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Thermodynamic equilibrium of a self-gravitating perfect fluid for a spherically symmetric system
containing a black hole of mass M is investigated by means of the Tolman-Oppenheimer-Volkoff
(TOV) equation. A singular family of solutions of the TOV equation is described. At r »2M these
solutions can be used to represent a perfect fluid (i.e., photon gas) of temperature 1"BH——(8aM) ' in
equihbrium with a Schwarzschild black hole. The energy density is positive at all r &0. A singular
negative point mass resides at r =0.

p =(y —1)p=p/(n —1) .

Its density and specific entropy can be expressed by

p =mr&~'&-" =n X'",

s =ayT'~'r-"=[an/(n —1)]T"-',

(3a)

(3b)

(3c)

where T stands for the temperature and cx is Stefan's con-
stant. To have O~p ~p, y and n are taken to belong,

Solutions of Einstein's equations which are spherically
symmetric and which extremize the entropy of a perfect
fluid for fixed total mass satisfy the Tolman-
Oppenheimer-Volkoff (TOV) equation

dp(r ) —[p(r )+p(r )][m(r )+4m r p(r)]
(1)

dr r [r —2m (r)]
Here p(r) and p(r) are, respectively, the (proper) pressure
and density, related to one another by the equation of state
of the form p=f(p). The effective mass m(r) inside a
sphere of surface area 4mr is equal to

m(r)=4m I p(r)r dr+m(0) . (2)

The TOV equation is a general relativistic version of the
well-known classical equation for hydrostatic equilibrium
in a fluid with Newtonian gravity and has been extensive-
ly used in the study of relativistic stars. '

The aim of this paper is to use the TOV equation to in-
vestigate thermodynamic equilibrium in a spherically
symmetric system which contains an uncharged, nonrotat-
ing black hole. This equilibrium is possible because the
Schwarzschild black hole has the Hawking temperature,
TBH ——(8nM) '. Until now this problem has been dis-
cussed in the approximation neglecting both the self-
gravity of the fluid and the influence of the black-hole
metric on its properties. ' Our model is also idealized
in that it ignores deviations of the stress-energy tensor
from the perfect-fluid form.

We begin our analysis by assuming that the perfect
fluid satisfies a y-law equation of state

respectively, to the ranges 1 ~ y ~ 2 and 2 ~ n ~ ~.
Bondi" has noticed that for y-law perfect fluids one

can simplify Eqs. (1) and (2) by introducing variables

u(r) =rn(r)/r,
v(r)=4m. r p(r) .

(4a)

(4b)

In terms of u and v, Eqs. (1) and (2) are equivalent to
Bondi's equation and an additional equation for the ra-
d1us".

v[2(y —1)—(Sy —4)u —yv]du

= (1—2u )[v —(y —1)u ]dv, (5)

dr/r =du/[v/(y —1)—u] .

Bondi's equation is nonlinear and cannot be solved analyt-
ically. For the important case of a fluid consisting of
massless quanta, y= —,, numerically obtained solutions
u(v) are plotted in Fig. 1. The starlike solution originates
at u =v=0. For small r it can be expanded in terms of
y = [4np(0)/3]'~2r: u(y) =y —2.4y +, v(y) =y'
—4y + . In the limiting case p(0)~ao, m(0)=0,
the TOV equation gives p(r)=(56mr ) ', m(r)= ,~r-
The oscillatory approach to the focus at u =+, and v = —,',

is reflected in the "damped oscillations" of p(r), p(r), and
m(r) around that limiting solution with the increase of
p(0). All solutions that are regular at the origin have
u & ~, and so r &2[2m(r)] for all r. ' Starlike equilibria
of y= —, fluid have been reexamined in the paper stimu-
lated by Bekenstein's suggestion for the limit on the entro-

py of a finite system, ' S&2mRE, by Sorkin, Wald, and
Jiu. ' They conclude that the entropy of an everywhere
regular solution of the TOV equation is never greater than
-R ~, which is by a factor -R'~ less than that limit.
Singular solutions of the TOV equation have not been
described before. '

In the case of the star it was customary and convenient
to integrate the TOY equation starting from r =0. There
it suffices to give only the central density p(0) as the mass
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(Sm.M) P=(y 1—)a(8m.M) ' "«y —1 .

Thus,

u «(y —l)u

and

v[2(y —1)—(5y —4)u]du -=—(1—2u )(y —1)u du,

dr/r =- —du/u .

