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In the preceding paper, the laws of motion were established for classical particles with spin which
are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approxi-
mation scheme is developed for solving the coupled nonlinear field equations in any order and for
determining the corresponding equations of motion. In zeroth order the potentials are taken as the
usual Lienard-Wiechert and Bhabha —Harish-Chandra potentials (generalized to isospace); in this
order the solutions are necessarily Abelian, since the isovector describing the charge is constant.
The regularization necessary to obtain expressions finite on the world lines of the particles is
achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in in-

tegral form. Omitting dipole interactions, the integrals for the various terms are carried out as far
as possible for general motions, including radiation-reaction terms. In first order, the charge isovec-
tors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possi-
ble for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-
distance formulation of the theory are discussed in an appendix.

I. INTRODUCTION

In the preceding paper' the field equations and the laws
of motion for a point particle moving in an (unspecified)
classical Yang-Mills field A"(x) and a classical scalar
field (Higgs field) P(x) were established, using energy-
momentum conservation for the coupled system of matter
and fields as well as covariant charge conservation. The
source terms in the field equation (I2.9) and (I2.12) were
given by the expressions (I2.23) and (I2.24) characterizing
the densities j "(x) and p(x) as being due to the motion
of N classical point particles each carrying a monopole
and a dipole moment. In this paper we establish the equa-
tions of motion, i.e., the laws of motion of the particles in
the explicitly determined fields, in various orders of an ap-
proximation procedure described in Sec. II, including the
radiation-reaction terms of the particles in the order of
iteration considered. We first describe the regularization
procedure adopted to yield expressions for the fields
A "(x) and P(x) due to each particle which are finite on
its world line (see the first parts of Secs. III and IV,
respectively). Use is made of the Riesz method2 which
has been applied to similar problems before, e.g, yielding
directly the I.orentz-Dirac equation for the motion of a
classical relativistic point charge. Some technical details
needed in Sec. IV are presented in Appendices A and B.

In the zeroth order of approximation the equations for
the P and A" fields decouple, while this is no longer the
case in the first and higher orders. The fields used in all
these calculations are taken to be purely retarded.
Evaluating them on the world line then leads to the ap-
pearance of radiation-reaction terms in the equations of

motion in all orders. No such terms appear if time-
symmetric fields are assumed; such a theory is briefly dis-
cussed in Appendix C. It is shown there that radiation ef-
fects can be obtained by Wheeler-Feynman-type con-
siderations familiar from electro- and mesodynamics. Ap-
pendix C also contains a discussion of the possibility of an
action-at-a-distance formulation of the theory, and of the
difference between this formulation and that of the time-
symmetric field theory.

One of our main aims is to study the dynamical effects
of the scalar or Higgs field qV(x), which is a classical iso-
vector field associated with a range parameter [cf. Eq.
(I2.12)]. It appears that this classical field is a means to
simulate, within the framework of a non-Abelian gauge
theory with point sources, the effects of an extended
source distribution; it allows us to avoid the difficulty of
defining in a gauge-independent manner what is actually
meant by an extended source distribution j "(x) in such a
theory. We use the Yang-Mills current (I2.24) (with the
dipole terms being dropped later) for non-Abelian point
particles and the gauge-covariant current density associat-
ed with the scalar field P(x) [Eq. (I2.14)]. This will in-
duce a spread-out non-Abelian charge distribution and
thus introduce the effects of an extended source into the
classical theory in a gauge covariant manner. The range
parameter (with diinension of an inverse length) deter-
inines the domain in space-time over which P(x) varies
appreciably.

Furthermore, the classical Higgs field represents an iso-
vector field which is determined as part of the nonlinear
dynamics, and simultaneously provides a direction field
which can be used to form appropriate gauge-invariant
quantities, i.e., one can project a gauge-dependent quantity
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appearing in the equations onto the Higgs direction and
thereby obtain a gauge-invariant expression. This can be
done order by order in the approximation scheme
described in Sec. II. The charge associated with a particle
interacting with the Yang-Mills field is proportional to a
classical isospin vector ~. The equation determining the
time variation of this charge is determined in each order
in the process of solving the field equations. In the ab-
sence of dipole Yang-Mills interactions, it is the interac-
tion of the particle with the Yang-Mills and Higgs fields
which provides the possibility of such a time variation in
first and higher orders; in zeroth order w is necessarily
constant and thus the solutions are Abelian. The possibil-
ity of nonvanishing time variation of 7 in first order pro-
vides a mechanism for radiation of charge from a system
of interacting particles. The question whether such a clas-
sical radiation is possible was one of the main motivations
for the present investigation, as discussed in the preceding
paper, and it appears that an important dynamical effect
of the Higgs field is that it contributes to such a process.

II. THE APPROXIMATION METHOD

n=0 n=0
(2.1)

Then we can write Eqs. (I2.11) and (I2.12) as

y g "(O„A.—a"„„A~)=4~ g g"„~ + g g"„~",
n=0 n=0 n=0

(2.2)

The laws of motion found in the preceding paper are
exact. The fields entering these laws must be determined
from the nonlinear set of coupled partial differential equa-
tions (I2.11) and (I2.12).

To avoid unnecessary notational complications, we shall
in the following concentrate our attention on a single par-
ticle and drop all subscripts i. The results obtained can be
generalized immediately to the case of N particles, howev-
er, and we shall restore the subscripts when needed.

In Eqs. (I2.11) and (I2.12) it is clear that the nonlinear
terms due originally to covariant derivatives are character-
ized by appropriate powers of the dimensionless constant

g, and similarly for the nonlinear terms due to
F(g P IX ) [defined in (I2.10), where g had been expli-
citly introduced for that purpose]. We now consider the
formal expansions

00 00

g g "((-j+7 )„P=4rr g g"„p+ g g"„A, (2.3)
n=0 n=0

+~~[,p ~"(~)5'(s )]jd~. (2.4)

In the lowest order in g, Eqs. (2.2) and (2.3) reduce to

OpA" —8"~pA" =4m oj

(&+&')o4 =4~oP

with

(2.5)

(2.6)

J = f"
I p "(r)5'(s )+a,[S&"(r)5'(s )]jd'r, (2.7)

p = f I S( )5 (s )+B [S~(~)5 (s )]jd~ . (2.8)

Therefore, in zeroth order, the Yang-Mills and Higgs
fields are decoupled. Equations (2.6) and (2.8) are identi-
cal (except for notation and inclusion of a dipole term)
with the equations of lowest order of the scalar meson
theory treated in Ref. 8. Equations (2.5) and (2.7) differ
from those of the electromagnetic field only in referring to
vectors in charge space. The energy-momentum tensor
(I2.16) of the fields reduces to

where the nK's and „A's stand for the nonlinear terms of
the appropriate orders, while the first sums on the right-
hand sides of Eqs. (2.2) and (2.3) represent the expansions
of the sources [compare Eqs. (I2.23) and (I2.24)].

In an earlier paper (in which we did not introduce
Higgs fields) as well as in the corresponding treatment of
the nonlinear meson theory described in Ref. 8 we did not
have to expand the source terms, because we restricted
ourselves to monopole moments. Here, however, we have
included dipole moments, and by Eqs. (I2.23) and (I2.24)
the corresponding source terms involve the fields through
the covariant derivatives.

The matter tensor also involves fields, as can be seen
from Eqs. (I2.93) and (I2.99), because several of the terms
introduced in the break-up (I2.48) must include contribu-
tions due to the fields for all conditions required to be sa-
tisfied. ' Thus we must expand T""as

T""= g g" f I „p" (~)5 (s )
n=0

47rpTy~ pF~'pF —
&

g~ p—F~ pF&+ 2 X i) pP pP —pF ~'pF &+ & g pF&&'pF

where

(2.9)

FP —QP P ~ FP QP~ (j ~P—
and similarly

pT" = f Iop""(~)5 (s )+8~[~ ""(~)5 (s )]jd~.
We have

8„( T "+?'g")=0=f Iop""(~)8„5 (s )+B „[pp»"(~)5 (s )]jdr+ p 8" p+ j „.F"',

(2.10)

(2.11)

(2.12)
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and from Eq. (2.5)

3 oj =0.
We can proceed from here as we did from Eq. (I2.13) previously and obtain instead of Eq. (I2.43) in zeroth order

(2.13)

dg
d.

and thus, using Eq. (I2.77),

d7
d1

(2.14)

(2.15)

To obtain the translational and rotational laws of motion, we can proceed from Eq. (2.12) as we did from Eq. (I2.26)
before; we note that in the equation for M corresponding to Eq. (I2.98) the second term is absent because of Eq. (2.15), so
that the problem of integrability is simplified. We finally obtain instead of Eqs. (I2.100) and (I2.101)

do
[m —r (happ h2S—&P'pp+ 2 fB pF&&)]v "+r h2S" fB"v —pF & +B u&

=r [—h, B" P+h S d~" /+I F'~u +fB d~ F" ],
~ ~ dp dpB" B"~v v—"+B I'v v"=r. '

h2 S" 8 pP —u" —S' d"pP u"—
(2.16)

f[BPP( F ~ +u~ F u~) B"P( FP +uP F u~)] (2.17)

We now have to determine the form of the zero-order
fields entering these equations. The solutions of Eq. (2.6)
are well known from classical meson theory. Those of
Eq. (2.5), because of the forms (2.7) and (2.8) of the mul-
tipole moments, differ from those of classical electro-
dynamics' only by multiplication by ~, which is constant
by Eq. (2.15).

