Comparison of energy dependence of transverse momentum of dimuons produced in pNand π^-N interactions with quantum-chromodynamic predictions

B. Cox and P. K. Malhotra*

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510 (Received 1 April 1983; revised manuscript received 25 August 1983)

We have analyzed the dependence of the average transverse momentum squared $\langle p_T^2 \rangle$ of dimuons produced in pN and π^-N interactions on s, the square of the center-of-mass energy. The presently available data indicate a linear increase of $\langle p_T^2 \rangle$ with s in both reactions, with the rate of increase being approximately twice as large in the π^-N reaction for $M/\sqrt{s} = 0.28$ as in the pN reaction for $M/\sqrt{s} = 0.22$. The value of $\langle p_T^2 \rangle$ extrapolated to s=0, which is interpreted as the intrinsic $\langle k_T^2 \rangle$ of the π^- and p constituents, is the same within errors for both reactions. First-order QCD consistently predicts a lower $\langle p_T^2 \rangle$ at all s than is observed in the data.

A well known prediction of perturbative quantum chromodynamics (QCD) is that the average transverse momentum squared $\langle p_T^2 \rangle$ of dimuons produced in hadronic collisions is given to order α_s by the relationship¹⁻³

$$\langle p_T^2 \rangle = \langle k_T^2 \rangle + \alpha_s(Q^2) f(\tau, x_F, \ln Q^2) s , \qquad (1)$$

where α_s is the running coupling constant, M is the mass of the dimuon, s is the center-of-mass energy squared, $\tau = M^2/s$, and $\langle k_T^2 \rangle$ is the sum of the intrinsic transverse momentum squared of the constituents that take part in the interaction. Equation (1) implies that $\langle p_T^2 \rangle$ should grow linearly with s at a given τ , Q^2 , and x_F . A linear relationship has been reported.⁴⁻⁷ The aim of this paper is to extract quantitative information from presently existing data on the s variation of $\langle p_T^2 \rangle$ in π^-N and pN reactions and to compare the observed data with the predictions of first-order QCD.

The perturbative expression for the differential cross section to first order in α_s for dimuon production can be written as⁸

$$\frac{d\sigma_{P}}{dM \, dy \, dp_{T}^{2}} = \frac{d\sigma_{A}}{dM \, dy \, dp_{T}^{2}} + \frac{d\sigma_{C}}{dM \, dy \, dp_{T}^{2}}$$

$$= \frac{16\alpha^{2}}{27} \frac{s}{M} \int_{x_{1}^{\min}}^{1} dx_{1} \frac{x_{1}x_{2}\alpha_{s}}{x_{1}s + u - M^{2}} \frac{(\hat{t} - M^{2})^{2} + (\hat{u} - M^{2})^{2}}{s^{2}\hat{t}\hat{u}} \sum_{i}^{2} e_{i}^{2} [q_{i}^{h_{1}}(x_{1}, Q^{2})\overline{q}_{i}^{h_{2}}(x_{2}, Q^{2}) + (1\leftrightarrow 2)]$$

$$+ \frac{2\alpha^{2}}{9} \frac{s}{M} \int_{x_{1}^{\min}}^{1} dx_{1} \frac{x_{1}x_{2}\alpha_{s}}{x_{1}s + u - M^{2}} \frac{\hat{s}^{2} + \hat{u}^{2} + 2M^{2}\hat{t}}{-\hat{s}^{3}\hat{u}} \sum_{i}^{2} e_{i}^{2} [q_{i}^{h_{1}}(x_{1}, Q^{2})G_{i}^{h_{2}}(x_{2}, Q^{2}) + (1\leftrightarrow 2)] . \quad (2)$$

