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Two-body relativistic scattering via direct interaction is discussed. For a certain class of interac-
tions the problem is equivalent to a family of nonrelativistic scattering problems. The relativistic
mass shell is shown to correspond with the kinetic-energy shell of the reduced problem. Under cer-
tain sufficient assumptions it is shown that known proofs apply, which ensure that the wave opera-
tors exist off-shell. Under more precise conditions, the scattering operator S can be defined also on
the mass shell, which is stable by its action. Moreover, S preserves the positivity of energy and is
unitary with respect to the inner product of on-shell states. In a more particular case, we obtain a
natural normalization in the interacting mass shell.

I. INTRODUCTION

Relativistic dynamics of directly interacting particles
has received growing attention during the last decade.
The physical relevance of N-body relativistic quantum
mechanics and whether it can be considered as a (generally
nonlocal) simplification with respect to quantum field
theory has been discussed widely in the literature. ' Start-
ing from a quantized version of predictive mechanics in
its a priori Hamiltonian form, we presented in a previous
article a covariant framework for N body scatte-ring.
Quite naturally, the multitime character of predictive
mechanics gave rise to a multitime formulation of rela-
tivistic scattering.

Formally, the transposition of the machinery of scatter-
ing theory into the language of relativity is rather easy.
The Newtonian time is replaced by X parameters which
generalize the proper times, and the role of the energy in
nonrelativistic mechanics is now played by N half squared
masses. But, whereas in nonrelativistic dynamics most
conventional results of scattering theory take place within
a Hilbert space of states which do not lie on the energy
shell, playing the same game in relativity, it seems at first
sight that correct mathematical statements are applicable
only to the states which lie off the mass shell. This looks
rather frustrating. Of course, the Galilean physicist does
not mind having to consider wave packets instead of plane
waves and, thus accepts without difficulty a smearing of
the energy shell around some average value.

In the relativistic situation we consider a more delicate
smearing of the mass shell, which has been proposed by
some authors. Their point of view is supported by the
fact that most real particles have a finite lifetime and,
therefore, could be slightly off-shell. This line of thought
leads to interesting developments, but requires a careful
discussion, which is beyond the scope of this paper.

We consider that the notion of asymptotic states with
infinitely sharp masses is at least a very convenient ideali-
zation. This concept offers the advantage of providing a
straightforward connection with familiar techniques

which utilize the conventional scalar product of the solu-
tions of the Klein-Gordon equation. Thus, in our opinion,
it is relevant to undertake a sharp-mass-shell theory in a
rigorous framework. (From now on, a mass shell will be
strictly understood as sharp. ) This article is mainly devot-
ed to this task, in the simple case of two particles without
spin. Consequently, we are going to improve and sophisti-
cate our previous formulation in order to make it applic-
able to the mass shell also.

Coming to the properties of the scattering operator, we
have been led to distinguish between its mathematical
unitarity apropert—y which occurs in the off-shell
framework and —its physical unitarity, defined with
respect to the scalar product we just mentioned. This
point is connected with the emergence of two kinds of
inner products ("mathematical" and "physical" ) that we
have stressed previously. Nevertheless, and in spite of our
need for going finally on the mass shell, we consider off-
shell investigations as a provisional but necessary stage of
the theory.

Considerable progress has been made in this area by
Horwitz and Rohrlich. Whether we follow their interpre-
tation or not does not affect its computational interest.
Independently, substantial advances in stationary relativis-
tic scattering have been made by use of the quasipotential
approach. Though quasipotential methods are practically
sufficient in most cases, they do not provide a complete
theory from a conceptual viewpoint since they quantize
the relative degrees of freedom only. For instance, having
in mind the eventual development of a second-quantized
program, we feel that it is necessary to be able to super-
pose states with various linear momenta, which requires
quantizing the full motion of the system.

In this article we restrict our effort to the unipotential
case, when the interaction is mediated through a single
relativistic potential. Indeed, in this situation the many-
time formalism undergoes a simplification which provides
a single-time scattering problem. Then we select a large
class of potentials which allows reduction of the initial
problem to a family of (parameter-dependent) nonrela-
tivistic scattering problems. The parameter involved here
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U =exp[i(~&H & + r2H2 )], (1.2)

where r~, ~2 are the evolution parameters (suitable generali-
zations of the proper times).

Let

is the total linear momentum, and the contact with a
time-dependent quasipotential approach is manifest.

Note that in Sec. II we remain more or less within a
conventional Hilbert-space method and display an off-
shell treatment, while in Sec. III we are led to a different
point of view and systematically manipulate continuous
matrix elements which have a rigorous setting only within
rigged Hilbert spaces.