Equation (2.5) is solved most simply by introducing the
Lorentz condition

B„pA"=0,
which implies

(2.18)

ClpA =4m. p j (2.19)

In the following we shall be mainly interested in the re-
tarded solutions of the wave equations (2.6) and (2.19).
Although the fields become infinite at the position of the
particle, we can obtain finite equations of motion by a
variety of methods. '" ' All these methods give the
same result. In Sec. III below we shall use the Riesz
method to regularize the fields A" and P in various or-
ders of approximation.

It should be noted that, in any classical theory, none of
the methods mentioned imply a "renormalization, " since
one never has to consider a theory without interactions
(which would have to be renormalized after interactions
are introduced). In the fields calculated by integrating the
field equations under consideration some infinities will ap-
pear. However, they never enter the equations of motions,
since they can be shown to be compensated by appropriate
terms in the four-momenta 2,", the angular momentum
Bt'",' and (in our case) the Yang-Mills charges. ' Most

methods developed prove this only for particular linear
field theories, but a method due to Mathisson' proves it
for any special-relativistic field theory independent of the
particular form of the field equations.

For any particular linear field equation, all the methods
developed yield the saine results for the fields to be insert-
ed into the laws of motion, i.e., for the particular finite
part of the field of the particle evaluated on its own world
line; the fields of the other particles, of course, are finite
and can be inserted without any difficulty. We have
found it most convenient to use the Riesz method for the
evaluation of the finite "self-action" part of the field (see
Sec. III).

Of course, for any equation of the types (2.6) or (2.19)
the solution is not unique, but depends on the Green's
functions chosen. In this and the next section, we shall al-
ways take the retarded Green's functions. Evaluating the
field of the particle on its own world line then yields finite
self-action ("radiation reaction" ) terms. Because of Eq.
(2.15) the self-action terms due to the Higgs field reduce
to those of the neutral scalar meson field in the order con-
sidered now; however, they will have to be reevaluated in
the next order, when Eq. (2.15) no longer holds.

However, even with the simplification due to Eq. (2.15)
the radiation reaction terms originating from the dipoles
(though known, as noted above), are very lengthy, and in
higher orders the calculations would become prohibitively
complicated. Therefore, we shall drop all dipole terms
from here on and deal only with the case in which the ex-
act equations are given by (I3.1)—(I3.3). Specializing to
spinless particles one would have to set in addition BI'"
equal to zero in these equations. However, we shall keep
the BI'" terms and the rotational equations of motion
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(I3.2) which are identical to (2.17) with the right-hand side
(RHS) put equal to zero. If desired, one can easily special-
ize the subsequent formulas to the case of spinless Yang-
Mills-Higgs particles by setting 8" =0, satisfying the ro-
tational equations of motion in a trivial way. Equations
(2.7) and (2.8) are thus replaced by (now dropping the su-
perfluous subscript 0, but remembering that we are deal-
ing with a many-particle problem)

j "=f Q "(~)5 (x —z(r)}de, (2.20)

p= f S(~)5 (x z(r)—)d~. (2.21)

In Eqs. (2.20) and (2.21) we considered a single particle;
for many particles, each would be represented by a similar
term (with label i) on the RHS of (2.20) and (2.21) and
would thus contribute an expression of the form (2.22) or
(2.25) below to the total pA" or pP field, respectively.
Also, as long as we are dealing with a single particle it is
notationally shorter to continue using Q, Q", and S in the
equations without relating them to ~ through Eqs. (I2.77),
(I2.78), and (I2.80).

For Eq. (2.19) the retarded solution is the familiar
Lienard-Wiechert (LW) potential generalized to isospace

der in the iteration scheme; for fields which are finite
without regularization one obtains the usual expressions.
Of course, it has not been established (here or in any other
iteration scheme for a nonlinear theory) that any such
method of obtaining a series of finite terms approaches
the regularized solution of the exact nonlinear equations.

pA' '(x)=a f R 'dR
R"U„

(3.1)

III. RIESZ REGULARIZATION AND
THE ZERGTH-GRDER FIELD EQUATIGNS

The expressions (2.22) and (2.25} for the zeroth order re-

tarded LW field pA'(x) and the retarded BH field pP(x)
are singular when considered for points x on the world
line of the particle. Following Refs. 2—4 we regularize
these expressions according to the Riesz method and de-
fine the Riesz potentials'

pA'(x) =
R Up

(2.22)

where we have used Eq. (I2.78) to replace Q
' by QU", and

where

pP (x)=
2 / I ( —,

' [a+2])
a/2

S Rxf0 RPg
J(~ z)/2(XR)dR .

P
(3.2)

R"(r„,) =xi' z"(r„,), —
R (~„,})0 (2.23)

R"(v;„)R„(~„,) =0 . (2.24)

is the retarded distance of field and source point obeying

Here R is defined by Eq. (2.26), and the limit a~0 is un-
derstood, yielding the physical fields both possessing the
dimension (length) '. The integrals over R from zero to
infinity appearing in Eqs. (3.1) and (3.2) could easily be
transformed into integrals over proper time running from
7= —oo to 7 =7 t by using

Retarded differentiation of (2.22) together with Eq. (2.14)
shows that the Lorentz condition (2.18) is fulfilled. The
zeroth-order field strength pF" is given by Eq. (2.10).

Similarly, for Eq. (2.6) with the source term (2.21) one
has the Bhabha —Harish-Chandra (BH) solution'

K
dR = ——dw,

R

where

a =RI'(r)up(r) .

(3.3)

(3.4)

pP(x)= —X f -Ji(XR)d~,
R "U

P ret
—oo

where J„ is the Bessel function of order n, with

(2.25)

In order to make contact with the solutions (2.22) and
(2.25) of the zeroth-order field equations discussed above
we use the following well-known formula for the Bessel
functions in Eq. (3.2):

R =[R"(r)R„(v)]'/
R &(~)=x" z"(~) . —

The first term on the RHS of Eq. (2.25) is analogous to
the retarded LW expression (2.22) for the zeroth-order
Yang-Mills potential. The second term is an integral over
the history of the motion of the particle which is propor-
tional to the inverse length parameter P appearing in Eq.
(2.6). For a "massless" Higgs field this second part in Eq.
(2.25) would be absent. The expressions for the regular-
ized fields pA and pP, i.e., for the "Riesz potentials, "will
be given in the next section. These fields assume finite
values on the world line of the particle and allow the com-
putation of finite self-action terms proceeding order by or-

J(a—2)/2(x) Ja/2(x) J(a+2)/2(x) .
X

(3.5)

pA „'
= '(x =z (rp) }=— (QU„) (3 6)

Taking the limit +~0 and switching over to ~ as the in-
tegration variable in Eq. (3.2), it is an easy matter to see
that for x away fvom the world line the results obtained
for pA' = '(x) and pP

' = '(x) are identical with the LW
expression (2.22) and the BH expression (2.25), respective-
ly. For values of x on the world line, i.e., for x =z(rp), the
Riesz forms of the fields, (3.1) and (3.2), yield the finite
results
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0$ ' = '(x =z(~p))=— ds
d7 + +o

where in the last integral

R =[R"(r)R„(~)]'~
R"(r)=z"(ro) —z"(r) .