1

Here σ_A and σ_C represent the contributions of the order- α_s quark-antiquark-annihilation and Compton-scattering diagrams shown in Figs. 1(b) and 1(c), respectively. The q_i 's and G_i 's in Eq. (2) are the quark and gluon distribution functions, and the various kinematic variables are given by

$$x_{1}^{\min} = -u/(s+t-M^{2}),$$

$$x_{2} = [-x_{1}t - (1-x_{1})m^{2}]/(x_{1}s+u-m^{2}),$$

$$t = M^{2} - \sqrt{s}M_{T}e^{-y}, \quad u = M^{2} - \sqrt{2}M_{T}e^{y},$$

$$\hat{s} = x_{1}x_{2}s, \quad \hat{t} = x_{1}t + (1-x_{1})M^{2},$$

$$\hat{u} = x_{2}u + (1-x_{2})M^{2},$$

$$M_{T}^{2} = p_{T}^{2} + M^{2},$$

and

$$\alpha_s = \frac{12\pi}{\left[25\ln(Q^2/\Lambda^2)\right]}$$

with $Q^2 = M^2$ in expression (2).

Equation (2) is useful only for large p_T since it has a singularity at $p_T=0$. Furthermore, it ignores the intrinsic transverse momentum k_T of the constituents. Altarelli, Parisi, and Petronzio¹ have given the following prescription which uses this intrinsic k_T to regularize the $p_T=0$ divergence:

$$\frac{d\sigma}{dM\,dy\,dp_{T}^{2}} = \int d^{2}q_{T} \frac{d\sigma_{P}}{dM\,dy\,dp_{T}^{2}} [f(\vec{p}_{T} - \vec{q}_{T}) - f(p_{T})] + \pi f(p_{T}) \frac{d\sigma_{DY}}{dM\,dy} .$$
(3)

Here $\vec{q}_T = \vec{p}_T - \vec{k}_T$, σ_{DY} is the Drell-Yan cross section [see Fig. 1(a)], and f is the soft k_T distribution. We have

63

©1984 The American Physical Society

$$\bar{q}$$
 μ^+ (d)

FIG. 1. (a) Drell-Yan process. (b) $O(\alpha_s)$ QCD quarkantiquark-annihilation process. (c) $O(\alpha_s)$ QCD Comptonscattering process. (d) Vertex correction to the Drell-Yan process with virtual gluon exchange.

assumed the k_T distribution to have a Gaussian form with the normalization

$$\int f(p_T) d^2 p_T = \frac{1}{\pi \langle k_T^2 \rangle} \int d^2 p_T \exp[-p_T^2 / \langle k_T^2 \rangle]$$
$$= 1.$$
(4)

The structure functions used in this calculation of $\langle p_T^2 \rangle$ are given by

$$xu_{p} = u_{0}x^{0.52-0.16\overline{s}}(1-x)^{2.79+0.77\overline{s}},$$

$$xd_{p} = d_{0}x^{0.52-0.16\overline{s}}(1-x)^{3.79+0.77\overline{s}},$$

$$xS_{p} = (0.26+0.18\overline{s})(1-x)^{7.8+0.78\overline{s}},$$

$$xG_{p} = 3.06(1-x)^{5.0},$$

$$xV_{\pi} = V_{0}x^{0.4}(1-x)^{0.9},$$

$$xS_{\pi} = 0.24(1-x)^{6.9},$$

$$xG_{\pi} = 2.0(1-x)^{3.0}$$
(5)

with $\bar{s} = \ln[(Q^2/0.25)/\ln(20/0.25)]$, where Q^2 is in GeV². The valence-quark distributions are normalized to obtain the proper number of valence quarks for π 's and protons. We have assumed that the strange quark-antiquark pairs are suppressed by a factor of 2 compared to $u\bar{u}$ or $d\bar{d}$ pairs. The quark distribution functions for the proton

FIG. 2. $\langle p_T^2 \rangle$ versus s for dimuons produced in π^- -nucleon interactions. The solid curve is a linear fit to the data. The dashed and dot-dash curves are the predictions of first-order QCD using the Altarelli *et al.* prescription for different values of Λ .

correspond to the CERN-Dortmund-Heidelberg-Saclay (CDHS) results⁹ while the quark distribution functions for the pion correspond to the NA3 results.^{6,10} The Q^2 dependence is quite small over the range of interest. We have used a Q^2 -independent gluon distribution for the proton corresponding to counting rules; the conclusions arrived at here are not affected if the power index is varied in the range 5.0±1.0.

