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Two-step approach to one-dimensional anharmonic oscillators
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We propose a two-step approach to one-dimensional anharmonic oscillators. A generalized
coherent-state ansatz is introduced for the first step. A theorem of Wick s ordering and a Bogo-
liubov transformation are used to simplify the derivation. This is shown to be equivalent to the
Hartree approximation. In the second step, standard diagonalization is used for the transformed
Hamiltonian. The method yields a clear physical picture and is capable of producing accurately all
the low-lying energy levels in a single diagonalization. Asymptotic expansions for the energy levels

are easily obtained. The connection with a pure quartic oscillator is pointed out and as a by-product
no calculation is necessary in that model. We also include cubic couplings and apply the method
successfully for the two-well oscillator.

I. INTRODUCTION

In the last few decades, intensive activities were carried
out on the one-dimensional anharmonic oscillators. '

They are of interest because of their importance in molec-
ular vibrations as well as their role in the modeling of
nonlinear quantum field theory In p. articular, Bender
and %'u obtained the disconcerting result that the pertur-
bation series diverged for all values of the coupling pa-
rameter for a quartic anharmonic oscillator, no matter
how small the coupling was.

In this paper, we present a two-step approach to investi-
gate this system. This approach has a clear physical pic-
ture and is capable of producing eigenvalues with high ac-
curacy As a. preparation we discuss a theorem of Wick's
ordering in Sec. II, which will help to make the derivation
in a simple way. We give a simple derivation for this
beautiful trick. In Sec. III, for the first step we assume a
"generalized coherent state" of the form

neling are accurately obtained. The discussion and con-
clusions are given in the final section.

II. THEOREM ABOUT WICK'S REORDERING

Before we plunge into the problem of the anharmonic
oscillators, we will discuss a theorem about Wick's reor-
dering. We start from the Cambell-Baker-Hausdorff for-
mula. In the particular case when the commutator of two
operators [A,B] is a c number, we have

A +B eAe Be —[A,B]/2

Introducing

A =hexa~

and

where a and a are any pair of creation and annihilation
operators and whose commutator

J P) =exp —a
[ 0),

2
[A,B]= —a (4)

where the parameter t is determined by the variation prin-
ciple. A Bogoliubov transformation is essential in siinpli-

fying the calculation. This step is shown to be equivalent
to the Hartree approximation. In Sec. IV for the second
step we use the standard method to diagonalize the
transformed Hamiltonian, with confidence that all the ca-
tastrophy effects have been taken care of by the coherent-
state ansatz in the first step. The convergence is indeed
fast for all values of the quartic coupling. This is given in
Sec. V. The asymptotic behavior of the eigenvalues and
its connection with a pure quartic oscillator is given in
Sec. VI. As a by-product, there is no need to calculate the
pure quartic oscillator at all. In Sec. VII a straightfor-
ward extension of the model to the case where a cubic
coupling is included in addition to quartic anharmonicity
is given. As a special case we apply our method to a
double-well oscillator. Even the tiny splittings due to tun-

is indeed a c number, we have

ea(a+a ) eaa eaaea /22

e a /2 e a~a+a ).
~ ~

(at+a) =:(at+a):+3(at+a),
(a +a) =:(a +a):+6:(a +a)'.+3,

(6b)

(6c)

and similar formulas for higher orders. These formulas
will help simplify all the derivations in the following. Its

Here the:: sign means normal ordering with respect to
the pair of creation operator a~ and annihilation operator
a. The usefulness of Eq. (5) in field theory was em-
phasized recently by Coleman. Expanding Eq. (5) in
powers of a, and comparing the coefficients of a", we ar-
rive at the following set of relations:

(a +a )'=:(a +a )'.+ l, (6a)
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generalization to more degrees of freedom and to field
theory is straightforward. In fact, this formula is
equivalent to Coleman's theorem in field theory.

t 3A 1+t
1 —t2 2 1 —t

2

+ ++3'+1+t 1+t
1 —t2 1 —t

2

III. FIRST STEP: COHERENT-STATE ANSATZ
AND HARTREE APPROXIMATION

We start with the Hamiltonian

H= —,p + —,x +M (7) w1th

2

+—:(b+b')'.1+t
4 1 —t

(17)