Noting that

(3.8)

~0 - Ji(X&)—X f S(r) d~, (3.7)

lim —Ji(x) =—,
j

r~p X
(3.9)

one sees also that the integral on the RHS of Eq. (3.7) is
finite. Equations (3.6) and (3.7) will be taken as defining
the regularized zeroth order A„and P fields for points on
the world line of the particle. To obtain the Yang-Mills
field strengths OF&„and the fields OF& ——8& 0$ appearing in
the zeroth-order equations for the translational motion we
define the quantities OF& '(x) and OF&„'(x) using Eqs.
(2.10) and the Riesz expressions (3.1}and (3.2) and obtain
for a~0 (Ref. 18)

2Q
[a( k„)—(a.k)u(„k )]

K P I

[—', Qa( v )], , for x =z(~0),

2
[pk v]

K +ret

for x~z(~0), (3.10a)

(3.10b)

F' ="(x)=
I

SRp
K d7 K

SR~
2 K

J2(X&)+X' SR„2 dr for x&z(rv),
t g2 (3.1 la)

,'[ , S—(a—u&+a&) +2Saz +2S u&], , — [Svz], , +X SR& dr for x =z(~0) .R2

(3.11b)

To obtain the form of the integrals in Eqs. (3.11) and of
the quantity in the second square brackets (appearing as a
boundary term), an integration by parts was performed in
the original expression for OF& ', using

(x "J„(x))= —x "J„+i(x) (3.12)
dX

and

dQ
d

(3.15}

Furthermore, (I3.2) is to be satisfied for the B"". In Eqs.
(3.14) I"~=I "~(r) is the projection operator

as well as Eq. (3.9).
We note that for values x on the world line the Lorentz

force term for the regularized self-field of Eq. (3.10) pro-
duces the Abraham four-vector (except for the different
coupling constants), i.e., the familiar radiation reaction
term

I"~=g I —v "v~

obeying '

I"&v =O, rv~n, =n v
I

(3.16)

(3.17)

Q.oF&„= '(x =z(~) )u =Q —', (a& +a uz ), (3.13) n" =k"—v" n "n =O, n "k„=—&
7 I

as required. Here and in Eq. (3.14) below we have con-
sidered an arbitrary point on the world line and replaced
vp by ~.

In order to make use of Eqs. (3.11b) in determining that
part of the force on the Yang-Mills particle associated
with ihe Higgs field, we write the zeroth-order equations
for the translational motion of a single monopole particle
in the form

[m —S 0$(x =z(v))]a + (B ~u )
d~

= —S I"OF (x =z(~))+Q OF "~(x =z(~)}v~ (3.14)

Here k&=k&(r, 8,p) is a lightlike vector and n& is a space-
like unit vector (compare Appendix B). Equation (3.14)
makes explicit that only the component of the fields

OF&(x =z(~)) perpendicular to the four-velocity at the re-
tarded time v enters the equations for the translational
motion which is, of course, required by the form of the
left-hand side (LHS) of that equation. Moreover, since
both Q and S are proportional to ~ with d~/de=0 in

zeroth order, the terms proportional to S and S in Eqs.
(3.11) disappear, while the terms proportional to vz are an-
nihilated by the projection operator I"~ We thus find for
the first term on the RHS of (3.14}
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S—.I"t'OF~(x =z(~))=S —,
' (a "+a u") —S I t'X R~ d~ S—.I ~OF,&(x =z(r)) . (3.18)

Here we have called the integration variable r, with Rz R——z(r)=zz(~) zz—(r), and I is associated with the value r
denoting the upper limit of the integration; the last term is of course due to the external field due to all other particles.

Furthermore, the effective mass appearing on the LHS of Eqs. (3.14) is given by

Ji(XR )
m —S.og(x =z(r))=m+S X f d7,

R
(3.19)

where we have used Eq. (3.7), remembering that S=O in zeroth order. Thus, physically, a shift appears in the mass
value for the non-Abelian point particle coupled to a classical Higgs field 0$ which solves Eq. (2.6). This shift is propor-
tional to S and to the inverse length parameter X associated with the Higgs field. Moreover, there is a force term
(3.18) due to the P field appearing in the zeroth-order equations for the translational motion. It is at once apparent that
this force term is zero for straight-line motion, i.e., for Re(w) =uz(r r), w—here a& vanishes, because of the property
(3.17).

In the presence of an external Yang-Mills field OF,"„and an external Higgs field OP,„(with OF,"„=8oP,„}which are the
sum of retarded fields of all particles other than the one under consideration, the equations for the translational motion
together with the equations for the rotational motion read in zeroth-order approximation

Ji XR
m —hi~.og,„+hi X f dr u"+B "~u& ——I~ OF,~uz —his oF,"„+—,'(2I +hi )(a "+a u")—Oo

J2(XR )
+hi X —,'u"—I R" dr

R
(3.20)

BI' —B"~v v +8 I'v v&=0.
P P (3.21)

In Eq. (3.20), we have used Eqs. (3.7), (3.10), (3.11) and (2.15) together with r =1, Q=I&, and S=hi~ [compare Eqs.
(I2.75), (I2.77), and (I2.80)]. For h

&

——0 (i.e., in the absence of Higgs fields) and Q replaced by e and, correspondingly,
Q.oF",„"replaced by eF",„,where F",„"is the tensor of the external electromagnetic field, Eq. (3.20} reduces to the Lorentz-
Dirac equation of classical electrodynamics.

IV. THE FIRST-ORDER EQUATIONS

A. The first-order laws of motion

To obtain the equations to the next order we note first that since we have dropped the dipole terms, which through the
covariant derivatives are field dependent, the source terms will give no direct contributions beyond the zero-order terms
(2.20) and (2.21); however, they will contribute indirectly through various zero-order fields appearing on the RHS of the
wave equations [for their final form see Eqs. (4.14) and (4.15) below]. Collecting the terms of orders g and g' in Eqs.
(2.2) and (2.3) we obtain

&(OA "+g iA") —8 „(OA"+giA~)=4 j "+gB„(OA"hoA")+g A„A F"'+g p AB" p,
(a+X }(,y+g, y)=4~&+g~~r a„,y+ga~(~„~,y) .

(4.1)

(4.2)

In passing from the zeroth to the first order we are con-
fronted with a difficulty of the same kind as was encoun-
tered in the corresponding problem in general relativity
(for the slow as well as for the fast approximation
method), as well as in nonlinear meson theory, and which
was discussed in detail in Refs. 11 and 8. The problem is
the following: Eqs. (3.20) and (3.21) with (2.15) imply a
certain motion, as well as corresponding fields which are
finite along the world line corresponding to this zero-
order motion. But these zero-order fields enter the terms
of order g' in Eqs. (4.1) and (4.2) and through them the
first-order equations of motion: they are regularized for
the zero-order world line rather than the world line corre-

f

sponding to the actual motion in the first order, thereby
destroying the consistency of the first-order approxima-
tion. Similar difficulties occur in the transition from any
higher order to the next one.

To avoid these difficulties, we proceed as in Refs. 11
and 8: We assume that as we go from one approximation
to the next one, the explicit forms of the lower-order solu-
tions for the fields and of the lower-order matter and field
source densities are unchanged, but the restrictions im-
posed by the lower-order equations of motion as well as by
the lower-order Lorentz condition are dropped. Thus, in
the mth approximation the unknowns are ~A", P, and

p&", and these quantities enter the mth order equations
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~.( j "+gi J")—gA. ~ j (4.3)

only linearly. Of course, the particle variables z&, 8"",
and ~ on which these quantities depend are expected to be
different functions of r in each order m. However, for
notational convenience we do not indicate this explicitly.

Equation (4.1) implies

d'T
=g(S r 0&+,A U„h Q) (4.6)

with pA (x =z(~)) and pf(x =z(7 )) given by Eqs. (3.6)
and (3.7), respectively. Using Eqs. (I2.77) and (I2.80) one
thus has

I =g—r h(It ipse I0A—~") .
d'7

(4.7)

4~gi I "=god ~d'00 (4 4)

g~ 1J gpss P

We can proceed from here as before and obtain instead of
Eq. (2.14)

describing a precession of the charge vector Q=I r during
the motion in first order due to the Yang-Mills and Higgs
fields.