When we use the structure functions (5) in Eq. (3) and integrate over p_T , we obtain the Q^2 -dependent Drell-Yan cross section which is known to be lower than the experimental cross sections for dimuon production by π 's, p's, or antiprotons by factors in the range 1.6 to 2.6 [compilations of K factors $\equiv (d\sigma/dM dy)_{data}/(d\sigma/dM dy)_{DY}$ for various reactions are given, for example, in Refs. 7 and 11-14]. At the level of the accuracy of the data these K

FIG. 3. $\langle p_T^2 \rangle$ vs s for dimuons produced in p-nucleon interactions. The solid curve is the linear fit to the data. The dashed and dot-dash curves are the predictions of first-order QCD using the Altarelli *et al.* prescription for different values of Λ .

Fit	Reaction	$\sqrt{ au}$	Intercept (A) $[(\text{GeV}/c)^2]$	Slope (B)	χ²/DF
$\langle p_T^2 \rangle$	$\pi^- N$	0.28	0.59 ± 0.05	$(2.8\pm0.2)\times10^{-3}$	1.2
$\frac{\langle p_T^2 \rangle}{}$	<i>pN</i>	0.22	0.52±0.11	$(1.4\pm0.2)\times10^{-3}$	0.3

TABLE I. Fits of $\langle p_T^2 \rangle = A + B(\tau)s$ to existing dimuon data.

factors have been determined to be independent of τ and y. Theoretical justifications of constant K factors have been provided by several authors¹⁵ who have carried out a full $O(\alpha_s)$ calculation and have confirmed the observed independence of K of τ and y for $\tau < 0.5$. In these calculations the largest part of correction to the cross section for $\tau < 0.3$ (i.e., for the range of the current experiments) is found to arise from the vertex-correction diagram [Fig. 1(d)]. This diagram, however, contributes no p_T other than the k_T of the constituents to the dimuons. In addition, more complete calculations to order α_s^2 which have been done by Ellis, Martinelli, and Petronzio,¹⁶ indicate that K is only a slowly varying function of p_T . Therefore, we have used empirical K factors assumed to be independent of τ , x_F , and p_T in fitting the dimuon p_T distributions at various energies.

Using Eq. (3), the structure functions given by (5), and the empirical K factors, we have been able to fit¹³ published dimuon transverse-momentum distributions for proton interactions at 400 and 2050 GeV/c, for π^- interactions from 125 to 280 GeV/c, and for \bar{p} interactions at 125 GeV/c. While the agreement of the calculations with the proton data is quite good at a given s, a $\langle k_T^2 \rangle$ varying from 0.9 (GeV/c)² at $\sqrt{s} = 23.4$ GeV to 1.5 (GeV/c)² at $\sqrt{s} = 62$ GeV is required. Similarly $\langle k_T^2 \rangle$ must vary from 0.9 (GeV/c)² at $\sqrt{s} = 15.3$ GeV to 1.2 (GeV/c)² at $\sqrt{s} = 22.8$ GeV for the π^- reaction. Thus, we find that QCD to order α_s with a constant $\langle k_T^2 \rangle$ is unable to describe the existing p_T data at different energies.¹³

