'&

(4.6)

g r
(4.2)

Here the first and second subscripts of u;J refer to spin
and isospin, respectively. u' —' satisfies

e -~u'-'= —e .o.u'-+'=+u'-+'
r

where dQ=sin8d8dg
Heavy fermions are relevant for inducing dynamical

gauge-symmetry breaking, but contain no light-particle
components in M . Only the massless fermion in
M &S, which we denote by 4I, contains massless parti-
clesinM .

We introduce two-dimensional and four-dimensional
Dirac matrices y' and I ' by

n u'+-'~u'+-'=4~,

fdn u'+"u' '=0-
Note an important relation

e, .~e, .o.= —),

(4.7)

(4.8)

0 1X5=r r =p3

where —,e, .F and e„o represents the unbroken U(1)
charge and chirality operator on S, respectively.

+ contains two massless fields X and g' in two dimen-
sions:

X,(x)u'+'(8, $}+g,(x)u' '(8,y)
e( 8,x)= (4~r')»' Xz(x)u'+'(8, y)+gz(x)u' '(8,y)

(4.9)

pi and gz have negative chirality (I 5
———1), whereas Xz and g', have positive chirality (I q

——+ 1). By using (4.7) we find

f rzdQd x@D+=fd x[Xiy (8 —iga )X+giy (d +iga )g] . (4.10)
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Here the U(1) gauge coupling constant g is

4v-, (4.11)

Note that X and g have opposite charges.
The effective low-energy theory is described by (4.2)

and (4.10). It is an Abelian gauge theory with two mass-
less fermions.

V. ANOMALY

In this section we relate the four-dimensional anomaly
to the two-dimensional anomaly. In M &S we have the
axial-vector current anomaly

J~5 =e~% I'I,%,
(5.1)

where e," is a vierbein. Define a two-dimensional axial-
vector current by

j5 ——f r dQJ5

&y™—ye+4™yst . (5.2)

=—e "(8 a„—B„a ). (5.3)

This is exactly what is expected, if one starts from the
two-dimensional theory (4.2) and (4.11). There

Here we have used (4.3), (4.7), and (4.9). Then Eq. (5.1)
implies, with (4.1),

8 Jp= J r'dQB J5
r2 0 J~5 .„

2

r Q TrFI' I2 pv

dimensional manifolds like E3. Instead, we show that
left-right asymmetry naturally arises from a topologically
trivial manifold like S as a consequence of dynamical
gauge-symmetry breaking discussed in the previous sec-
tion.

Let us take SU(2) &&U(1) gauge theory in M &&5 as an
example. As has been shown earlier, a sufficiently large
number of SU(2)-doublet massive fermions induce gauge-
symmetry breaking SU(2))&U(l) —+U(1) &&U(1). In addi-
tion to them we introduce massless Weyl fermions such
that all left-handed Weyl fermions are SU(2) doublets,
while all right-handed Weyl fermions are SU(2) singlets.
Since zero modes of D,(A '") exist only for SU(2) dou-
blets, only left-handed Weyl fermions survive at low ener-
gies.

We denote SU(2) and U(l) gauge fields by A& and B&
with coupling constants g and g'Y. (Y is a "hyper-
charge. ") Corresponding two-dimensional U(1) gauge
fields are denoted by a and b~, respectively. As in Eq.
(4.9) a left-handed massless fermion has decomposition
given by

gi(x)u' '(8,$)
4~r' '" »(x)u"'(~ 0)

The effective Lagrangian in M is given by

(6.1)

y & kr. y k. )

—g'Yb (X y X +pl. y g ), (6.2)

As promised, the resultant U(1)XU(1) gauge theory is
left-right asymmetric.

Since the original four-dimensional theory contains
axial-vector gauge couplings, it must satisfy anomaly-free
conditions. In particular, from the (A„A„B~) vertex we
have

a (Xy y~)= —g e "(a a„—a„a ),2' Trl Y=O . (6.3)

8 (gy y5g)=+ e "(8 a„—B„a ) .
2m'

(5.4)

VI. LEFT-RIGHT ASYMMETRY AND ANOMALY
CANCELLATION

The sign is different for X and g', because they have oppo-
site charges in U(1). The result is nontrivial. The four-
dimensional equation (5.1) contains all degrees of freedom
associated with heavy particles in the two-dimensional
language. We kept only massless modes a,X, and g to
obtain Eq. (5.3), i.e., the anomaly equation closes in the
massless sector.