The energy-momentum tensor OT" +g ~
T" appropriate

for Eqs. (4.1) and (4.2) can be obtained easily from Eq.
(I2.16). The divergence of the total energy-momentum
tensor becomes

t)p(OT +0Tf +g1T +g 1+f

(4.8)

=o= I [(pp" +g iI" )d„&'(s )+~»[0I»'&'(s )+giI»"&'(s )]I«+s [0F'+giF']

+ j ~ [ FP~+g FP~]

iF"=t)"i4—0A "~04,
t,
F""=BI')A —8 (A"—OAI' h, OA

(4.9)
(4.12)

Cl(pA "+giA")=4w j +g [ Bp(0A" h pA")+0Ap h pF"'

+00 ~~ 04]
We can now proceed as in Sec. II of the preceding paper,
but in line with our previous arguments on passing from
one order of approximation to the next, we break up the
sums op" +g)p"" and op~" +g(p~", rather than each
term separately, into components as in Eqs. (I2.47) and
(I2.48). In the equation analogous to Eq. (I2.98) now the
second term vanishes to order g' because of Eq. (4.7), and
the third term is absent, since we no longer include dipole
moments. Thus we obtain for the law of translational
motion

[[~ It ir. (00+gid—)]U"+&"U, I

= —v" [hi(0F +giF")—I(0F"~+giF t')U I . (4.10)

Equation (3.21) for the law of rotational motion remains
unchanged.

B. The first-order fields

The structure of the fields

We now have to determine the fields which enter the
law of translational motion (4.10) and the law of variation
of charge (4.7) in first order to obtain the corresponding
equations of motion; the law of rotational motion (3.21),
of course, does not contain any fields and thus already is
the first-order equation of motion.

We first note that Eq. (2.18) to first order is replaced by

(O+X')(,y+g, y)=4~i-. +2g~~n, a„,y . (4.13)

From our previous discussion of how to proceed from
one order to the next it follows that we can still make use
of the zero-order Eqs. (2.14) and (2.6) in these equations,
provided that they are understood to contain the source
densities corresponding to the motions determined by Eqs.
(4.10) and (4.6). We thus get

CliA"= &"0A~h pA "+20'h iP0A"

—0AphB"0A" +pg AB"pg, (4.14)

(4.17)

(&+X')iP =2pA" h B„pg . (4.15)

Thus the dynamics of the A" and P fields is now cou-
pled, and the field combinations appearing as effective
source terms in these equations are functionals of the
first-order world lines. The solutions of the equations for
iA and iP have to be inserted in Eqs. (4.10) and (4.6) to
give us the final form of the equations of motion in first
order.

In accordance with Eqs. (2.2) and (2.3), we denote the
effective source densities appearing in the first-order equa-
tions by ~K" and ~ A:

,k"=a~~„W~ +2~„n,a~~

0A„r d"pA" +00 n d 04— (4.16)

iA =2pA" ht)ppg .

8 (pA "+giA")=0,
which to order g' reduces Eqs. (4.1) and (4.2) to

(4.11) Before solving Eqs. (4.14) and (4.15) we have to discuss
the question of gauge fixing implicit in our method of
constructing the solution of the nonlinear equations in
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terms of an iteration of regularized zero-order aphelian
solutions. We first note that it is always possible to con-
sider an Abelian subclass of solutions of a non-Abelian
gauge theory. In our case this amounts to the embedding
of the solutions of an Abelian theory into a nonlinear
Yang-Mills framework by adopting a particular direction
in isospace associated with the Abelian subclass. Usually
such a choice of direction is associated with the elec-
tromagnetic interaction, which is described by an Abelian
gauge group (see Sec. III of the preceding paper). Here we
start our iteration scheme with an Abelian solution as an
input, implying that we pick a particular direction in
isospace (which is, in fact, the same everywhere in space-
time). The particular direction we choose is immaterial,
since we are free to perform a global isorotation. Howev-
er, this choice of direction for the zero-order Abelian field
must be made known to every observer. Physically one
could think of using particles carrying an electric charge e
in addition to the non-Abelian charge Q and could fix the
particular Abelian direction throughout space-time by
means of the Abelian electromagnetic interaction. Now,
the zero-order Abelian solution for a single particle is

characterized by Q=O as a consequence of the Lorentz
condition (2.18) as well as of the charge conservation
(2.14). In going to the next order of approximation the
constraints originating from the zero-order Lorentz condi-
tion and charge conservation are relaxed, as explained be-

4

fore, and the condition Q=O is dropped. We shall deter-
mine the dynamic effects of a changing direction of the
particle s non-Abelian charge during the motion along its
first- or higher-order trajectory against the chosen back-
ground, i.e., against the choice of gauge implied by the
direction of the zero-order fields; or, expressed in more
physical terms, against the diret-tion determined by elec-
tromagnetism. Thus in this gauge it does make sense to
add up field contributions originating from different
space-time points. This will, indeed, occur in a situation
where the source charge Q(v) on the trajectory does not
point into the same direction in isospace for all ~, and the
computation of the fields at a position x involves the in-

I

OA "(x)=OA~ '+OA,"„,

od~&)=04 ' '+o4- (4.19)

where the first term on the RHS of each of these equa-
tions is due to the particle whose equations of motion are
under consideration, and the second one is due to aH other
particles. Thus the source terms (4.16) and (4.17) are,
with the subscript x standing for "external" and the sub-
script r standing for "retarded, "

tegration over contributions originating from all points y
in the past light cone of x [compare Eqs. (4.24) and (4.25)
below].

One inay now ask: what happened to the freedom of
performing arbitrary gauge transformations, i.e., arbitrary
space- and time-dependent rotations in isospace7 By the
LW and BH Ansiitze this freedom is restricted here to al-
lowing only "global gauge transformations" for the zero-
order input fields. It is apparent that the full gauge free-
doin of the theory can only be discussed for a physical
system of several interacting particles after carrying the
approximation scheme to arbitrarily high orders and com-
paring the results of the limit n ~ oo for different choices
adopted for the Abelian input data. Since this is impossi-
ble in practice, we adopt the gauge associated with the
LW and BH Ansatze and work up from there considering
the nonlinearities arising step by step. Clearly, we end up
with an approximate answer to the solution of the non-
linear problem formulated in a gauge where proper time-
dependent gauge transformations along a particle's trajec-
tory are not allowed, and where the retarded input fields
spread on light cones without change of direction in
isospace. It is not clear whether one can construct the
most general solution in this way. All we are aiming at
here is an approximate solution of special type showing
truly non-Abelian features.

We now turn to the problem of solving Eqs. (4.13) and
(4.14). All the source terms (4.16) and (4.17) are quadratic
in the fields; moreover, each of the quadratic terms con-
tains four distinct contributions of different structure,
since we have in the notation of Sec. III

iK "=iK ~+ iK x.+ iK ~

iK " =8'OAp- ~ OA.".+2oAp- 6 a"oA:.—os- ~ O'OA ",+of-~ a'o P-
,K „",= a&~„,„r ~"'+a~~„"w ~,„+2,A„„wa~~"'+2,A„"n, a~~,„

~„,„pa"~~~' ,A„"n, a'~&„+—,y.„r a.,y "+,y "~a;p.„,
,~" =a~,A„' 'p, ~"~'+2~' 'p, a& A~~' —,A' 'r a"~&'i"+ p' 'ha" p'~'

(4.20a)

(4.20b)

(4.20c)

(4.20d)

)A=)A +)A„,+)A

i&~ =2&~ex ~ a»4ex,

,Z.„=2~~„ra»y "+2,A~" ~ a»y,„,
,Z„=2~" n, a»y '~'.

The solutions for Eqs. (4.14) and (4.15) corresponding to the various source terms will be denoted by

(4.21a)

(4.2 lb)

(4.2lc)

(4.21d)
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and

iA"= i&~+ iA~r+ ~A ~ (4.22)

+i0,+id
a similar notation will be used for the various parts of the corresponding fields (4.9).

The regularized solutions of Eqs. (4.14) and (4.15) are (cf. Ref. 3)

iA ~ '(x) = &K "(y)R' d y,
2 +'n.l (a/2)I (a/2+1)

(~—2)/2R'
4(x)= 1A(y) J( —2)/2(XR )d y

2 i + m.l (a/2+1) x

(4.24)

(4.25)

where the integration is over the past light cone D of
the point x (field point); the source point is denoted by y.
We have to evaluate these integrals after substituting the
appropriate source terms from Eqs. (4.20) and (4.21) and
take the limit 0;~0.