Unipotential two-body scattering can be presented as
follows. We take c =Pi= 1, signature + ———,and
P =p~+p2. In the a priori Hamiltonian formalism, the
most general two-body system is defined by two commut-
ing operators:

H$ =a
/ + V$, H2 =H2+ V2,

where H] and H2 are the free Hamiltonians H~ —,p~,
Hz ———,

'
p2 for particles without spin. The evolution

operator is

—y
& —2 (1.9)

with y =y —(y P)P/P, then H differs from E—only by
(y P) /P, which commutes with y and also with V.

Hence, we also have

P7 e l 7 Ee —l TE (1.10)

II. OFF-SHELL THEORY OF 0—AND S

At this stage, our problem already exhibits some analogy
with a nonrelativistic problem.

Notation. We set r =x& —x2. When K is a timelike
vector, we define Vg

(K g—)K/K

Throughout this paper, P is just multiplication by K, in a
suitable representation. Thus, our distinction between g
and g is somehow academic, but it helps in reminding that
P stands for an operator, whereas the components of K are
numbers.

Situations arise when the "hat" construction must be
made with several vectors K, L, etc. In this case, the hat
is accompanied by a subscript.

0+—=limIV for r& and rz~+oo, (1.3)

where W= U 'U. In the general case, the problem of the
order of the limits has been solved in Ref. 5. In this paper
we only consider unipotential interactions (i.e., single-
potential systems) characterized by V& ——V2 ——V, with

[V,y P]=0, y=-,'(p, —p, ) . (1.4)

Therefore, the problem of the order of the limit does not
arise. Indeed, as we earlier pointed out, drastic simplifi-
cations occur.

Let us set r=r~+r2. Then, recalling that [H~+H2,
H& —H2] =0, we obtain

8'=exp ——(H&+H2)r exp —(H+Hq)r

which reduces the problem to a single-time scattering
problem. Now, from the identity

2+p 2 & p2+2y2

and assuming a translation-invariant potential, we have
—i' i&H

with

2
H= ,' (H )+H'2) — = —,y'—

8 2 (1.6)

U= exp[i(1 ]H& +7 gH2)]

describe the free-particle evolution. The relativistic
M@ller operators are naturally defined as

A. States and operators

Consider the off-shell wave function 'P(X, r). In view
of a more practical representation, let us make a Fourier
transformation with respect to the external coordinates
only. Thus, we set

%(X,r)= 2 f e' P(K, r)d K',j.

(2~)
(2.1)

and g is the wave function in the K, r representation.
If the development (2.1) is considered as a superposition

of waves with various linear momenta, we are led to some
restrictions on the support of f. First of all, spacelike
contributions will be discarded as unphysical. Thus, we
shall immediately assume that g vanishes when K &0.
Then, null contributions are to be avoided for a technical
reason: the most tractable relativistic two-body potentials
contain generally K in the denominator. Thus, we also
require that g vanishes for K =0. Moreover, we shall re-
tain only positive-energy amplitudes. Hence, we finally
impose that, in its argument K, g has support only inside
the forward light cone. This property will be called re-
tarded (ret) by definition. Beside this condition, we sup-
pose in this section that P is an ordinary function of K
(never a distribution with singularity). More precisely, g
is supposed to be (in the variable K) locally integrable and
of polynomial tempered growth, which ensures that 4' ex-
ists according to Eq. (2.1). We shall devote a particular
attention to the space P of functions F(K,r)=f(K, r)
which are retarded in X as above and depend on r only
through the variables

H = —2'y2+ V. a r E
rx ——r—

K
(2.2)

If we introduce the operators

E=E—V,
The label K will be dropped from r whenever no confusion
is possible. We shall use a similar convention for
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r~ (2.3)

If we consider f(K, r) as a function of r, which also de-
pends on K as a parameter, let us choose, for each K, an
adapted frame in which

Then, f(K,r) is explicitly given in terms of the variables
r' by a function g»(r).

The integral

with

(P,P') = f J(K)d K

J(K)= f g*(K,r)g'(K, r)d r .

Even if J(K) exists, the integral (2.9) is not necessarily
convergent. By a notation which refers to our restrictions
about the dependence on E, we shall say that
P CL ( retK, R,d r ) when J exists.