To make explicit the failure of first-order QCD with constant $\langle k_T^2 \rangle$ to explain the transverse-momentum distribution of dimuons at different energies, we have compared the observed second momenta of the p_T distributions of the data to the $\langle p_T^2 \rangle$ predicted by (3). Figure 2 shows the existing measurements^{5,6,17,18} of $\langle p_T^2 \rangle$ for $\sqrt{\tau}=0.28$ and $x_F>0$ at different values of s for the π^-N reaction. Figure 3 shows $\langle p_T^2 \rangle$ for the pN data^{5,19,20} for $\sqrt{\tau} = 0.22.$ The pNdata points from the Columbia-Fermilab-Stony Brook (CFS) experiment¹⁹ are for $\langle y \rangle$ ranging from 0.03 for 400 GeV/c to 0.40 for 200 GeV/c. To take into account the expected dependence of $\langle p_T^2 \rangle$ on y we have used the QCD formalism described above to correct the CFS data to correspond to $y \ge 0$. Linear fits of the form $\langle p_t^2 \rangle = A + Bs$ are shown for both sets of data. The details of the fits are given in Table I. As shown in the figures and in Table I, the s = 0intercept is the same within errors for the pN and $\pi^- N$ data but the slope of the rise of $\langle p_T^2 \rangle$ with s is approximately twice as large for the π^- data as for the pN data.

Since within errors the intercepts $\langle P_T^2 \rangle_{s=0}$ are the same and since we interpret $\langle P_T^2 \rangle_{s=0}$ to be equal to $\langle k_T^2 \rangle$ from Eq. (1), we have set $\langle k_T^2 \rangle = 0.59$ (GeV/c)² in the QCD calculations. The results of the calculation of $\langle P_T^2 \rangle$ with this choice of $\langle k_T^2 \rangle$ are shown in Figs. 2 and 3 for two different values of Λ (0.3 and 0.5 GeV/c). The predictions of QCD fall well below the data in the case of both the pN and the π^-N reactions. However, the calculations do show a steeper slope for π^-N than for pN in qualitative agreement with the data.

In carrying out the computations we have restricted the calculations to $p_T \leq 10 \text{ GeV}/c$. In order to check the effect of this truncation we have repeated the calculation for $s = 3850 \text{ GeV}^2$ (since the effect is expected to be maximum at large s) but extending p_T to $p_T \leq 15 \text{ GeV}/c$. (Note that kinematics restrict the maximum value of p_T to 29.5 GeV/c for $\sqrt{\tau} = 0.22$.) For $\Lambda = 0.5 \text{ GeV}/c$, we obtain $\langle p_T^2 \rangle = 4.20 \quad (\text{GeV}/c)^2 \quad \text{compared} \quad \text{to} \quad \langle p_T^2 \rangle = 4.07 \quad (\text{GeV}/c)^2 \quad \text{for } p_T \leq 10 \text{ GeV}/c$. Thus, the effect of truncation of the p_T distribution is fairly small for $s \leq 3850 \text{ GeV}^2$. In order to explore the source of the curvature seen in Fig. 3, we have repeated calculations by using a constant value of 0.3 for α_s . This yields a very nearly straight-line behavior for $\langle p_T^2 \rangle$ vs s. Thus, the source of the curvature is almost entirely due to the $\ln(Q^2)$ dependence of α_s .

In conclusion we have examined the behavior of $\langle p_T^2 \rangle$ as a function of s for the high-mass dimuons produced in pN and π^-N interactions. We find that the data are consistent within errors with the same $\langle p_T^2 \rangle$ intercept at s = 0 for p and π^- , but that the rise of $\langle p_T^2 \rangle$ with s is approximately twice as fast for the $\pi^- N$ reaction as for the pN reaction. It may, however, be noted that the values of τ used for pN ($\sqrt{\tau}=0.22$) and π^-N ($\sqrt{\tau}=0.28$) are different which, in principle, would lead one to expect different slopes for the two cases. We have interpreted the s = 0 intercept as the sum of the $\langle k_T^2 \rangle$ of the constituents of the proton and pion participating in the interaction and have used the observed intercept $\langle k_T^2 \rangle = 0.59 \text{ GeV}^2/c^2$ in the first-order QCD prescription of Altarelli et al. to calculate the expected behavior of $\langle p_T^2 \rangle$ with s. We find that this $O(\alpha_s)$ formalism of QCD to (with the assumption of a p_T -independent K factor and $Q^2 = M^2$) is unable to account for the observed energy dependence of $\langle p_T^2 \rangle$ with the disagreement worsening at larger s. We therefore conclude that if the p_T distribution of the dimuons has to be understood on the basis of QCD, it is necessary to consider diagrams representing higher orders in α_s .