For some of the integrals it will be convenient to use re-
tarded null coordinates. ' The volume element is then
given by

l

tinuation is required for these source terms, since the stan-
dard expressions are finite on the world line of the particle
under consideration. From Eqs. (4.24) and (4.25) we ob-
tain for the potentials for x on the world line, i.e., for
x"=z"(~o) (using null coordinates and taking the limit
a~O, compare Appendix A)

TQ d Q R
&A (x=z(ro))= f dr f- i K~, (4.28)4~ 4(k.R)

(4.26)
and

d y =~ d~d Qdt,
and we will use the notations

g I =xi' —yI'= g~ —~k~,

y"=z"(r)+ok",
pc= [y" z"(7.)]vz,—
R'=(R —2~k R)'

(4.27)

kz=k z~.
JM

Here and in the following the retarded times associated
with the points x" and y" are called wo and ~, respectively.
The singularities of a number of integrals arising from
iK "(y) and |A(y) for y"~z"(~), i.e., for x~O, are pro-
portional to ~ or ~ '. multiplying them with the
volume element (4.26) thus yields a finite expression.
Thus for these terms no regularization is needed, and we
can use the standard rather than the Riesz zero-order po-
tentials in those integrals. This will be noted explicitly
in each case in the following.

2. The purely external fields

TQ d'n R4
(x=z(ro))= f d~ f i A~, (4.29)

4~ 4(k R)'
where &K and |A~ are given by Eqs. (4.20b) and
(4.21b), respectively. In Eqs. (4.28) and (4.29) we used the
fact that the effective external source terms (4.20b) and
(4.21b) are independent of the retarded distance a.

Introducing the appropriate differentiations of the in-
tegrands ' in Eqs. (4.24) and (4.25) and proceeding as be-
fore, we obtain for the purely external part of the fields
defined by Eq. (4.9)

|F~~ (x =z(ro) )

0 d 0= f '
d~ f (a'",K& —a~,K4~ 4(k.R)'

(4.30)

TO d'n z4iF" (x=z(~0))= f d~ f 4(k R)3

We first consider the purely external fields, i.e., the first
terms in the potentials (4.22) and (4.23) and the corre-
sponding derivatives of these potentials, which are due to
the source terms (4.20b) and (4.21b). No analytic con-

(4.31)

In Eqs. (4.30) and (4.31) an integration by parts has been
performed observing that the contribution of the boundary
term is zero in both cases; moreover, Bz ——8/By".

3. The mixed fields

Now we consider the contribution to the field due to the mixed source terms &K„"„and,A„„given by Eqs. (4.20c) and
(4.21c), respectively. These are given by

T

gA„"„(x=z(ro)}=lima f d~ f f,K„'„R'~ a d~a~0 4~ (4.32)
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'r
( )

~tft&&(x =z(rp)) = lim X f dr f ~ &„„J(~ z)), (XR')R'
(g —0 —oo 4~

(4.33)

In the expressions for the source term we now can substitute the standard zero-order potentials (2.22) or (2.25) and the
corresponding derivatives off the world line

and

8"pA"= (k—"a" k "—v "a.k)+ z n "u"+ k "—u"
K K K

(4.34)

Jz(XR )
pF&=B&pg= — Sk&a k+ n" —Sk"+X f SR" dV,

K2 ~2 2 oo E.

and make use of Eq. (A2) and

(4.35)

+ (1—a R~).Qv "R& Qa "R" Qu "R~
K K

(4.36)

Here and in the following we use the notation

R "=z"(r) z"(r—), R =(R "R„)'
Then Eq. (4.32) becomes

(4.37)

~A„"„(x=z(rp)) =f dr f 2Qu& h 8"pA,"„+2pA&,„h (Qu "k"+Qa "k" Qv "k"a—.k)
4~ 2(k.R)

pA„,„hQu"n "+8"pA„,„hQu +Q h pA, „Qu„—h 8'pA",„
R

—pA&,„h (Qv"k "+Qa "k" Qu "k"a—k) —
z pA&,„hQu&n"

- Jp(XR)+Sh 8"pP,„+ X f 8"pg,„h S dV

+
& pfe„hSn +pP „h(Sk —Sa.kk")

R

R'X - )- ~ -—„Jz(XR)+ pp, „h ——,Sk +f SR" (4.38)

To evaluate (4.33) we use Eq. (A3) and obtain after carrying out the x integration and taking the hmit ~~0

)P, (& =z(&p) )

=f «f, 2Qhu„B~, Q,„+2k„pA",„h(S Sa k) +,—~~„hSn„
4m 2(k.R) 0 ex JM

I~

Jz(XR )
+2X',A"..h f P g 2

R g ~~„hSk„

(Qh gp y +Shk ~Pa k —Shk pA „)—2 dK
0 R

p, P

( ) Jz(XR )
X&k ~& hS —2X'pA", h f S«)R~ (4.39)

where a =R '/(2k" R„).
It remains to evaluate the mixed part of the fields (4 9)

|F„"~=3")A~»„—&)A ~, —pA ex h p (4.40)
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lFxr ~ ldxr OAe hot 0A hoke (4.41)

on the world line of the particle. To do this we must substitute Eqs. (4.20c) and (4.21c) for the source terms in the in-
tegrals (4.24) and (4.25) and then take derivatives under the integral sign. We then obtain

lF„"„(x=z(~0))= lim ((K„,B"R' —)K„"„cYR' )d y —0A" h A —0A+ 'hpA, „',
2 +'n.l (a/2)I (a/2+1)

(4.42)

(a—2)/2
r

lF„"„(x=z(rp))= lim .
( 4)&2 A„„()' J( 2)&2(XR') d y —0A „hp(t '

a~o 2 + m'I (a/2+1)

—oA h of ex
v(a) (4.43)

where 0A~ ' and 0$ ' ' are given by Eqs. (3.1) and (3.2), respectively. Since the external zero-order potentials are finite
at the position of the particle under consideration, Eqs. (3.1) and (3.2) can be replaced by their limit a~0 given by Eqs.
{3.6) and {3.7), respectively, in the last two terms of both Eqs. (4.42) and (4.43). For the remaining integrals, no simplifi-
cation such as the one discussed in Sec. IV B 1 is possible since some of the terms in the integrands diverge as a

We note that

()"R' 2=(a —2)R'a R'

and (cf. Ref. g)

fD lAxr~ lR J(n —2)/2(XR )ld y —X J& lAxrR R J(a 4)g2(XR )d y .

Thus Eqs. (4.42) and (4.43) become

—2
lF„"~(x=z(rp)) = lim R' (R' lK~xr R'~)K "„„)d—"y

o 2 +'ml (a/2)l ((a+2)/2)

+0A,'„h (QU )-0A. h
d

(QU"»

(4—a)/2
lF„„(x=z(rp)) = lim f R' R' ' J(a 4)g (XzR')) A dxry-o 2' +" 'ml {((z+2)/2)

&P Jl(XR)
+0A,"„h —X f S dr + (QU) hog, „.

(4.44)

(4.45)

(4.46)

(4.47)

These are, as far as we can evaluate, the expressions in general.

4. The regularized self fields

We now have to evaluate the self-fields of the particles in first order. With the help of the formulas assembled in Ap-
pendices A and B the i( integrals over the source terms lK"„, and l A„„,defined by Eqs. (4.20d) and (4.21d) can be carried
out by making use of the simplifications discussed in Sec. IV B 1 above; one obtains

iA „"„(x=z (~p) )

d Q dQ k"
+Sh f (A, v@8&)—Sh —,R a" f " A(r, 8,y)+Sh —,R f 2 (A, re&)

d A R d Q k+Sh —,'R'f,B "(r,8,q)+, k"B(r,8,q) Sh —,'R' f X'A(r, 8,q—)
4& (k.R) 2(k'R) 4& (k.R)

d 0 I R——,'R f,A(r, 8, (p) h B(r,8,p)+ 'k(B~, y8)4~ (k R)
(4.48)
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and

7

(x =z(rp))=2 f dr QAS f +Qhui' ,'R—f B„(r,8,y)
OO 4~ k.R 4ir (k R)

+Qh u" ,'R —f— " B(r,8,p)

d'n—X f f Q h S+~Q hu"X f S(Y)[R~+~kq]

J2(X(R +zonk R)'i ) Ji(X(R —z~k R)' )

R +2vk R (R —zxk.R )
'i (4.49)

Here we have used the following definitions:

A(r, 8,y) =X f S(r)

B( ,re)=X f S(V)

1/2 '

R k.R
J1 gR 1+ R2kR

' 1/2

R 1+ R k R
R2 kR

-1/2 tk.R
J2 gR 1+ R2 k.R

R k R
R 2 k.R

(4.50)

(4.51)

and

B "(~, 8q)) =X f S(V)R "

1/2 '

J2 gR 1+ R k.R
R2 kR
R k RR 1+ R2 kR

(4.52)

with R" as given by Eq. (4.37) and R" for x on the world line, i.e., for x"=x"(~p), as defined in Eq. (3.8). A centered
dot between two four-vectors denotes the scalar product in Minkowski space. Furthermore, n" is the spacelike unit vec-
tor introduced in Eq. (3.17). The ~ integrals used in the derivation of Eqs. (4.48) and (4.49) are discussed in Appendix
A. In Appendix B we collect some useful results concerning the angular integrals appearing in Eqs. (4.48) and (4.49).
As regards the limit a~0 we remark that this limit has already been taken in the integrands of the r integrals. This is
possible for x =z(1p) However, f. or x off the world line we have to keep the factors R under the integrals in order to
properly regularize these expressions for r~rp. This is also to be remembered in computing 8 iA& '(x) and iF& '(x)
with the limit o;~0 taken at the end.