Replacing f and g' by their development (2.8) yields

I»= f g»(r)d'r (2.4)
J(K)= e'" "'

q "q'du du'd4r .2'
is manifestly invariant by any change of adapted frame
(keeping K fixed). We shall note

Choosing an adapted frame, we get
r(0) ro

I» ——f f(K,r)d r . (2.5)

Remark. %"e can write equivalently'

f f(K, r)d r= f F(K,r)5(r»')d r . (2.6)

Remark. When f depends on K only through r, then
I» is independent of K. [Proof. f(K,r)=f(r ). Then,
g». (r) is simply f( —r ) for any K and an adapted frame.
Hence, E disappears from the right-hand side of integral
(2.4).]

Let us define, for y(K, r ) and p'(K, r ) in ~, the sesqui-
linear form

r =(O, r),
dr=drd r.

Since y* and y do not depend on r, we have

J= f q*y' f e'"' "' dr du du'd r .2'
Integrating over r, 5(u —u') appears. Then, integrating
over u' yields

J= f q*q'dud'r.

But, since r = (0, r ),

(q, q')» ——f g*(K,r)g)'(K, r)d r .

For each admissible E, the condition

(2.7) (g),q')» ——f q*(K,u, O, r )y'(K, u, O, r )d3r .

defines a K-dependent Hilbert space L»(d r), which is a
copy of L (R,d r). We now turn to an application of
this.

In the wave function g(K, r ), we can split the variable r
into r' ' and r and Fourier transform with respect to r' ',
which yields an expression of the form

f e'"" y(K, u, r)du,
277

(2.8)

which permits representation of the state of the system by
a function cp, which belongs to u in the variables K,r and
depends additionally on u. This method is of great con-
venience in view of reducing our problem to a three-
dimensional one. For instance, let y'(K, u, r) correspond
to another wave function P' by a development analogous
to (2.8) and calculate the quantity (p,q')» according to
(2.7). In this case (q, q')» still depends on u. For each
admissible K and for each u, the condition (y, y')» & oo

defines a (K,u )-dependent Hilbert space L»„(R,d r ),
which is a copy of L (R,d r ). Whenever the dependence
on u can be ignored, we shall write L& instead of L&„.

Now, consider the scalar product

(f,f') = f P*f'd Kd r, (2.9)

which appears in the definition of L (R,d4Kd"r). We
can write

J= f (q,p')»du .

Hence, we obtain the important formula

(q, P')= f (q, qr')»d4Kdu . (2.10)

Accordingly, when PHL (R ), then p(K, u, r) is certainly
in L»(R,d r ) for any K. The converse is not always true,
since it requires not only that (y, tp)» exists, but also that

f (q, y)»d4Kdu & m,
which can be stated in terms of the variables u, r, saying
that

y(K, u, r)EL (R,d K,du, d r) .

We see also that, as a Hilbert space of functions in the
variable r, our space of wave functions admits the direct
integral decomposition

L (retK, R,d r)= f L»„du .

1. Operators

In the K,r representation, all the translation-invariant
operators have the form A(K, r,y ) with

a3'
l ()r

The case when additionally A commutes with r' ' and y' '
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(then A is also, in particular, a relative observable in the
sense of Todorov' ) is of particular interest for the simpli-
fications it implies.

Cxoing to the K, u, r representation [where r' ' and y' '

are, respectively, represented by (1/i )a/au and u], the ac-
tion of A ignores the variable u. In other words

Ag(K, r)= f e'"" A»y(K, u, r)du,2' (2.11)

B. Myller and scattering operators

Under the assumptions of Sec. I, E commutes with P,
r P, and y p. More precisely, in the notations of the K,r
representation,

~here V is an operator which depends on E, r ~, and y ~

only. We do not intend here to discuss under which as-
sumptions Q- might be a strong (or weak) limit in
L (R,d4K, d r).

It must be clearly understood that the result presented
below does not imply the existence of Q in L (Rs). In
fact, we have replaced L (R ) by L (retK, R,d r), which
is a direct integral of the various L»„, and Q is defined as
a direct integral of operators. We are able to define the
wave operators as limits in Lz. Indeed, solving the ques-

where Az depends on E, r, and y only. Considering y as a
function which depends on E and u as parameters, we see
that A induces a K-dependent operator A~ in L&. For ex-
ample, A =y

A» ——5» ———U„+(K.d/dr) /K

which reduces to the ordinary Laplacian in adapted coor-
dinates. Conversely, let us give in Lz an operator A~
(which depends on K as a parameter). We define

Ay=A»y for each value of K in the support of the wave
functions with respect to the retarded conditions previous-
ly stated. Then, Ag is defined through Eq. (2.11). Beware
that even if g belongs, VK, to the domain of A», assuming
yHL (R,d K,du, d r) in general does not imply that
p'=A»y would lie in L (R,d K,du, d r). Actually, in
such a case, the only thing which is always true is that
Azy is in L& for each K.