Here the trace is over all left-handed Weyl fermions.
The effective two-dimensional theory also contains

axial-vector gauge couplings. The question arises whether
it is anomaly free or not. A dangerous vertex here is
(a~b„). Noting that X(g) is right (left) handed, we see

(a b„) gg'XY —( —gg')XY'

(6.4)

That is, the condition (6.3) guarantees that the resultant
two-dimensional theory is anomaly free.

VII. SUMMARY AND DISCUSSIONS

The problem of left-right asymmetry in higher-
dimensional theories lies in the fact that even if one starts
from a left-right —asymmetric theory in higher dimen-
sions, one usually ends up with a left-right —symmetric
theory in lower dimensions. One way to get left-right
asymmetry is to start from topologically nontrivial extra-

In this paper we investigated gauge theory in M XS
as a toy model of higher-dimensional theories. Owing to
the compactness of the extra-dimensional space S fer-
mion zero-point energies are shifted so that the monopole
configuration 2 '" in S has lower energy density than
the pure gauge configuration. Its implication is very
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large. First of all, SU(2) gauge symmetry breaks down to
U(l). This is a new mechanism for dynamical gauge-
symmetry breaking, and could replace the Higgs mecha-
nism. Second, dynamically chosen A '" admits two zero
modes in a left-right-asymmetric way so that we have in
the reduced two dimensions M left-right-asymmetric
massless fermions.

We restricted ourselves to M &S . We can extend our
analysis to any even dimensions M"&S, assuming that
divergences can be consistently removed at least at the
one-loop level. Then we would find that for n=2, 6,10,. . .
gauge symmetry is dynamically broken, provided that
there exists a very heavy fermion. For n)6, only one
very heavy fermion (mr & 5) is enough to induce gauge-
symmetry breaking.

Similar phenomena are expected to happen for M"XS~
(q )3), though we have not examined it yet. The nonvan-
ishing curvature of the extra-dimensional space seems cru-
cial in our arguments. It must also be responsible for the
fact that A '", namely 1=1 components, and heavy fer-
mions are important to derive gauge-symmetry breaking,
though a consistent effective field theory for light parti-
cles exists.

We analyzed gauge theory on M"XS . The existence
of compact extra dimensions must be justified by solving
the Einstein equation simultaneously. This, with con-
struction of more realistic theories, is left to be investigat-
ed.

Finally we note that our results indicate that strong
gravity with quantum effects can lead to gauge-symmetry
breaking in four dimensions.

Note added in proof. After submitting this paper, the
author found E. Witten's paper which contains thorough
discussions of the problem of left-right asymmetry in
higher-dimensional theories [E. Witten, Princeton report,
1983 (unpublished)].
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APPENDIX: DERIVATION OF (2.10)

The discrete sums in (2.7) and (2.8) are given. by

f2(n, b)= —g j(j'+b')"/',
j=1

(A 1)

f (n, b)= ,' b" g(j + ,
'—)[j—(j+—1)+b—']"'.

j=1
(A2)

f2 and f3 are defined by (Al) and (A2) for n & —2, and
are to be given by analytic continuation for positive n.
Let us first consider f2..

1 Z(Z2+ b 2)n/2
f2(n, b) = —f dz . Z(z2+b2)~/2 — dz

C& 1
2n.iz tI~

I

~

~
~2~I!2 I

~ 2 2 ~Iac + l E'

dz 1+ . z(z +b )"/

(A3)bg+2 d d
z(z'+b )"

d z(z +b )
/'

n +2 c' cz 1 2miz c» —Zwtz

Contours are given in Fig. 1. The second term vanishes in the e~O limit. The third and last terms are complex conju-
gates of each other. The expression (A3) applies to all n. Noting cuts extending from z = +ib, we have for n & —2

(A4)

The formula for f3 is obtained in a similar manner:

f3(n, b)= ~b" f dz— —, (z+ —,')[z(z+1)+b ]"/
1 —e

,'b" f ——dz—'... —f "+"dz 1+ —2s'ize

1 ~„+2 & gn dz
n +2 4 g 1 2~hz

1 1
dz + dz

e —27Hz
(A5)
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This time the third term gives a nonvanishing contribu-
tion in the e—+0 limit to cancel the second term:

Re' =z(z+1)+b = x—+b +ix,

m/2—f dz. = —f tee"de
2

I I n
2

—27Tl 6 e

we find for n ~ —2

f3(n, b) = b" +
n+2

=+—b n

The expression (A5) is valid for all n By introducing
z = +lx and

g n/2
dx

O 2&% ]

n,m 7lW
sin +2x cos

2

(A6)
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