It only remains to evaluate the self-part of the fields (4.9)

,Fg(x) =a" A& —V,A „—~"„"n, ~&'~',

F" (x)=a" y"—A"'W y'~'

(4.53)

(4.54)

for points x on the world line of the particle. Substituting the self-parts of the source terms (4.20d) and (4.21d) in the ex-
pressions (4.24) and (4.25), we obtain

iF,"~(z)= lim f (iK.~B"R' —,K" cYR' )d y —lim pA~ 'hpA '~',
-o 2 +'m. r(a/2)I (a/2+ 1) a~0

P—+0

(4.55)

1
iF ~(z) = lim ,w„a-p Z' "&+'~r(a/2+1)

(a—2) /2

J~ z~~i(XR') d y —lim pA Apg' '.
x a~0

p~p

(4.56)

The last term of each of these expressions presents no difficulty, since it is the product of two finite expressions of the
forms (3.6) or (3.7). The integrals of the first terms, however, just as those of Eqs. (4.42) and (4.43), do not allow any
simplification; they are actually significantly more complicated than those encountered before, since they are products of
three Riesz-type expressions (just like the corresponding terms of Ref. 8).
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Using Eqs. (4.44), (4.45), (3.6), and (3.7) the self-fields become

iF "~(z)= lim f (R'"iK~„—R'i'iK«)R' d y+QAQ(u"a~ —uI'a"),
~~o 2 +'n I (a/2)i (a/2+1)

(4.57)

~(a —4)/2 4 d ~ dS O 1(
iF (z) = lim )A„„R'"J(~ 4)q2(X ')R' d y — (Qu") h +X S dr

o2' '+ ml (a/2+ I) d1. d7

(4.58)

C. The first-order equations of motion

We now have to substitute the various parts of the fields into the first-order laws (4.10), (3.21), and (4.7).
As noted before, Eq. (3.21) does not contain any fields at all, and thus already is the first-order rotational equation of

motion. The law of variation of the charge vector (4.7) only contains the zero-order fields (4.18) and (4.19) with the cor-
responding self-fields (3.6) and (3.7). Labeling in Eqs. (3.6) and (3.7) the point on the world line by ~ instead of vo and
calling the integration variable 7, the first-order equation for the variation of charge is

I =g~A 'd1
d~

Ji(XR )—hiz —hi X ~ dV+hiop, „+ I IOA,"„u„—' .
d7. R d7

(4.59)

We now have to substitute the various parts of the zero- and first-order external and self-fields into Eq. (4.10). It should
be noted that in obtaining the zero-order equation of motion (3.20) we could simplify some of the zero-order self-fields

because of the constancy of the charge vector Q in that order [see Eq. (3.15)]. This is no longer permissible, and thus
even the "zero-order" terms in the translational equation of motion are more complicated than before. We obtain

Ji(XR )
iii —hi~ (o&-+g[i4~+i4~. +i&~])+hiX~ f . — d~ u"+&"",

d'7 —ce R

hi[8"og,„+g(iF" +iF„„+iF„"„)]—hi [—,
' P(a u"+a )+Fu "]

.J,(XR)——,'h, zX ru"+hi Xz f ~R d~ ,'FI (a u =+a")—I[ FOg +g(,F"~ +F„" i+F"~)] u
00 R

(4.60)

We still have to substitute Eqs. (4.29), (4.39), and (4.49)
for i/~, ig„„and i/~, Eqs. (4.31), (4.47), and (4.56) for

iF~, iF„"„,and iF ~, and Eqs. (4.30), (4.46), and (4.55) for
&F", ~F„"„and &F" . This will not be done explicitly be-
cause of the very lengthy resulting expression.

V. DISCUSSIGN

In the preceding paper we had obtained the laws of
motion of a spinning particle which is a monopole-dipole
singularity of a Yang-Mills-Higgs field. In Sec. II of this
paper, an approximation method was developed for solv-
ing the nonlinear field equations to any given order in a
dimensionless constant g, together with the equations of
motion consistent with these solutions to that order. The
laws of motion are special cases of those obtained in Ref.
16 for multipoles of arbitrary order. The reason for
rederiving them in the preceding paper was first, that the
general case is so complex that the simplicity -of the pro-
cedure for monopoles and dipoles is obscured, and second,
that the same method is needed in finding the approxi-
mate laws of motion in Secs. II and IV A.

In Sec. II we obtained the laws of motion in zeroth or-
der for the monopole-dipole case. In Sec. IVA, we ob-

tained them in first order for the case of a monopole
singularity, omitting the dipole term, but maintaining the
intrinsic angular momentum of the particle. In Sec. III
we calculated the fields to be inserted into the zero-order
laws of motion to obtain the zero-order equations of
motion. These fields had to be regularized to avoid infini-
ties on the world line of the particle; this was achieved by
means of the method of Riesz potentials. ' The same
method was used to obtain the first-order fields in Sec.
IV B.

Our approximation method is a systematic linearization
method, leading to a series of inhomogeneous wave equa-
tions. The method of Riesz was originally developed for
such a system of linear equations, and thus at each stage
of approximation it guarantees the existence of solutions
finite on the world line of the particle, provided certain
conditions are satisfied by the sources. However, it has
not been rigorously proved that this succession of solu-
tions actually approximates the exact solution of the non-
linear problem, a defect common to all approximation
methods for such problems. Furthermore, in (partially)
evaluating the 6rst-order Riesz integrals (which involve
integrals over the zero-order integrals and, depending on
the particular terms, are 8- to 12-fold integrals), we freely
interchanged the order of integration wherever we found it
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convenient, without attempting to prove that this is per-
missible.

The method used in Secs. II and IV is very similar to
the one used in Ref. 11 for finding the laws and equations
of motion of interacting monopole singularities in general
relativity, and in Ref. 8 for finding them for the corre-
sponding problem in nonlinear meson theory. In the ab-
sence of the Higgs field and of spin, the final results ob-
tained here reduce to those of Ref. 6, except that the con-
tributions of the zero-order external fields to the first-
order field (obtained in Secs. IV82 and IV83) were not
included there. Furthermore, Eq. (45) of Ref. 6 can be
simplified by using null coordinates as discussed in Sec.
IV 8 1 and is only an approximation because of an expan-
sion used in the regularizing factors defining the in-
tegrand; in fact this regularization is not necessary in this
order, as noted before.

Qur final first-order translational equation of motion is
given by Eq. (4.60) (with the fields to be inserted in that
equation indicated there), the rotational one by Eq. (3.21),
and the equation for the variation of the charge vector by
Eq. (4.59). These equations are complicated coupled
integro-differential equations for the trajectory z"(~), the
spin quantities B&„, and the normalized non-Abelian
charge vector r It can .be seen from the discussion below
that for a single particle in the absence of external fields a

I

straight-line motion with constant spin B& and constant
charge vector ~ is an exact solution, as expected. For a
single particle without dipole moment or spin in a given
external field (but no Higgs field) some simple cases have
been discussed by Saring. The case of two interacting
particles is currently being investigated. The problem is
considerably simplified if the Higgs field is taken as mass-
less (i.e., X=O), in which case the integrals (4.39), (4.49),
(4.47), (4.56), (4.46), and (4.55) for, P„„, ,P„„, ,F„„,1F",
~F„~, and &F,~, respectively, can be almost completely
evaluated for any motion, as will be shown elsewhere.