Functions

u(r) =M/r—
and

u(r) =4m.r P(1 2u(r)]—
solve these equations and merge with the previous solution
in the overlap region, u «u « —,'. They represent fluid
with blue-shifted temperature T= TBH/[ I —2u (r)]' . In
the range 2M & r & 8mM the dominant wavelength of the
quanta of black-hole radiation becomes comparable to the
curvature radius. The fluid can no longer be regarded as
perfect. Quantum effects, such as vacuum polarization,
are likely to play an important role, and the validity of the
TOV equation can be questioned. For the time being we
shall disregard this difficulty and continue our search for
solutions to the TOV equation with the y-law perfect
fluid, regarding it as a mathematical problem.

In the range r =2M, u = —,. There it is helpful to write
Bondi's equation in terms of h =g '=1—2u(r). For
h «1, arbitrary v, one obtains

v (2u+ 1)dh =2h (2u ly —1+1/y )du,

dr lr = —(2—2/y)h du/(u+2u ) .

The solution of Eq. (5),

h = (16+PM ) (1+2u ) u

can be expressed as a relation between the radial and tem-
poral component of the metric tensor: —g gpp
=(1+2u) . The radius changes very little while h « 1.

As r decreases below 2M, first v becomes large while h
is still small, and then integrating (2) inward through the
huge energy density makes m(r) go negative so that h be-
comes large and stays large down to r =0. In this range,
u+h »1, Eq. (5) can be approximated by

dv/dh = —(v/h)(5y —4—2yulh)/(2y —2+4v/h) .

It is solved by introducing the auxiliary variable z=v/h.
For y &2 the solution can be expressed in terms of the
variable x =(r l2M ) '~' r ' and two coefficients:
A =(32mPM )

~' r~ and B=(2—y)/(7y —6). The prop-
er pressure and effective mass are the following:

p(r)=-PA rar~' 'rx(1r—x r )r '

and

m(r) =m(())(1 —x7r 6) ' r'+r/2 .

The central, negative "bare mass" is

m(0)= —M~ -'r+'a'"' -r'

647—r M [(y 1 )a—/277]

The density reaches a maximum at

2y M
7X —6 TBH

4y
BH

4n
~BHn+6

For the perfect fluid in which the speed of sound ap-
proaches the speed of light —in the limit of y=2 or
n =2—the entropy inside r =2M coincides with the entro-
py SBH ——4aM of the black hole, though our approximate
solution of the TOV equation must be modified in this
limit. Therefore, this fluid configuration attains an entro-
py of the order of Bekenstein's upper limit. ' Preliminary
analysis indicates that in spite of this large entropy the
above configuration may be unstable, and, therefore, a lo-
cal minimum rather than maximum of entropy. '

The above "interior solution" is qualitatively different
from the Schwarzschild solution for r &2M. To begin
with, the Schwarzschild horizon was not crossed even
though r &2M: Inequality r &2m(r) was satisfied for all
r. Moreover, the central singularity corresponds to a neg-
ative, rather than positive, point mass. A shell of very
dense fluid p=1 surrounds this central, negative "bare"
mass m (0). The mass of the shell is M —m(0). From the
"outside, " r &2M, the central object will appear —to an
observer stationary with respect to the radiation —to be a
Schwarzschild black hole immersed in radiation of the
Hawking temperature.

Near r =2M the TOV equation predicts that the tem-
perature of the fluid will be significantly blue-shifted, in
accord with Tolman's formula: T(r)=2BH/( —gpp)'
In this near-horizon range it is, however, doubtful whether
the usual thermodynamic concepts can be used, as (1) the
dominant wavelength of the quanta which constitute the
fluid becomes comparable with the scale over which
metric varies significantly, (2) g„„and g«vary by orders of
magnitude over Ar of the order of the Planck length, and
(3) the density of the fluid becomes comparable with the
Planck density. In each of the above-mentioned condi-
tions, vacuum polarization and/or quantum gravity can
be expected to play a crucial role. ' In this sense, our re-
sults indicate that the origins of black-hole thermodynam-
ics are intimately related to the quantum nature of the
fields involved.

r =2M[(2 —y)/(6y —4)] 'r

When the pressure P is calculated from Eq. (3) with
T=1/8~M, the maximajL density is of the order of the
Planck density and depends on y, but not on the black-
hole mass M.

The entropy of the interior portion of the above solu-
tion is of obvious interest. We calculate it using the for-
mula 5=4m sg r dr. This yields
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