Equation (7) can be put in a second-quantized form by in-
troducing the creation and annihilation operators a and
a,

1 t 3A, 1+tEo=—+,+

Introducing the variable

(18)

x+ip

which yield

H=a a+ —+—(a+a )
1 A, t4
2 4

(8a)

(8b)

(9)

1 —t
CO= 1+t

we have the expression for Ep,

1 +co 3A,

4Q) 4~

The variation principle now yields

(19)

We now make an ansatz for a trial state to be a general-
ized coherent state of the form

dEp =0
dQP

(21)

~ y ) e{t/2)a
~
0) (10) or

b= a —ta

(1 t2)1/2

b = a —ta

( 1 t2)1/2

(12a)

(12b)

The new pair of creation and annihilation operators b
and b retain the same commutator relation as the original
pair of operators a and a t:

[b,bt]=1 . (13)

Furthermore, b is the annihilation operator for the trial
wave function

b ~$)=0. (14)

Thus, b and b are the annihilation and creation operators
for the new "vacuum" state

~
P). The parameter t is

chosen by the variational principle so that the energy ac-
quires its minimum value:

(15)

Using the commutator relation, it is straightforward to
show that

~ P ) satisfies the relation

(11)

Hence, it is natural to introduce a Bogoliubov transforma-
tion:

co —co +6k, =O . (22)

It is important to notice that Eq. (22) also guarantees
that the coefficients of b and bt in H are zero. This is
clearly the condition for the new creation and annihilation
operators b and b to correspond to the normal modes,
and is the general requirement for the Hartree approxima-
tion. The Hamiltonian (17) now takes the form

H =E,+cob "b+ —:(b+bt):4

4'
with

(23)

(24)

Formula (24) yields the ground-state energy with errors
less than 2% for all values of the coupling strength.

to solve the problem.
A two-term approximation

V. SECOND STEP: PERTURBATION EXPANSION

We believe that, with the coherent state
~ P ) taking care

of all the coherent effects, no additional catastrophy will
be encountered from now on. In fact we have employed
the standard coupled-cluster method which is of the form

(25)

dE(t)
dt

s= a~ + a~
2 4!

(26)

Using Eqs. (6a), (6b), and (6c), the Hamiltonian (7) may be
written as

already yields less than 0.3% error for all values of the
coupling constant k. Here we use an even more straight-
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Size of
determinant E3

6.72
6.226
6.220 30
6.220 30

4.836
4.632 6
4.628 883
4.628 883

3.142 4
3.13870
3.138624
3.138624

1.772 6
1.769 507
1.769 5026
1.769 5026

0.559 185
0.559 1470
0.559 14633
0.559 14633

SxS
9X9

19x19
Exact

0.1

10.9
9.040 7
9.028 809
9.028 779

7.37
6.591 4
6.578 41
6.578 40

4.337
4.329 1

4.327 525
4.327 525

2.334 9
2.324 57
2.324406
2.324406

0.696 62
0.696 188
0.696 1758
0.696 1758

SxS
9x9

19x19
Exact

0.5

13.69
10.982 3
10.963 64
10.963 58

9.122
7.960 5
7.942 43
7.942 40

5.1939
5.1824
5.179292
5.179292

2.753 07
2.738 28
2.737 892
2.737 892

0.804607
0.803 795
0.803 77066
0.803 77066

Sx5
9x9

19x 19
Exact

1.0

10.390
10.359
10.347 06
10.347 06

29.8
22.47
22.408 9
22.408 8

19.3
16.12
16.090 3
16.090 1

5.361 35
5.323 47
5.321 609
5.321 608

1.508 16
1.505 07
1.504 972
1.504 972

SXS
9x9

19x19
Exact

64.5
47.87
47.706 6
47.707 2

41.5
34.28
34.182 8
34.182 5

22.01
21.94
21.906 91
21.906 90

11.277
11.192
11.187 255
11.187 254

3.139 183
3.131631
3.131 3843
3.131 3842

SXS
9x9

19X19
Exact

100.0

139
102.8
102.517
102.516

89.4
73.6
73.41979
73.419 11

47.24
47.08
47.017 36
47.017 34

24.167
23.983
23.972 21
23.972 21

6.711 5

6.694 8
6.694 221
6.694221

SX5
9x9

19x 19
Exact

1000.0

converge very fast throughout the whole range of A, .
Table I gives the results for N =5, 9, 19.