As mentioned in the Introduction, one of our main
motivations for this work was the problem whether non-
Abelian charge can be radiated away. In zeroth order this
is not possible in the absence of external fields, since the
charge vector is constant [see Eq. (3.15)]. Equation (4.59)
determines the change of the vector r in first order. This
equation only contains the zero-order fields. Since we
have already determined the functional form of the first
order fields, we can with only minimal effort include the
variation of the charge vector in second order in our dis-
cussion. Proceeding as in the preceding paper and keeping
in mind the discussion at the beginning of Sec. IVA, we
obtain from covariant charge conservation in that order
instead of Eq. (4.59).

I =gr h I
—[oA"+g,A"„„]Iu„+[ P+g, P ]h, + [oA",„+g,A",„]Iu„+[ P,„+g,g,„]h, Id'7

with

(5.1)

P P
1 ex A1x+xA1r~x1 kex lkxx+14'xr ~ (5.2)

where all fields are to be considered as functionals of the trajectories in second order. Using the expressions (3.6), (3.7),
(4.48), and (4.49) in Eq. (5.1) and taking the scalar product with r, we obtain

hi r Ii(XR)= —gX v~ h ~ d7

+g~ .ulx(oAex+giAex) (oPex+g i/—ex) h 'r .I (5.3)

Here the ellipsis represents contributions proportional to g X and g X originating from the X part of the scalar field.
These terms are difficult to discuss even in a numerical evaluation of the integrals using a predetermined trajectory in
this order. We, therefore, investigate Eq. (5.3) for the case of a "zero-mass" scalar field by dropping the terms involving
X. With the help of Eqs. (818) and (819), Eq. (5.3) can then be written in the form

= —g I r.r R r(7) h ~(7)f(r,7)d7+gr. u„(oA",„+g,A",„) (op„+gip,„)—h ~ .
oo p ex ex (5 4)

Here 7= r(r) and f(r,r) is a functional of the second-order trajectory given by

2

f(r,V) = 1 — u "(~)I2
R„(r)+Ru„(~)

K
—2

2 Q $
oo ] g 2

~o 2m+3 g& I' " p o 2m+11 — + [2 u"(r)u (7)]——
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The notation used in Eq. (5.5) is the same as in Appendix
B except for the replacement of vQ and ~ there by .v and r
here; furthermore, « =«(r) =R &(~)v&(r).

The expression (5.4) does not necessarily vanish. It can
only be evaluated in conjunction with solving for the
motion of the system under consideration. It does vanish,
of course, in the Abelian case which, as noted before, is a
possible solution of our equations in all orders.

Even in the non-Abelian case, the magnitude of the
charge vector must still be constant, i.e., we must have

Q.Q=I r.7=0 (5.6)

in the exact law of motion [Eq. (12.83)] as well as in all or-
ders of approximation. This follows trivially by scalar
inultiplication of the appropriate equation for ~ with ~,
since the RHS of any such equations is of the form of a
vector product containing a factor r.

In first order, the motion of a system of two particles,
say, is determined by Eqs. (3.21), (4.59), and (4.60), which
must be solved together. Although the magnitude of the
charge vector of each particle remains constant, their rela-
tive orientation may change. It is this aspect of the
motion of the particles which must be studied in deter-
mining the possible loss of charge from the system, as well
as the question of the appropriate definition of the charge
in the field. We shall return to these questions elsewhere.

The fields used in this paper always were purely retard-
ed. For the zero-order fields this implied that at the posi-
tion of each particle we obtain contributions from all oth-
er particles emanating on and inside the past light cone of
the particle under consideration, as well as (for the Higgs
field) an integral over the past world line of this particle.
The first-order fields have a much more complicated
structure. The nonlinear fields allow the particle to pro-
duce a Yang-Mills field and a Higgs field at the same or
at different times. Their effects may be pictured to in-
teract in space at a later time and then return to affect the
particle.

The effects just described involve integrations on the
surface (or in the interior) of the past light cone of effects
emanating from the past world line directed toward the
future. For the time-symmetric field theory and the
action-at-a-distance theory considered in Appendix C, the
first-order field can be interpreted similarly, except that
we now may have similar integrations over the past light
cone of effects emanating from the entire world line
directed toward the past as well as the future; for the ad-
vanced Riesz potential we have similar integrals over the
future rather than the past line cone. No violation of
causality is implied by any such expression, as we are
dealing with the description of the motion of a closed sys-
tem of particles.

Apart from any intrinsic interest, the time-symmetric
field theory discussed in Appendix C is of importance be-
cause its equation of motion allow stable motions (without
radiation loss). It is possible to obtain exact solutions for
such motions, which can then be used as a starting point
for finding approximate solutions for corresponding prob-
lems with retarded interactions, as will be discussed else-
where. The time-symmetric action-at-a-distance theory

discussed in Appendix C differs slightly from the corre-
sponding field theory, just as in the case of the meson
theory (linear as well as nonlinear ), a difference which
could be used to distinguish between the two points of
view observationally. The effects of this difference have
been investigated for some simple cases in meson theory,
both in classical and in quantum theories; similar ef-
fects may be expected to arise in Yang-Mills-Higgs theory.
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APPENDIX A: EVALUATION
OF THE FIRST-ORDER FIELDS

For the integrals involving Bessel functions one has

lima f « "(R 2«k —R) . J 2(X(R 2«k R) )d—«
a~o

(A3)

following from the expansion of the Bessel function in
powers of the argument XR' together with Eq. (A2) and
JQ(0) = 1 . Similarly, for a function f (r,«) which can be
expanded into a convergent series in powers of «one has

lima «"(R 2«.k R)' '~ f—(~,~)da =

We also need the formulas

(A5)

4 1 R
(k.R) a(a —2)

(A6)

APPENDIX 8: ANGULAR INTE(xRALS

Here we discuss various angular integrals which appear
in the evaluation of expressions like (4.24) and (4.25), us-
ing retarded null coordinates. (Compare Appendix B of

To arrive at the first-order fields for points on the
world line which were given in Sec. IVB the following
formulas for the «. integrals taken from « =0 to
«=«=R(~) =R /(2k. R) have been used:

R' d« = (R 2«k.R)'— ' d«
0 0

(A 1)ok R

For arbitrary real n one has the more general formula de-
rived from Lebesgue's criteria of convergence

—n

lima « "(R 2«k r)—' '~.d« =
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R "(r)=z"(rv) z"(—r),
R =R"(r)Rq(r),
y"=z"(r)+ski'(r, 8,q&),

a(r) =R"(r)v~(r),
n "(2.,8,y) =k"(r,8,q&) v "(r—) .

(81)

(83)

(84)

(85)

k"(r, 8,lI2) =(y" z"(r—))~ is a lightlike vector satisfying

Ref. 21, and Ref. 23.) In these coordinates the point with
Minkowski coordinates y" is characterized by the retarded
proper time 7;„=r, the retarded distance l(: from the world
line, and two angles 8 and y. For x"=z&(rv), which is
the case treated in Sec. IV, we have (see Fig. 1) /

/

k (~,e, y}

k =0, k.u=1, (86) FICx. 1. Domain of integration for the computation of the
first-order fields.

and n" is a spacelike unit vector.
In Sec IV an integration over all points in the past light

cone of the field point x" (here on the world line) was per-
formed, involving various directional integrals which can
be reduced to the type

u k~ ——u k+ ——0,
k.kg ——k kp ——0.

(812)

2

n ' n ~ vl =123~...&2 &m

4m
{87)

One can, furthermore, demand that

kg.k~=0, (814)
by suitably expanding the expressions involved. Here d 0
is the angular part of the volume element d y expressed in
retarded null coordinates

d +=K dKd QdT,

since if (814) is true for one value of r, it is true for all 2

because of (811) and (813), i.e.,

(ke k~)= —2(a.k)(ks. k~) .
a

which is given by

d Q=e~~y~u k~k~~k~dOdy,

where

{89)

Returning now to (87) one can show ' that for odd
values of m the integrals vanish:

~Z. . . ~2(+} (816)

ae ' ' aq
(81()) while for even m they are given by

Bk& = —(a.k)k" . (811)

Moreover, Eqs. (86) imply the orthogonality properties

and e~p&& is the totally antisymmetric Levi-Civita tensor
density.