A sequence of linear operators 2, of the above type is
said to converge strongly in Lz when VX, Az —+Bz
strongly. Setting By=Szy for each A, we say that
B=limA in Lz. If we define A*y=Azy, where A~ is
the conjugate of A» in L» [i.e., with respect to the K-
dependent scalar product (2.7)], it is easy to check from
(2.8) and (2.10) that

(A*/, f') = f (A»y, y')»d~Kdu,

(P,Ag') = f (y,A q)') d Kd

Whenever these integrals exist, they are equal. Thus, our
convention is compatible with the usual definition. It is
noteworthy that all the definitions in which we crucially
utilize Eq. (2.11) are based upon the direct-sum structure
of our space of states —in fact, direct integral. "

SP= f e'"" S»y( Ku, r)du,
27T

(2.12)

where Sz is nicely defined and unitary in Lz. Since we
have departed from a strict L (R ) framework, it remains
to be checked whether the relativistic intertwining rela-
tions hold. (In our first presentation of relativistic scatter-
ing, they were derived from more restrictive assump-
tions. ) This can be actually carried out as follows. First,
let us prove that Q —+ intertwines H~ —H2 with H~ —H2.

our unipotential case, since H
&
—H2 ——H ~

—H2, we
only have to verify that it commutes with Q —.But

- . a
(Hl H2)»

Br '

hence,

(Hi H2)f= —f e'"" ~K
~
urdu,

2%

while

Q+-g= f e'"' Q»~ydu .
v'2m

We see that, in the K,u, r representation (i.e., using the
direct-sum decomposition), Hi H2 just corresponds —to
the multiplicative operator i7Cu, while Q corresponds to
Q&, which acts only on r, not on X,u. Obviously, Qz
coininutes with iKu, therefore, [Q +—

,Hi —H2] does vanish.
Then, we see that Q —intertwines E with E (consider Q~,
E», and E» and apply the nonrelativistic theory in L».).
Now recall that

ui +s2 =2& +2m2 2 & 2 2

as noted in Sec. I. The intertwining of H&+H2 with
H&+H2 follows immediately, provided S" exists, in the
direct-sum sense. Thus, we have

tion of convergence in L~ only requires solving a E-
dependent family of three-dimensional problems. For-
tunately, some criteria are well known, which guarantees
the convergence of 8'in Lz. '

In the case of a central potential V(K, r ), a sufficient
condition is that for each K in the support of the waue
functions, we have

f ~

V(K', r"')
~

'd'r" & ~ .

In the energy-independent case (simple central potential),
this condition reduces to

f ~

V( —r ')
~

d3r & a) .

This permits us to incorporate some nonrelativistic results
into the present covariant framework. In practical calcu-
lations, one should be aware of the fact that E and V are
homogeneous to a squared mass. Note also that H and E
appear in W with opposite signs [Eqs. (1.5) and (1.10)].
Therefore, Q +—corresponds to the + wave operator of the
nonrelativistic system.

Qwing to the relation (2.10) and its previously men-
tioned consequence with respect to Hermitian conjugation,
the scattering operator S=Q *Q+ acts according to the
formula
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0-Hi ——H i 0+-, ( ——,
'

&—V)X=eX(K,r") . (3.5)

[S,Hi ]=[S,Hz] =0, (2.13)

which provides a heuristic argument for the claim that 5
leaves the free mass shells invariant. '

Unfortunately, the formalism displayed in this section
will not encompass the case of on-shell states. In order to
clarify this question and to settle a more meaningful
description of scattering, we are going now to modify and
to enlarge the formalism.

III. SCATTERING ON THE MASS SHELL

A. Mass shell and energy shell

In spite of its formal interest, the point of view
developed in the previous section remains incomplete.
Indeed, our main purpose was to obtain a description valid
for the case of on-shell particles. It cannot be expected
that such particles would match the I.z scheme presented
there. In fact, taking the sum and the difference of the
wave equations in the E,r representation, namely

H&f= —,m| g, H2$= —,mq g,j. I

and writing that P is just multiplication by E, we have ex-
plicitly

(m) +mp —,'K )$=2y $—+4',

(m~ m2 )$—=2K yP, y =. —iB/Br .