forward approach. In the Hamiltonian (23), we interpret
co to be the frequency for the true physical exciton normal
modes. We therefore use the set of vectors

VI. ASYMPTOTIC EXPANSION
AND THE CONNECTION

WITH PURE QUARTIC OSCILLATOR

bfn

as a basis. The matrix elements for H are then trivial.
The only nonzero matrix elements are From Eq. (22), the asymptotic value of the root co for

asymptotic value of A. is

(n ~H
~

n)=no)+ N(n —1),6A,

4co
(29)(28a)

Combining with Eqs. (23) and (24), we have the asymp-
totic behavior of the root E„ for A, »1 as&n —2IH ln&=(n IH In —2)

[n(n —1)]'~ (n —2),
CO

„E=e„(A,)'~ (30)

where the coefficients e„are given by
&n —4~H ln&=(n IH In 4)

[n(n —1)(n —2)(n —3)]'~
463

(31)
(28c)

and A,„are the roots of a single operator

K=btb+ ,', :(b+bt)'. . —Truncating the basis by limiting n (N, we may then use
the standard diagonalization scheme such as the Jacobi
method to obtain all the eigenvalues and the eigenvectors.
The resultant eigenvalues are stable with the increase of N
for all values of the coupling strength A, . The eigenvalues

(32)

Table II gives the first 20 values of the coefficients. These
coefficients will yield all the levels in the pure quartic os-
cillator since the latter is the limiting case of e—+0 of the

TABLE I. Energy levels of the single anharmonic oscillator with a qua, rtic anharmonicity.
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TABLE II. Coefficients e„ for n =0, 1, . . . , 20 of the asymp-
totic expansion of the quartic anharmonic oscillator.

&n

&~2+ & ~2+ 4
E'

(34)

0
1

3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20

0.667 986 259
2.393 644 02
4.696 795 39
7.335 73000

10.244 308 5
13.379 336 6
16.711 889 6
20.220 849 5

23.889 993 6
27.706 393 4
31.659 456 5
35.740 315 3
39.941 416 8
44.256 235 4
48.679 065 9
53.204 869 8
57.829 1584
62.547 902 8
67.357 462 8
72.254 530 3
77.236 082 7

Taking the limit e~O, we obtain from (30) the following
value of the eigenvalues for the pure quartic oscillator:

E„=e„(A,)'" . (35)

H= 2p + 2x +A% +gx (36)

From (6b), the inclusion of the cubic term does not alter
the discussion in the first step or the Hartree approxima-
tion. The only difference lies in the second stage. The
Hamiltonian (23) should be changed to

H=EO+eb b+:(b+b ):4'

VII. INCLUSION OF CUBIC COUPLING
AND ITS APPLICATION

TO DOUBLE-WELL OSCILLATOR

We can extend our treatment for the following Hamil-
tonian:

[:(b+bt):+3(b+b )] .
( v'2') (37)

following Hamiltonian:

H = —,p + —,cx +M
A scaled transformation gives an equivalent form:

For g of the order of A, , the convergence is again uni-
formly fast. Typical results are given in Table H&.