- *On leave from the Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India.
- ¹G. Altarelli, G. Parisi, and R. Petronzio, Phys. Lett. <u>76B</u>, 351 (1978); <u>76B</u>, 356 (1978).
- ²E. L. Berger, in *New Results in High Energy Physics—1978,* edited by R. S. Panvini and S. E. Csorna (AIP, New York, 1978).
- ³F. Halzen and D. M. Scott, in *Lepton Pair Production*, proceedings of the Moriond Workshop, Les Arcs, France, edited by J. Trân Thanh Vân (Editions Frontréres, Dreux, France, 1981), p. 297.
- ⁴J. K. Yoh et al., Phys. Rev. Lett. <u>41</u>, 684 (1978).
- ⁵M. Corden *et al.*, Birmingham-CERN-Polaiseau Collaboration, paper submitted to European Physical Society Conference on High Energy Physics, 1981 (unpublished).
- ⁶J. Badier *et al.*, NA3 Collaboration, Report No. LPNHE/X 82/02, 1982 (unpublished).
- ⁷I. R. Kenyon, Rep. Prog. Phys. <u>45</u>, 1261 (1982).
- ⁸F. Halzen and D. M. Scott, Phys. Rev. D <u>18</u>, 3378 (1978); K. Kajantie and R. Raitio, Nucl. Phys. <u>B139</u>, 72 (1978).
- ⁹J. G. H. deGroot *et al.*, CDHS Collaboration, Phys. Lett. <u>82B</u>, 456 (1979).
- ¹⁰J. Badier *et al.*, Phys. Lett. <u>89B</u>, 145 (1979); Report No. CERN/EP 80-148, 1980 (unpublished).
- ¹¹L. Lyons, Prog. Part. Nucl. Phys. <u>7</u>, 169 (1981).

- ¹²B. Cox, in Proceedings of the 21st International Conference on High Energy Physics, Paris, 1982, edited by P. Petiau and M. Pornuef [J. Phys. (Paris) Colloq. <u>43</u>, (1982)]; B. Cox, in Proceedings of the Drell-Yan Workshop, Fermilab, 1982 (unpublished), p. 63.
- ¹³P. K. Malhotra, in Proceedings of the Drell-Yan Workshop, Fermilab, 1982 (unpublished), p. 217.
- ¹⁴E. L. Berger, in Proceedings of the Drell-Yan Workshop, Fermilab, 1982 (unpublished), p. 1.
- ¹⁵G. Altarelli, R. K. Ellis, and G. Martinelli, Nucl. Phys. <u>B157</u>, 461 (1979); J. Kubar-Andre and F. E. Paige, Phys. Rev. D <u>19</u>, 221 (1979); J. Kubar *et al.*, Nucl. Phys. <u>B175</u>, 251 (1980).
- ¹⁶R. K. Ellis, G. Martinelli, and R. Petronzio, Phys. Lett. <u>104B</u>, 45 (1981).
- ¹⁷E. Anassontzis *et al.*, E-537 (Athens-Fermilab-McGill-Michigan-Shandong) Collaboration, Report No. FERMILAB-CONF-82/50-EXP, presented at the 21st International Conference on High Energy Physics, Paris, 1982 (unpublished).
- ¹⁸K. J. Anderson et al., Phys. Rev. Lett. <u>42</u>, 944 (1979).
- ¹⁹A. S. Ito *et al.*, CFS Collaboration, Phys. Rev. D <u>23</u>, 604 (1981).
- ²⁰D. Antreasyan *et al.*, R209 Collaboration, Phys. Rev. Lett. <u>47</u>, 12 (1981).