(3.1}

(3.2)

Equation (3.2) is immediately solved by taking f in the
OITll

P=e'"" X(K,r),p(0)

where

(3.3)

2 2
I

—m2 a

and a = —,'(m& —m2 ). Inserting (3.3) into Eq. (3.1) yields

Q
(m, '+m, ' —2K')g= 26+2, +4V 1i

with b =y (it reduces to the Laplacian in an adapted
frame). I.et us define

a2 m1 +m2 K2
e(K) =

2X 4 8
+

Then we have

(3.4)

( ——,5—V)/=ed .
p(0)

Since 6 commutes with r' ', we can divide by e'"" and
obtain

Q+-H, =H, O-+ .

[Let us again emphasize that all of the operators con-
sidered in this section are not operators in L (R ), but are
those only defined in the direct-sum sense. ] Hence, after
an elementary algebraic manipulation, we deduce

Note that from (3.3), f corresponds to tp(K, u, r ) according
to (2.8) with

y=V'2~5(u —p)X . (3.6)

On-shell states are normalizable neither in L (R ) nor in

LIt A.ctually, we see that y (respectively X) is an eigen-
state of E= ——,'5 —V for the eigenvalue e. In other
words, g is on the mass shell if and only if y (or X) is on
the energy shell of the reduced system (with unit mass and
potential energy at —V). Under the assumptions which
allow 0—+ to exist, states on the energy shell in the con-
tinuous part of the spectrum are not in Lz. By a similar
argument (with a vanishing V), we can map the free mass
she11 onto the kinetic-energy shell of the reduced two-body
system with e as in (3.4}.

I..Y=a,
L +4K =2(m& +mz ) .

(3.8)

(3.9)

Splitting Y into FP ' and FL as in Eqs. (2.2) and (2.3), we
see easily that

(0)

(3.10)

FL ———2e(L) .
2.

It reduces to —Y in the frames adapted to L. Clearly,
e(L) cannot be negative. Let us reintroduce individual
variables, setting

L, Il= —+Y l=——Y
2 ' ' 2

(3.11)

Thus, (3.8) and (3.9) read l| ——m ~, l2 ——mz .
The plane wave (3.7) represents a system of two free

particles with respective momenta l&, l2. Though we have
assumed total positiuity from the outset (i.e., L points for-
ward in the future), we have not necessarily indiuidual po-
sitiuity (i.e., both I, and iz future-oriented timelike vec-
tors). The formulas written so far in this subsection are
quite general. They also apply in a mixed situation, which
could be interpreted as featuring particle with antiparticle,
provided the total momentum is future oriented and time-
like. Such a case will not be discussed in this work. From
now on, we shall be concerned with both /& and l2 point-
ing in the future. In fact, a criterion of individual posi-
tivity is available. We can check that

L'&
I
ii' —4'

~

(3.12)

B. Plane waves and positivity

On the free mass shell, the prototype is a plane wave.
In the K,r representation, plane waves are of the form

g=(2n. ) 5(K —L)e' '.
In this formula L and F are the eigenvalues of P and y,
respectively. Accordingly, L is a timelike, future-oriented,
constant vector. Y is a constant vector, and they are sub-
mitted to the mass-shel/ conditions:
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is equivalent to

I 12)0 and L I( )0.
Proof. Write (3.12) as

2) I(2 ~22

(3.13)

insert

C. Extension of the scattering operator

The remark made in Sec. III A implies that the scatter-
ing operator can be extended to on-shell states insofar as
(for each adniissible K) S» can be extended to the kinetic-
energy shell. This is actually possible provided S~ maps
into itself the space WK made of the functions of fast de-
crease in r. In this case, SK is defined as a linear operator
in the space WK of tempered distributions in r, and it is
unitary in the rigged Hilbert space':

—:L $]+L
and develop and subtract L./& (respectively, L /2) from
both sides (this argument is general and does not require
the timelikeness of /i, /2). In this situation, where L is
timelike and future oriented, and while m& and m2 are a
priori assumed non-negative, Eq. (3.12) expresses that both
particles have positive energy.

tailed condition under which this property holds true.
Indeed, we consider that this nonrelativistic problem has
been previously solved (at least implicitly —see the special-
ized literature about scattering theory). We also remind
the reader that (for each K and u) SK is the scattering
operator of a nonrelativistic system. In particular, Sz
commutes with E and does not lead out of the kinetic-
energy shell.