As a severe test of our method, we apply it to the two-
well oscillator model which has the Hamiltonian

TABLE III. Typical results of the anharmonic oscillator with cubic and quartic anharmonicity. '

Size of
G4 determinant E4

0.1 0.1 9x 9
19x19
Exact
value

0.553 518
0.553 516 18

1.745 51
1.745 509 3

same

3.095 7
3.095 397 2

4.570 6.148
4.567 642 6.142 150

6.142 148

1.0 1.0 9 X9
19X 19
Exact
value

0.720 5
0.720 463 07
0.720 463 OS

2.501 5
2.501 359 6
2.501 359 5

4.848 7.53 10.5
4.83867784 7.50878 10.4457
4.838 677 8 7.508 76 10.4455

10.0 10.0 9X9
19X 19
Exact
value

0.826 5
0.825 351 4
0.825 351 1

3.934
3.930 657
3.930 655

8.52
8.487 95
8.487 93

13.90
13.798 8
13.798 6

19.9
19.727
19.726

100. 100. 9X9
19X19
Exact
value

—3.74
—3.774 20
—3.774 23

4.21
4.152 83
4.152 76

12.3
11.994 3
11.993 9

23.3
22.313
22.311

35.8
34.025
34.014

1000 1000 10X10
19X19
Exact

—81.2
—82.278
—82.291

—37.4
—40.29
—40.37

—2.5
—6.79
—6.95

15.0
11.20
11.06

39.0
29.76
29.34

'All the exact values quoted can be obtained by diagonalization with a size of 30X30.



Table IV gives the typical result of the first six lowest en-

ergy levels for some of the couplings. The fast conver-
gence is strong support for this model. These values are
in agreement with the results of Banerjee whenever they
have entries.

TABLE IV. Energy levels of the double-well oscillator.

6z

E3

6'p

3.901 359 952
3.918263 338

1.371 122 236
1.371 308 461

1.358 422 104
1.360 133 598

0.04 5.838 911090
6.183906 204

5.369 059 360
6.177 383 139

5.181424 577
6.315 544 236

5.187 369 934
6.532 394 860

5.288 919012
6.787 428 110

III. DISCUSSION AND CONCLUSION
0.05 3.746 917081

3.848 838 300 We consider the success of these results to be a strong
justification for the simple physical interpretation of our
two-step approach. For the Bogoliubov transformation
(12) to be unitary, it is essential that t & 1. For small I,,
there are three roots in Eq. (22), but only one solution sat-
isfies t & 1. This solution is a continuous function of A, for
the whole range of A, . We obtain all the lowest eigenvalues

by a single diagonalization. This is in contrast with the
approach of Banerjee. Furthermore, contrary to what
has been believed, numerical test runs indicate that the
Brillouin-Wigner perturbation expansion on the
transformed Hamiltonian (23) converges for A, &1. The
convergence of the Brillouin-Wigner series for larger A, is
still an open question.

It is interesting to note that this model can even be ex-
tended to the case for a negative but small value of A, .
Strictly speaking, no bound states are present in this case.
But, for small A, and for energy levels far below the disso-
ciation limit we may neglect tunneling and consider them
as bound states. Application of our two-step method has
also yielded stunning success. '

The extensions to the case with higher order of anhar-
monicity or with higher dimension are straightforward.
Successful test runs in two-dimensional coupled oscillators
have been performed. They agree with the results in Ref.
3. We have also extended our method to one-dimensional

field theory. They will all be reported in future publi-
cations.

3.542 342 544
3.819 606 255

1.343 027 202
1.350 326 968

1.323 274 074
1.343 365 616

3.342 216 720
3.833 129938

3.184662 443
3.881 190 140

3.075 954 576
3.954 001 892

0.07

1.298 249 887
1.340 294 971

0.08

1.268 237 584
1.341 520 024

5.435 992 044
7.059 115212

0.09

1.234 507 163
1.346 940 869

3.009 488 545
4.043 546 040

5.605 133797
7.336 113819

1.10

5.968 432 268
7.884 603 611

1.162 626 585
1.368 699 619

2.967?23 297
4.251 215 607

0.12

6.336018 860
8.411046 927

3.000 806 735
4.475 767 277

1.093 828 994
1.401 614901

0.14

'2

H= —,p +—x-] p A 2 1

2 2i,
(38)

A translational shift

(39)
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II= —,p +—x —~2Ax +x (4O)

which may further be reduced to the standard form (36)
by a scale change:

H=2 zp +zx +2 & 2 ~ 4 ~~ 3 (41)
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