The angles 8 and y determining a direction on the light
cone are chosen in such a manner that for fixed (9 and y
the vectors k& at two neighboring points on the world line
are obtained without a rotation. This implies that

d Q p~ p2 @2~
n n

4m

y&cr(1)l e(2). . . y&a(2( —()l n(21)
(

(2I + 1)! (817)

Here the sum extends over the permutations forming the
symmetric group of order 2I, and the projection operator
I""=I"&is given by Eq. (3.16) with (3.17). Replacing k"
according to (85) by n" +v", expanding the denominators,
and using Eqs. (816) and (817) and the properties of I&"
one can resum the series and find that

d Q 1 1 ~ 1 1—
4m' k.R sc 0 2m +1 (818)

d Q n R —x'u 1

42r k R 2m+3 (819)

d Q 1 1

4~ (k.R)2 R' ' (820)
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f d Q n

4~ (k R)

d 0 n"n
4~ (k R)

=2
3

1 —
2

R —Ku I +1 R
K p2~ +3 K

m
IPv oc 1 R 2

K m p2~+3 K

R"—KU"+
m

2m R
p2m+3

The series in these equations converge for

R
1 — &1.

K
(823)

(R"—~U)') (0. (824)

This, together with the fact that R" is timelike, is
equivalent to

Furthermore R"—KU" is a spacelike vector since it is
orthogonal to the timelike vector U". Therefore

where s stands for the symmetric Riesz solution of the
zero-order field equations for the particle under considera-
tion and the external field consists of the sum of the sym-
metric fields of all other particles; the first-order field
equations (4.14) and (4.15) will then contain the expres-
sions (Cl) rather than (4.18) and (4.19), and it is their
symmetric solutions which must be inserted into the first-
order laws of motion (4.10) and (4.7) to obtain the first-
order equations of motion of the time-symmetric field
theory.

The zero-order symmetric Riesz potentials are

0« 1.
K

(825) v(a) 1 (~v(a)+ A v(a))

.0."=—,
' (.0,"+.0.") (C2)

R
lim =1,

&~&0 K
(826)

as can be immediately checked by expanding R and K

around rp. One thus sees that the expansions (818)—(822)
converge for all values of r (1p for which the result of the
angular integrations are needed in the integrals of Sec. IV.
The integrals in Eqs. (4.48) and (4.49) for the case of a
nonvanishing X, however, are more complicated since they
involve a Bessel function of first or second order with a
direction dependent argument.

APPENDIX C: TIME-SYMMETRIC I'IELD THEORY
AND ACTION-AT-A-DISTANCE THEGRY

The derivation in the preceding paper of the exact laws
of motion (I2.100), (I2.101), and (I2.83) is independent of
any assumptions made on the solutions to the field equa-
tions (I2.11) and (I2.12); the same is true for the derivation
in Secs. II and IV of the zeroth- and first-order laws of
motion (2.16), (2.17), (2.15), and (4.10), (3.21), (4.7), respec-
tively. The forin of these laws is the same regardless of
these assumptions; it is only the choice of the fields to be
inserted into these laws which depends on the assump-
tions. In the following we shall only be concerned with
the first-order laws. The zero-order fields chosen in Sec.
IV were of the form (4.18) and (4.19), where the external
field consisted of the sum of the retarded fields of all oth-
er particles, and we were then concerned with the calcula-
tion of the retarded solutions of the first-order field equa-
tions (4.14) and (4.15) which contained the zero-order
fields (4.18) and (4.19). Instead we can choose the sym-
metric (half-retarded, half-advanced) zero-order fields

0 & s+0 xs ~ 00 04's+Okxs (Cl)

The quantity 1 —R /ir can thus be unity only for R =0
and xz~0, i.e., for x off the world line and r approaching
'rp. For x =z(rp) one has

Here r and a indicate that the integration must be carried
out from —Do to the retarded point of x, and from the ad-
vanced point of x to + 00, respectively. It should be noted
that on the world hne (but not off it) OAs vanishes; 0$,
reduces to an integral over the entire world line of the par-
ticle, analogous to the case of meson theory. Since the in-
tegral corresponds to a self-action which has no meaning
from the point of view of action at a distance, it was pro-
posed in Ref. 20 to omit this term to obtain the basic
equation of motion of the theory of action at a distance
for combined electromagnetic and mesic interactions.
This new equation can be derived from a variational prin-
ciple which also allows the definition of an adjunct field
theory and of detailed conservation laws in terms of parti-
cle quantities, as discussed in Refs. 20 and 26. We can
proceed in complete analogy in the case of Young-Mills-
Higgs interactions. Radiation effects can be included by
application of the Wheeler-Feynman condition

g OA kr = g 0 ka ~ g 0(t kr = g 00 ka
all k all k all k all k

for the total field of all particles, since then

g OAk = Q OAk. +OA".d
k~i k&i

OA,"d = —,
'

( pA,"„—()A,",),
+Oaks g 04'kr +0%id

(C4)

0'(t d =
2 (04 0'qt'

The suins on the I.HS are OA" and 0(t)~ of Eq. (Cl),
while the sums on the RHS are precisely OA,"„and pp, „of
Eqs. (4.18) and (4.19). The last terms (evaluated at the po-
sition of particle i) are the radiation-reaction terms of the
theory of action at a distance. The reaction terms of field
theory differ from them only by the above-mentioned in-
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tegral over the world line which we had proposed to omit.
Since, as noted before, oA";, vanishes, oA;d equals oA,".„.
As a consequence of this and (C4), the zero-order fields to
be inserted into the zero-order law of motion (2.16) (with
the dipole terms omitted) are

oA'=oA."+oA:. o4 =o4d+o4'- . (C5)

The resultant equation is identical with Eq. (3.20) except

for containing —,
'

[ f ' —f ) instead of f
In the following we shall extend the corresponding con-

siderations to the next order. However, because of the
complexity of the equations of motion we shall not at-
tempt to find a variational principle, but only consider the
first-order equations of motion following after application
of the conditions corresponding to (C3) and (C4) for the
sum of the zero- and first-order fields. The fact that it is
indeed possible to extend the considerations to nonlinear
theories order-by-order is discussed in Ref. 11 (see Appen-
dix II and especially footnote 71).

The only problem arising is the proper handling of the
Wheeler-Feynman condition (C3} as one proceeds from
one order to the next. It is clear that at each order the
condition has to be applied to the sum of the fields up to
that order. However, the fields of higher order contain in-

tegrals over the total fields of lower order. It seems ap-
propriate, in analogy with our treatment of the Lorentz
condition discussed in Sec. IV, to maintain the lower-
order condition (2.18) within the integrand, but allow for
the actual (higher-order) motion. Equivalently, the first-
order field equations to be solved are the same whether we
are dealing with the retarded or the time-symmetric field
theory, since the total zero-order fields entering these
equations are the same in both cases because of the condi-
tion (C3); the difference only arises in taking as the solu-

tions of Eqs. (4.14) and (4.15) the retarded and the time-
symmetric fields, respectively, and in the interpretation of

what is to be considered as an external field.
If we insert the first-order time-symmetric fields thus

obtained into the first-order time-symmetric field-
theoretical equations of motion, the form of the condi-
tions (C3) (applied to the sum of the zero-order and first-
order fields) guarantees that we obtain precisely the equa-
tions of motion of the retarded field theory, i.e., in our
case Eqs. (4.59) and (4.60) with the fields listed at the end
of Sec. IV, without any need for additional calculations.
If instead we insert the first-order time-symmetric fields
into the first-order time-symmetric action-at-a-distance
equations of motion, application of (C3}does not yield the
equations of motion of the retarded field theory; the re-
sulting equations differ from the field-theoretical ones by
containing everywhere half the difference of the retarded
and the advanced Riesz field instead of the retarded one.

As an example we consider the first-order correction to
the Higgs field. Instead of i/ determined by Eq. (4.25) as
an integral over the past light cone over the external and
retarded zero-order fields, we have a corresponding ex-
pression

i (t'd = ikxx +14xd+1(t'dd ~ (C6)

in terms of the external and radiation fields. Further-
more, each integral extending over the past light cone is
replaced by half the difference between the integrals over
the past and the future light cones. Considering the term

ipzd as an example, we can proceed as we did to Eq.
(4.49), but now get

add= f '
f,

"—&.f
Each of these integrals contains contributions both from
og„and from oP, . Therefore we get eight types of in-
tegrals corresponding to the four different products in the
two integrals of (C7).
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