Now S can be extended, by (2.8) and (2.12), to a larger
class of states characterized by the fact that p(K, u, r ) is a
tempered distribution in r but remains an ordinary (retard-
ed) function of K. Such states can possibly be on the mass
shell. But still, the plane wave (3.7) is not attainable from
this definition. In fact, for (3.7) we have

p(K, u, r) =(2') ~ 5(K L)5(u——E'o')e'"" . (3.17)

Ai/i=(2n) 5(K L)e' —" A e (3.18)

Thus, we are obliged to go one step further, setting up a
definition which applies to any plane wave. We proceed
as follows. Let A (K,r,y ) be an operator of the type con-
sidered in Sec. II A, with this additional property that Az
carries P'K into itself, VK. Then AK is extended to the
whole WK and satisfies an equation similar to (3.14). Let
a be its matrix element in WK with respect to the extend-

i(, Y r)&
ed basis e . Now, when P is of the form (3.7), we de-
fine

assuming (3.7) means that i)'j is an eigenvector of K and y
with the respective eigenvalues L„Y. This suggests we call

~
L, Y) the corresponding state vector in the bracket nota

tion.
Expression (3.18) is manifestly a tempered distribution

in the variables K,r. Take a frame adapted to L, write
sY ro

~K +LK +~K

S Kpex[i( Y r) ]K= .f o(K, YK,ZK)exp[i(Z r)K]d ZK. ,

(3.14)
where the (continuous) matrix element o. is a distribution
in Y and Z, but depends on K as a parameter. By unitari-
ty, o. satisfies

f e'z"'5(Z' —Y')dZ'

and develop the last term in (3.18) with the help of a, the
Rt kernel of A. This yields, ' in bracket notation,

In particular, the action of SK on exp(i Y»r~) yields a dis-

tribution. Let us develop it on the basis exp(iZ»r») We.
have

f o*(K,Y,Z)o.(K, Y', Z)d Z=5(Y—Y'),

f o(K, Y,Z)o*(K, Y', Z)d Z=5( Y—Y')

(3.15)

(3.16)

A iL, Y) = f iL,Z)5(Y —Z )al (Y,Z)d Z . (3.19)

Hence, we can compute, in the plane-wave basis, the ma-
trix element of A as a linear operator in W*(R,d K,d r ):

(with three-dimensional 5 functions).
Of course, if we consider two different wave functions

(like in Sec. II), Eqs. (3.15) and (3.16) imply that

Applying (2.11) with S as A and (2.8) in (2.10), we find

The invertibility of S follows from that of S~ by the same
way, and finally S is unitary in L (R,d Kd r ).

Remark. When the potential depends upon K only
through r and y, the question of whether or not o. actually
exists is a purely nonrelativistic problem [existence of the
S matrix for the potential V(r, y)]. We assume hereafter
that SK. does map WK into itself (VK). Accordingly,
(3.14)—(3.16) are valid. We do not examine here the de-

Si/i=(2') 5(K L)e' " S»e'— (3.21)

It is obvious that [S,K]/=0. Moreover, [y K,S]/=0
for the following reason On the o.ne hand, y.KQ= Y.Li/i,
hence Sy Kg= Y.LSi/i. On the other hand, we can com-
pute y KSQ from (3.21). Since y.K does not act on r, one

(L'Z ~A
~

LY) =5(L —L')5(YI ' Zl ')a(L, Y,Z) . —
(3.20)

There is no difficulty in checking that this generalization
of A is compatible with the point of view developed in
Sec. II; we leave it to the reader.

When A is the scattering operator S, Eq. (3.20) gives the
S matrix by substitution of o. in place of a. Equation
(3.18) becomes explicitly
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[s,sc ]=[s,y.x]=[s,y']=0 (3.22)

in the whole space W+ of distributions in K,r retarded in
A look at the wave equations (3.1) and (3.2) with van-

ishing V shows that the free mass shell is made of the
eigenstates common to y EC and 2y + —,K . S commutes
with them, and thus the mass shell for each particle is
stable by the action of S as indicated in Sec. II. Still, we
face the question of making sure that the S operator
transforms correctly the states of positive energy.

Pure positive-energy states are superpositions of plane
waves with individual positivity (both li and l2 point to-
ward the future). (The mixed case of L &0 with li point-
ing towards the future and l2 towards the past or the
revers~will not be considered here. ) Let us prove that
actually pure positiuity is preserued by the action of S. By
superposition, it is sufficient to prove it when the incident
wave is plane. Supposing that

~
L, Y) enjoys individual

positivity in the sense of Sec. IIIB, consider S ~LY),
which is given by (3.21). From (3.14) we have, in fact,

S

EELY)

= I iLZ)o(L, Y,Z)d ZL, (3.23)

iohere ZL '= YP' [utilize (3.21) with St and (Y r)L]. Let
us see that all the waves

~

LZ) in the above development
exhibit individual positivity.

Like
~

L, Y), each wave
~

L,Z ) is on a mass shell. It is
an eigenstate of P with the same eigenvalue L But, L and.
Z satisfy a couple of equations similar to (3.8) and (3.9)
with, perhaps, other values of a, mi, and m2. Since
ZL ' ——YL ', Z is not completely arbitrary. We have, in
fact,

I. Z=Y.I
By (3.10), we see that ~LY) and ~LZ) correspond to the
same value of a, where a is defined (Sec. III A) as
—,'(mi —m2 ). So, ~L,Z) and ~LY) correspond to the
same L, and the same m~ —m2 . But the positivity cri-
terion (3.12) depends only upon L and mi —m2 . Being
satisfied by

~
L, Y) it is also satisfied by

~
L,Z), which

proves our statement.

IV. PHYSICAL UNITARITY

A. A useful property

As mentioned previously, from (3.20) we have explicitly
the S matrix

finds y KSQ= Y LSP. Finally, we also have

[Sy"'l=o.
Indeed, our assumptions mean that S~ commutes with E,
which is proportional to y (in other words, Sx does not
lead out of the free kinetic-energy shell), and noticing that
y acts neither on X nor on r' ~, we deduce easily by (3.21)
that S commutes with y

Now we can use the identity expressing y in terms of
y, y.K, and X . From commutation with y, y.EC, and
K, it follows that S commutes with y also. Recalling
that the plane waves

~

LY) form a basis, we summarize
these results and write

(,L'Z
i
S

i
LY) =5(L L—')5(YL, ' —ZL, )o(L, Y,Z) . (4.1)

From (3.15) and (3.16) it is easy to check that

S*S=SS*= 1, (4.2)

where S* is conjugate to S with respect to the scalar prod-
uct (2.9), or equivalently, defining S by its matrix ele-

ments from (4.1). The physical interest of this property
already emerges if one is aware of asymptotic complete-
ness. Its very meaning could be clarified if a probabilistic
interpretation of the scalar product (2.9) were to be found.
This interesting question opens a number of topics which
deserve investigation. But for the moment, we refer to
(4.2) as mathematicaI unitarity because we like to stress its
importance with respect to the formalism.

The physical inner product (O'L, r, %'L r ) can be defined as
follows:

D, ,(L,L', Y, Y') = LO
+ YO

2

0I O

2

x5(L—I.')5(Y—Y '), (4.3)

in which I. and Y must be understood as related to L
and Y through (3.8) and (3.9) (hence, the dependence upon
mi, m2).

From (3.11) we easily recognize the product of Jordan
Pauli distributions in

I) —lz, l i —l2 (4.4)

This point of view is automatically consistent with the
usual definition of the scalar product for any pair of wave
functions which are on the m i, m z mass shell with posi-
tive energy (sixfold integration over the positive sheet of
g, xg, ).

Then the question arises whether this physical scalar
product is invariant by S (more precisely, by the on-shell
mi, m2 restriction of S). In fact, the answer is yes. Since
the plane waves

~

LY) satisfying (3.8) and (3.9) for a basis
of the on-shell space, it is enough to prove that S leaves

8. The physical inner product

Let
~

L, Y) and
~

L', Y') be two distinct plane waves on
the same (free) mass shell. That is to say L' and Y' as
well as L and Y satisfy Eqs. (3.8) and (3.9) with the same
fixed values of mi, m2. In terms of li, lz and I'»lz, de-
fined as in (3.11), Eqs. (3.8) and (3.9) represent the double
hyperboloid g &g associated with the masses m&, m2.
Let us assume that both

~

L Y) and
~

L'Y') are of positive
energy.

For the sake of convenience in the forthcoming calcula-
tions, let us revert to the initial X,r representation. [We
may notice that a lot of useful formulas —for instance Eq.
(3.23)—are not representation dependent. ] Now, the plane
waves are represented by

gy + lL 'X iY'r
LY

iL'X iY'r
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invariant their physical scalar product.
We shall compute (S+,SV') and show that it is just

equal to (%,W)=D. It is useful to notice that when
f(L, Y) is a distribution defined on the positive sheet of

Xg [the six-dimensional surface defined by (3.8),Nl ) N12

(3.9), and (3.12)], then

0
(S+,SV')= f ot (Y,Z)err (Y',Z) + Y

2

LO
X —Y 5(L—L')d Z

2

f(L, Y)D =f(L', Y')D . (4 5)
Lo

+ yO
2 2

—Y 5(L—L')
Note that the products in (4.5) are well defined. Indeed, D
is obtained [by Eqs. (4.3)] from a function of polynomial
growth multiplied by 5(L—L')5(Y—Y'), which is a dis-

tribution but in the variables L—I. ', Y—Y', which are in-
dependent from the arguments of f. As seen in (3.23),

S+I~= f matzo(L, YZ)d Zc,
where Z is submitted to the condition ZI ' ——FI '. Simi-
larly,

(4.6)

S%t. y
——f 0't. 'z o(L', Y'Z ')d'Zt. (4.7)

XD(L,L', Z, Z')d Zd Z', (4.8)

where all the quantities with carets are orthogonal to the
same L.

In an L-adapted frame we have, more explicitly,

(S+,Sq")= f crt (Y,Z)crt (Y',Z')

where Z' is submitted to the condition ZI' ' ——FI' '.
Though the subscripts are omitted in the variables with
carets for typographic simplicity, L is understood in (4.6)
while L' is understood in (4.7).

The physical inner product (O'I,z, +I.z ) is given by
(4.3), that is,

(LZ,L'Z') =D(L,L',Z, Z') .

By sesquilinearity we have, thus,

(se,sq ) = f ~"(L, Y"„z,)~(L', Y, z,', )

XD(L,L ',Z,z')d Zt d Z t

Taking (4.5) into account, we may simply replace L' by L.
Hence,

(SV,S%')= f o"(L, Y,Z)cr(L, Y',Z ')

X f o.t(Y,Z)crt(Y'Z)d Z.

But (3.15) reads simply here

f o t( Y, Z) rct(Y' Z)d Z=5(Y—Y') .

Therefore,

L(SC,S P') = + Yo
2

0L 0

x5(L—L')5(Y—Y')

=D(L,L', Y, Y'),

which proves that S is unitary with respect to the on-shell
product ('P, 'II').

(4.1 1)

Let P' be another state on the interacting mass shell.
By (4.11), we associate to it the free states P „,P,'„,. Multi-
pling the first equation (4.11) by 0 * and using the
isometry of the Mufller operators, ' we obtain

1. Application

We consider here the simplest case of scattering, assum-
ing a purely continuous spectrum (no bound state).

Let P be on the interacting mass shell [i.e., P satisfies a
system equivalent to (3.1) and (3.2)] with the interaction
term. For each P of this kind, one can associate the
asymptotic states P;„,P,„„which are free, through the for-
mulas

XD(L,L ',Z,Z')d Zd Z ' (4.9)
Using the second equation (4.11), we replace p by Q+p, „,
which rinally yields

with ot(Y,Z)=a(L, Y,Z), etc. From (4.3) and the con-
ditions Z =Y, Z' = Y' we have

Lo LO
D(L,L', Z, Z') = Y —Yo

Nou~=SOin r (4.12)

as usual. Then, the physical unitarity of S provides a
solution to the problem of normalizing the interacting
mass shell,

Indeed, it is natural to define

x5(L—L')5(z —z') . (4.10)

Insert (4.10) into (4.9) and integrate over Z'. This pro-
v&des

It is obvious from (4.12) that these two definitions coin-
cide because S is unitary with respect to the physical inner
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product of the free states. The above formula defines in
the present case a unique ((b, P'), which reduces to the sca-
lar product of free states when no interaction is present.

V. CONCLUSION

We have shown that a wide class of potentials permits
us to set the problem of relativistic scattering as a
parameter-dependent family of problems tractable by
well-known methods of nonrelativistic scattering. Note
that, even in the off-shell case, we have used a framework
which is more flexible than an L (R ) axiomatic that we
had tentatively proposed in our first article on this sub-
ject.

A more accurate mathematical treatment could be of
interest. For instance, one can ask whether, in the sim-
plest cases (simple central potential), a convergence
stronger than that in I.z might be obtained for the wave
operators, and compare this with some of the results in
Ref. 5.

The correspondence between the mas shell and the ener-

gy shell of the reduced problem has been emphasized. In-

tuitively, this correspondence is the key idea of our
method. Under certain sufficient assumptions, it has been
proven that the scattering operator does not lead out of
the mass shell, preserves the positivity of the energy, and
is unitary in two ways: not only in the off-shell frame-
work, but also with respect to the usual inner product of
the solutions of the Klein-Gordon equation. These prop-
erties are essential in view of the probabilistic interpreta-
tion. That is why it would be worthwhile to try to extend
these results for more general interactions.

The question of N-body scattering is also very exciting,
but it is already rather complicated to construct N-body
quantum systems. Thus, we guess it will remain an open
question for awhile.

Let us conclude with a remark. The results we have ob-
tained are not at all surprising. They hold in quantum
field theory insofar as S-matrix theory can be rigorously
derived from quantum field theory. But in our approach
it is ensured step by step that these expected scattering
properties are consistent with a certain explicit model of
interaction.
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